The article reports a proof of concept validation of bacterial detection using Siderophores. Desferrioxamine B (DesfB) was used as the Siderophore to capture Escherichia coli on gold coated microcantilever surface. Self-assembled monolayer based gold thiol chemistry was used for surface functionalization of the Siderophore on top surface of the microcantilever. The bacterial attachment to the siderophore was observed through Fourier Transform Infrared Spectroscopy (FTIR) and Fluorescence Microscopy. The DesfB coated surface allows only the live bacterial cells to be attached and it is evident through the FTIR band formation. In a mixture of live and dead E. coli cells, the Fluorescence Microscope image indicates green emission from live cells and a core-shell structure formation upon progress of time. For a sample dilution of 10−1, the mass change of live E. coli bonded to Siderophores is four times higher than that of dead cells and 12 times higher to that of negative control on microcantilevers. Therefore this study should be considered as a foundation to build a miniaturized biosensing platform to distinguish between bacterial or viral infections in real time. The proposed platform could differentiate between bacterial and viral infections thus rendering it as Point of Care (PoC) diagnostic tool aiding Internet of Things (IoT) applications. © The Author(s) 2018.