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Abstract

We present an approach for illumination and affine-
invariant point matching using ordinal features. Ordinal
measures for matching only consider the order between
pixels and not the absolute intensity values which enables
them to be invariant to a monotonic change in intensi-
ties. The utility of such measures has been demonstrated
in the past for point matching for some applications such
as background subtraction and stereo matching. How-
ever, invariance of such methods to geometric transforma-
tions has been limited leading to their inapplicability for
more generic matching applications such as object recogni-
tion, wide-baseline stereo matching, mosaicing or tracking
points on moving objects. In this paper, we extend such
methods for use in such applications. The method is invari-
ant to an affine transformation in the patch, which makes it
applicable to a variety of applications. At the same time,
our method is robust to different types of noise processes
possible in a real scene. Experiments indicate favorable
performance when compared to other state-of-the-art meth-
ods for affine-invariant point matching.

1. Introduction

Point matching is an important task in many Com-
puter Vision applications such as object recognition, stereo
matching, mosaicing and auto-calibration. Many meth-
ods have been proposed in the past for this task. Such
methods range from simple methods like normalized cross-
correlation to more advanced techniques such as SIFT
which is based on the use of gradient histograms. The im-
portant criteria for a match measure are its robustness to
changes in illumination and the different types of perturba-
tions / noise processes possible in the patch while maintain-
ing a high matching performance. Another important cri-
teria for such match measures, particularly in applications
where the viewpoint changes, is its robustness to geometric
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transformations that occur naturally in images taken from
different viewpoints (for e.g. in wide baseline matching).

In this paper, we present an approach that uses ordi-
nal measures in order to obtain robustness to illumination
changes. At the same time, our method is invariant to
an affine transformation in the image patch around a fea-
ture point so that it is useful in applications where there
are viewpoint changes. Ordinal measures are useful in ob-
taining invariance to illumination changes since they only
consider the relative order of the pixels in a patch and not
the absolute intensity values. Thus, they can handle a non-
linear change in intensity, the only requirement being that
the changes be monotonic. There are non-linear illumi-
nation changes due to camera characteristics such as non-
linear response function, gamma correction, defocus, sat-
uration and under-saturation, or other non-linear effect in-
clude storage/transmission artifacts such as image compres-
sion. Thus, a model that is more generic than the normally
used linear change model can provide more robustness to
illumination changes in many applications.

Based on this idea, several point matching algorithms
have been developed. The census transform [25] looks at
all the neighbors of a given pixel and creates a vector from
the order of this pixel with respect to the neighbors. Im-
age matching can then be performed by correlation in this
transformed space. Bhat and Nayar[1] improved upon such
measure by a carefully designed distance between two rank
permutations. Mittal and Ramesh [15] improved upon these
methods by combining intensity and rank information so
that the cost of a change of order between pixels is pro-
portionate to the intensity difference between them. This
makes the method relatively stable to Gaussian noise.We
use some of the ideas from this paper in order to make our
feature point matching invariant to a monotonic change in
intensity.

While such methods are useful in many applications,
they cannot handle a large change in the viewpoint and
hence are inapplicable for many tasks such as wide-baseline
matching[18, 24, 4], point matching across cameras, object



recognition [10], texture recognition [9], image retrieval
[11, 19], robot localization, video data mining[20] and
recognition of object categories. In order to make such an
approach applicable to these applications, one has to make
the matching invariant to the geometric transformation tak-
ing place in the patch around a point. In this paper, we de-
velop approaches to efficiently search for an affine transfor-
mation that aligns one patch with another such that the in-
tensity transformation between the two is monotonic. Such
an approach results in an illumination and affine-invariant
point matching algorithm that can be used for many appli-
cations where one needs to match points that might be ob-
served by two cameras under different lighting conditions
and from different viewpoints.

1.1. Related Work in Affine Invariant Matching

There has been quite a bit of work in affine invariant
point matching[14]. The idea that is often used is to de-
tect points with sufficient texture contrast and to determine
a transformation of the region around the point so as to bring
the region to a normalized shape. Certain features are then
extracted from these normalized shapes. These feature vec-
tors are then compared in order to determine a score for
the matching. Techniques for detection and normalization
of such affine “covariant” regions include the Harris-affine
detector[12, 18], the hessian-affine detector [12], maxi-
mally stable extremal region detector[6], edge-based and
intensity extrema-based detectors[24] and entropy-based
detectors[22]. Techniques for feature vector descriptors
and matching include SIFT[10], shape context[16], steer-
able filters[2], PCA-SIFT[7], spin images[17] and moment
invariants[8] . SIFT has been shown to outperform other
feature descriptors[13]. Other methods for obtaining affine
invariance include image lines connecting interest points
[5, 23] and invariant vertical line segments[21].

Almost all of these methods assume a linear change in in-
tensity in order to perform matching and even to obtain the
geometric normalization for matching. We show that our
method is able to handle illumination changes much better
than most methods and is also able to handle other image ar-
tifacts such as image defocus and image compression much
better. The reason is that often these factors introduce a
non-linear change in intensities and hence lead to an error
in these methods while our method is relatively unaffected
by such changes.

The paper is organized as follows. Section 2 describes
the extraction of distinctive feature points that can be
used for matching. Section 3 describes the affine and
illumination-invariant feature point matching technique that
is used. Finally, section 4 presents the experimental results
and comparison to previous techniques for generic point
matching.

2. Feature Point Extraction

The first step in our approach is the detection of key-
points in an image. Keypoints are highly distinctive points
so that they can be easily distinguished from other similarly
extracted points in the same or another image. Also, the
same point must be detected as a keypoint even when the
image undergoes some changes due to changes in the illu-
mination or viewpoint or due to some noise processes such
as Gaussian noise, image blur or compression. Towards this
goal we propose the following solution.

2.1. Detection of Discriminative Feature Points

Points having a high contrast or “texture” around them
are generally distinctive since typically, there is a very low
probability that the same texture pattern is observed in an-
other image patch not arising from the same or similar ob-
ject. The complexity of the texture patterns that we can re-
liably distinguish from each other is dependent on the flex-
ibility of the image transformations that we allow. For in-
stance, since a projective transformation allows more distor-
tion in an image patch as compared to an affine transforma-
tion, we will need the matching pattern to be more complex
in order to determine reliably if two patterns can be said to
be occurring due to the same object (since simple patterns
will match with many other patterns, not giving us discrim-
inability). In order to handle transformations upto affine,
which are generally sufficiently flexible for matching, we
will take the following approach.

First, we note that the intersection point of lines (i.e. cor-
ner points) remains unchanged in an affine transformation.
Such corner points have been used quite popularly for ro-
bust and distinctive feature point extraction [3]. Here, we
try to find corner points that are at the intersection of two
or more lines with the added constraint that matching along
these lines is sufficient to determine the affine transforma-
tion between the patches. Two lines matches with scale
information are sufficient to determine the affine transfor-
mation (since the center is common, there are only four un-
knowns in the affine transformation and each line with scale
information provides two constraints). Similarly, three lines
intersecting at a point with only one of them having scale
information are also sufficient. However, four “non-scale”
lines are insufficient to determine the affine transformation
since the constraint from the last line is not independent of
the constraint from the first three lines.

Thus, in our method, we will try to find linear gradient
structures (lines) that intersect at a center reference point P
being tested. To test for a line, we consider two lines in the
shape of a cone passing through P on either side of the test
line direction (Fig. 1). We have used a cone angle of 10°
and lines that are about 20 pixels long in our experiments.
The lines extend in both directions since lines in opposite



Test Line Direction

Figure 1. Point Matching along a particular direction. The first
image shows the points that are compared “across” the direction
to test for a line along this directions the second shows the points
that are compared “along” the line to test for a contrast along this
direction ( to obtain scale information ).

directions yield the same constraint in the determination of
the affine transformation. Along these lines, we take the
differences across the supposed line as shown in Figure 1
(a) and sum such differences to obtain a value for the *evi-
dence’ of a gradient across this line. This is done for some
20 directions around the point. Then, we determine (circu-
lar) local maximas of such evidence to determine directions
with strong evidence of linear gradient structures.

Now, if there is some contrast along a line, then one can
determine the scale at which this line may match with an-
other similar line in another patch. This will give us an addi-
tional constraint for determining the affine transformation.
For this purpose, we calculate the distance measure value
along a line as shown in Fig. 1 (b). If one is able to obtain
a high value for the contrast along the line, then we will de-
termine and store the scale along this line at which the cal-
culated differences are the maximum. This “max” scale can
later be compared to the scale of another line while match-
ing. If the scale information is available for two lines, then
these two lines, when matched, will yield the affine trans-
formation. However, if scale is available for only one line,
then we will need two other lines for matching. Thus, a
keypoint is detected if either there are two lines with scale
information or three lines with one line having scale infor-
mation.

Fig. 2 shows the result of keypoint detection on two
images that have a viewpoint change between them. As
shown, the keypoints are detected in the two images at the
same point, which is the intersection of two lines with scale
information.

A last constraint we put on the keypoints is that they must
have a higher contrast value compared to their neighbor-
hood. The idea is that a high contrast region will typically
lead to a lot of ’hits’ around it and we would like to extract
the point with the best “hit” among all such points. For com-

Figure 2. The figures show a keypoint that was extracted in the
two images of a scene with different viewpoints. The keypoint ex-
tractor extracts the same point in the two images as the intersection
of two lines remains the same under affine transformation. If we
are able to determine the scale also along these lines, then we can
compute the full affine transformation between the patches.

paring the neighborhood points for maximum contrast, the
sum of the contrast values from all of the local maxima lines
is used. The keypoint detection described above is done at
several scales in order to handle possible scale changes.

2.2. Creating Feature Vectors

Given distinctive keypoints in an image, we would like
to store some characteristics of such points so that they can
be matched later on with other points. Such stored informa-
tion is typically called a feature vector in related work [10].
In our method, the feature vector consists of the sampled
points along the different directional regions which were



Figure 4. The figure shows the matching of one of the keypoints that was extracted in two images taken from different viewpoints. The
matched lines with the scale factors determine the whole affine transformation.
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Figure 3. The figure shows the idea behind line matching. If we
are able to establish correspondence between the red and blue lines
along with the scaling factor, then the correspondence and scaling
factor for the rest of the lines can be determined.

used for texture contrast computation in the previous sec-
tion. These sampled points will be used for illumination
invariant matching as will be described in the next section.

3. Feature Point Matching

Given the feature vectors as defined in the previous sec-
tion, we wish to match the feature vectors as obtained from
two different points such that the matching is invariant to
an affine transformation. Furthermore, we would like the
matching to be invariant to a monotonic change in intensity.
Towards this end, we propose the following approach. Our
first step will be to find an illumination invariant measure
for matching two lines.

3.1. llumination-Invariant Line Matching

Let us assume in this section that we are given two lines
which need to be matched and also the scaling factor at
which these lines are to be matched is given. Then, we
consider certain point pairs “across” the line (Fig. 1 (a)).
Since the scale factor is known, one can determine the cor-
responding point pair on the other line. Given such a point
pair, we try to determine if the order of the pixels in this
point pair has flipped. The idea behind this test is that, in
the case of a monotonic change in intensity, the order of the
pixels remains the same. A penality is there to be ascribed to
an order change.However, since noise can also easily cause
this change if the two pixels are very close to each other in
intensity, we will give a penalty to an order change equal to
the lower of the difference in the intensity values of the two
pixels being compared. Since either of the two lines being
compared could cause the flip, the lower of the such difer-
ences is considered The summation of the penalties over the
whole line is taken as the difference between the two lines:

d(llv 12) = Ez s.t. d}*d?<0 mln(|d21|7 |d$|)
where

dzl = Iill - Ii127 d% = 1121 - Ii227
Here, I}, and I}, are the intensities of the two points in the
i-th pair on the first line (/') and I3 and I3 are the inten-
sities of the corresponding points on the second line (I?).
A similar test is performed for point pairs “along” the line
(Fig. 1 (b)). The two difference values are summed to get
the final difference value between the two lines.
Given such a method for line matching, we develop an
approach for affine-invariant point matching in the next sec-
tion.



3.2. Affine-Invariant Feature Point Matching

Let I and F5 be two feature vectors that need to be
compared. In the first phase, we match the local maximas
only and try to determine the affine transformation between
the two feature vectors. A local maxima line is matched
using the approach given in the last section. The scale factor
between the two lines is computed using the “max” scale
value which was computed during feature point extraction.

We try to match either two local maxima lines with scale
information or three lines with one line having scale infor-
mation. If we are able to get such a match, then we compute
the affine transformation determined by these line matches.
Now, using this affine transformation, one can determine the
correspondence between the lines of the two feature points
and also the scale at which such lines should be matched
(Fig. 3). The final match score for all feature points is
taken as the sum of the match scores of the different lines.
We may note here that if certain lines have very low con-
trast across or along them, then they are automatically given
lower weight according to our difference measure and thus,
only the high contrast lines are in significant for matching.

Fig. 4 shows an example of a successful match between
two keypoints, where two local maxima lines with scale in-
formation was sufficient to find the whole affine transforma-
tion, which was then used for matching all the other lines.
A thorough evaluation of our approach compared to other
methods is presented in the next section.

4. Results and Comparisons

We compared the performance of our matching method
with several other methods for affine-invariant region
matching using a standard dataset[14] of images that con-
tains changes in rotation, scale, viewpoint, illumination,
blur and compression. The review paper[14] gives the re-
sults of six affine-invariant region detectors [12, 18, 6, 21,
22, 14] combined with the SIFT[10] operator for comput-
ing and matching the feature descriptor. The region detec-
tors detect certain special regions and transform them into
a normalized region. A feature descriptor is then used to
compute a feature vector which is then matched with the
feature vector of a second region. The SIFT feature descrip-
tor which uses a gradient histogram has been found to be the
most robust in several studies[13] and hence this has been
used in this study to evaluate the different region detectors.

Some images from the database of the review paper that
were used for testing are shown in Fig. 5. The results from
our method were then compared with the other methods on
these images. Fig. 6 shows the results of keypoint detec-
tion. The left plots show the repeatability scores, which is
the percentage of keypoints that are common in the two im-
ages, while the right plots show the total number of detected
keypoints. Our repeatability scores were mostly higher than

(d)
Figure 5. Example of images taken from the Database used in the
paper. The two images have (a) Viewpoint Change (b) Illumina-
tion Change (c) Image blur, and (d) JPEG compression.

other methods, although the total number of keypoints ex-
tracted was somewhat low. Fig. 7 shows the results of
matching the keypoints extracted, as compared to other
techniques. Again, we get very high matching scores, but
fewer number of matched points. The low number of key-
points may be due to our criteria for a point to be classified
as a keypoint which necessitates atleast two lines with scale
information or three lines with one scale information. This
condition may not be easily satisfied, especially in natural
scenes that may not have too many straight lines. However,
for most applications, the number of points found is proba-
bly sufficient, especially given the accuracy of the method
that may reduce the need for outlier rejection techniques.
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Figure 6. Results of keypoint extraction on the images shown in Fig. 5. The left plots show the percentage of keypoints that were common
in the two images compared to the total number of keypoints extracted while the plots on the right show the total number of such common
keypoints found.
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Our method was found to be quite robust to changes in
the illumination, as expected, and very little performance
degradation was observed, even with a 50% reduction in
the light. The method was also quite robust to JPEG com-
pression and image blur for reasonable levels of blur. The
reason is that such artifacts have very low probability of
causing a flip, especially across high intensity gradients. On
the other hand, such artifacts introduce non-linear changes
in the intensity, which is a problem for most methods. For
very high blurs, the image edges are quite blurred out and
we are not able to detect the keypoint accurately. This is
a problem only when the images are taken with a very bad
focus, which is typically not the case. Our method was also
found to be quite robust to a viewpoint change, although no
method performed well when the angle of change was too
large (> 30 degrees).

5. Conclusion

In this paper, we have proposed a novel approach for in-
terest point detection and matching. The keypoint detection
was found to be quite robust to image rotation, scale and
an affine transformation. The matching method is invari-
ant to a monotonic change in intensity and is robust in the
presence of different types of noise, such as Gaussian noise
and Salt and Pepper noise, and also image artifacts such as
image compression and blur. Experiments were conducted
on a standard dataset and show that the performance of our
approach was better than existing approaches in most cases,
especially when there was a significant degree of illumina-
tion changes or other non-linear artifacts such as image blur
and compression. The generic point matching algorithm
presented in this paper can be used for a variety of applica-
tions such as mosaicing, image retrieval, stereo matching,
object recognition, person tracking and identification, and
robot localization.
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