Available online at www.sciencedirect.com

IFAC PapersOnLine 50-1 (2017) 1571-1576

Identification of the non-linear dynamics and state of charge estimation of a LiFePO $_4$ battery using constrained unscented Kalman filter

Syam Parakkadavath* Bharath Bhikkaji**

 * Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India, 600036
 ** Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India, 600036 e-mail: (bharath@ee.iitm.ac.in).

Abstract: State of charge (SOC) estimation of a LiFePO₄ battery exhibiting significant hysteresis is considered. The dynamics of the battery is modeled as a linear system in conjunction with a non-linear hysteresis block. The linear part is assumed to be of a second order equivalent circuit model along with an open circuit voltage (OCV) source V_{oc} . The circuit model is descretised and the resulting parameters are modeled as a multivariate random walk with a diagonal noise covariance matrix. These parameters are estimated using a Kalman filter. The linear model is then validated using a hybrid pulse power characterisation (HPPC) current profile. The major loop of the non-linear hysteresis relating V_{oc} and SOC is experimentally determined by charging and discharging the battery with low magnitude currents. Using Chebyshev polynomials, a model is fit for the hysteresis curves. Constrained unscented Kalman filter (CUKF) is used for estimating the minor loops of the hysteresis, and the SOC. The SOC estimation is then validated from a full electrochemical model simulation of the battery using COMSOL software.

© 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Lithium ion battery, State of charge, Chebyshev polynomial, Unscented Kalman filter

1. INTRODUCTION

A battery management system (BMS) consists of hardware and software units that monitor and control the charging and discharging of a rechargeable battery module. The performance and health of a battery pack depends on how closely the BMS can track the state of charge (SOC) and the state of health (SOH) in real time. The SOC is defined as the ratio of charge remaining in a battery to its maximum rated capacity and SOH is a measure of the maximum attainable capacity of the battery at any point of its operational life. Since both SOC and SOH cannot be measured directly, they are estimated from measurable quantities like terminal voltage (V_t) and the current (I). The focus of this paper is SOC estimation of a LiFePO₄ battery exhibiting hysteresis.

A mathematical model of the battery is an integral part of any BMS software. Battery models can be broadly categorised into two groups. (i) Electrochemical models (EM), (Prada et al. (2012)), which consist of partial differential equations (PDE) characterising the dynamics of chemical reactions in the cell. (ii) Equivalent circuit models (ECM), (Lim et al. (2016)), which are electric circuits with their dynamics being equivalent to the battery dynamics.

EM can simulate the battery accurately but at the cost of heavy computations thereby making it difficult to embed in real-time applications. In an ECM, the values of circuit elements are the parameters of the model. Parameters are dynamically varying, can be identified using recursive system identification methods. The input-output data required for the identification is obtained by passing a known current through the battery and measuring the terminal voltage response V_t . In general, lesser computation load, along with the ability to track the parameters in real time, makes the ECM an attractive choice for developing a BMS.

The simplest form of an ECM is a capacitor. Here the SOC can be calculated by integrating the current passing through the battery (commonly referred as coulomb counting). Though simple, the limitation of this method is the accumulation of error due to uncertainty in initial condition and loss during charging/discharging.

In this paper, the battery is modeled as a 2^{nd} order ECM, see Figure 1. Here, the RC blocks characterise different dynamic phenomena occurring inside the battery. The open circuit voltage V_{oc} is taken as a sum of a time varying voltage V_0 and a voltage due to hysteresis V_{hys} . The circuit model is first descretised. To accommodate the time varying nature of the model parameters, they are modeled as a random walk. By taking current I as input and terminal voltage V_t as output, a Kalman filter is used to estimate the parameters and V_{oc} from the circuit model. Certain types of Lithium ion batteries show hysteresis behavior between SOC and V_{oc} . In this paper, to model the hysteresis, a small but constant current (charging/discharging) is applied across the battery. At a very low magnitude of current, the terminal voltage V_t of the battery is almost equal to the V_{oc} and integrating the current (coulomb counting) would approximately give the SOC of the battery. The SOC and the V_{oc} are plotted over one full charging and discharging cycle to obtain the major loop of the hysteresis. A polynomial is fit to the major loop, using Chebyshev polynomials. Using the polynomial fit of hysteresis major curves, a hysteresis model is developed. A constrained unscented Kalman filter (CUKF) is used to estimate the SOC from the hysteresis model.

The above mentioned SOC estimation paradigm is applied to a commercially available LiFePO₄ battery which is known to show notable hysteresis. A known current profile is applied across the battery and the terminal voltage V_t is recorded. From the input current and output voltage data, the V_{oc} is estimated using the Kalman filter and the SOC is estimated using the CUKF. To validate the SOC estimates obtained, a full electrochemical model of the battery is simulated using COMSOL for the same current profile. The experimentally verified parameters of the battery used for building the COMSOL model is available in Prada et al. (2012). This validates the effectiveness and reliability of the proposed method. SOC estimated by COMSOL is assumed to be close to actual SOC and is compared with the SOC estimated using the proposed algorithm. They are found to be in close match.

This paper is organised as follows. In Section 2, the circuit model for the Li-ion battery is discussed. Section 3 details the experimental setup. Section 4 contains the entire algorithm proposed for SOC estimation. Section 5 provides an experimental validation for the proposed algorithm. And finally, the paper concludes in Section 6.

2. MODELING OF LITHIUM ION BATTERY

As a trade off between minimal execution time and accuracy of the estimation, an ECM with two RC blocks is chosen to capture the linear dynamics of the battery, see Fig. 1. This is a well known model and has been used frequently in the past (Tang et al. (2011); Lim et al. (2016)). Here, the first block R_1C_1 characterises the diffusion of Li+ ions across the concentration gradient and the second block R_2C_2 accounts for double layer effect in the electrodes. The resistor R represents the effective internal impedance of the cell. V_{hys} is the voltage due to hysteresis and V_t is the terminal voltage across the battery. I is the current passing through the battery, which is taken as positive while discharging and negative while charging.

3. EXPERIMENTAL SETUP

A commercial Li-ion cell, ANR26650M1A from A123 systems is utilised for this study. The rated capacity of the cell is 2300 mAh and the nominal voltage is 3V. The voltage at fully discharged state is 2.8V and at fully charged state is 3.6V. The cathode material is LiFePO₄ and the anode is made of graphite. Three of such cells are connected

Fig. 1. Second order ECM of a Li ion battery.

in parallel to form a battery with an overall capacity of 6900 mAh, which is used for the experiments. A battery tester (Kikusui PFX2021, 20V, 10A) is used to procure the terminal voltage (V_t) and current (I) as data for all charging-discharging experiments. All measurements were taken at room temperature.

4. ESTIMATION ALGORITHMS

There are two stages leading to SOC estimation. In the first stage, V_{oc} is estimated from V_t and I, and in the second stage the SOC is estimated from the V_{oc} .

4.1 Voc estimation

From the circuit model shown in Fig. 1, using Kirchhoff law, the following relationship can be derived,

$$V_t(k) = V_{oc}(k) + I(k)R + V_1(k) + V_2(k) + e(k)$$
(1)

where e(k) is the measurement noise. $V_1(k)$ and $V_2(k)$ are the voltages across the RC blocks. I(k) is the current through the battery and $V_{oc}(k)$ is the open circuit voltage.

Discretising the differential equation of the ECM leads to the discrete state space model,

$$\begin{bmatrix} V_1(k) \\ V_2(k) \end{bmatrix} = A \begin{bmatrix} V_1(k-1) \\ V_2(k-1) \end{bmatrix} + BI(k-1)$$
(2)

$$V_t(k) - V_{oc}(k) = C \begin{bmatrix} V_1(k) \\ V_2(k) \end{bmatrix} + DI(k)$$
(3)

where

$$A = diag(\mu_1, \mu_2), \quad B = [\rho_1 \ \rho_2]^T, \quad C = [1 \ 1], \quad D = [R]$$

with,

$$\begin{aligned} \mu_1 &= exp(-\delta t/(R_1C_1)), \quad \rho_1 &= R_1(1-exp(-\delta t/(R_1C_1))) \\ \mu_2 &= exp(-\delta t/(R_2C_2)), \quad \rho_2 &= R_2(1-exp(-\delta t/(R_2C_2))) \end{aligned}$$

where δt is the sampling time.

The details of this discretisation can be found in Tang et al. (2011) and references therein. Using (2) and (3) in (1) yields an auto regressive moving average (ARMA) model

$$V_t(k) = \theta_1 V_t(k-1) + \theta_2 V_t(k-2) + \theta_3 I(k) + \theta_4 I(k-1) + \theta_5 I(k-2) + \theta_6 + e(k)$$
(4)

where

$$\begin{aligned} \theta_1 &= \mu_1 + \mu_2 & \theta_4 &= \rho_1 - \rho_2 - R(\mu_1 + \mu_2) \\ \theta_2 &= -\mu_1 \mu_2 & \theta_5 &= \mu_1 \mu_2 R - \rho_1 \mu_2 - \rho_2 \mu_1 \\ \theta_3 &= R & \theta_6 &= (1 - (\mu_1 + \mu_2) + \mu_1 \mu_2) V_{oc}. \end{aligned}$$
 (5)

Note, the open circuit voltage

$$V_{oc} = \theta_6 / (1 - \theta_1 - \theta_2) \tag{6}$$

can be computed using the estimates of θ_1, θ_2 and θ_6 . Equation (4) can be written in the form

$$V_t(k) = \phi^T(k)\theta(k) + e(k), \tag{7}$$

where

$$\theta(k) = \left[\theta_1(k) \ \theta_2(k) \ \dots \ \theta_6(k) \right]^T \tag{8}$$

and

 $\phi(k) = [V_t(k-1) \ V_t(k-2) \ I(k) \ I(k-1) \ I(k-2) \ 1]^T$. (9) The parameters of a battery vary with time since the impedance of the battery changes with SOC (Illig et al. (2013)). To account this in (7) the parameter vector $\theta(k)$ is taken to be time varying (slowly time varying).

Estimation of $\theta(k)$ from (7) is a standard problem in system identification. If θ were a constant, then (7) can be rewritten in state space form as,

$$\theta(k+1) = \theta(k)$$

$$V_t(k) = \phi(k)\theta^T(k) + e(k).$$
(10)

Applying the Kalman filter to this model would yield an optimal state, $\hat{\theta}(k+1)$, which are the estimates of the parameter $\theta(k)$. To track the time varying parameters, the state equation in (10) is modified to a random walk model.

$$\theta(k+1) = \theta(k) + v(k)$$

$$E(v(k)v^{T}(k)) = L,$$
(11)

where $E(\cdot)$ denotes the expected value and covariance matrix

$$L = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_6 \end{pmatrix}$$
(12)

is diagonal and positive definite. λ_i , which are the diagonal elements of L determine how fast the parameters change with time. Smaller the value, slower the change. The λ 's are taken as tuning parameters and chosen such that the estimates of the output

$$\hat{V}_t(k) = \phi^T(k)\hat{\theta}(k-1) \tag{13}$$

are brought reasonably close to the true output (measured data $V_t(k)$).

The iteration steps of Kalman filter for the model (10) are

$$\theta(k) = \hat{\theta}(k-1) + K(k)\epsilon(k) \tag{14}$$

$$\epsilon(k) = V_t(k) - \phi^T(k)\hat{\theta}(k-1)$$
(15)

$$K(k) = P(k-1)\phi(k)/[1+\phi^{T}(k)P(k-1)\phi(k)]$$
(16)

$$P(k) = P(k-1) - \frac{P(k-1)\phi(k)\phi^{T}(k)P(k-1)}{[1+\phi^{T}(k)P(k-1)\phi(k)]} + L.$$
(17)

For validating the V_{oc} estimation, an HPPC test data (Tang et al. (2011)) is used. HPPC is a current profile having a discharging and a charging pulse with an interval of zero current in between. Here, a number of periodic HPPC pulses with a period of 140s is used. The width of the charge and discharge pulses are 10s each and their magnitude being $1.5C_b$. The zero current interval between the charge and the discharge pulses is 40s. The chosen values of the λ 's are given in Table 1. The voltage response V_t corresponding to the HPPC input is shown in Fig. 2.

Fig. 2. V_t and the estimated V_{oc} for the HPPC input.

The V_{oc} , in (6) is obtained using the Kalman algorithm (17) by taking HPPC current profile as input and V_t as output, is also plotted.

 V_t converges to V_{oc} when the current flowing through the battery is zero and the battery is allowed to rest for sometime. Note, from the Fig. 2, V_{oc} is converging to V_t in the zero current intervals between discharging and charging pulses. Thus, validating the estimation. The ability of V_{oc} to recover from a wrong initialisation can also be observed at the initial intervals in Fig. 2.

4.2 SOC estimation

Hysteresis phenomenon in Lithium ion batteries: The LiFePO₄ battery is known to show hysteresis behavior (Roscher and Sauer (2011)), leading to a one-to-many mapping from SOC to V_{oc} . In such a situation, a proper hysteresis model is necessary for estimating the SOC from the V_{oc} .

The hysteresis effect of the battery is captured by carrying out a charge - discharge cycle from 0% SOC ($V_t = 2.8$ V) to 100% SOC ($V_t = 3.6$ V) and back to 0% SOC. A very low value of current $(C_b/20)$ is used to ensure that V_{oc} is approximately equal to V_t . Since a constant current is applied, the SOC is assumed to be increasing at a constant rate between 0 and 1, when the V_t varies from 2.8V to 3.6V. Similarly, while discharging with same constant current, the SOC decreases at a constant rate from 1 to 0 with V_t varying from 3.6V to 2.8V. This experiment yields V_{oc} -SOC curves which follow separate paths for charging and discharging as shown in Fig. 3. These curves together constitute the major loop of the hysteresis. For modeling the hysteresis behavior, Chebyshev polynomials of degree 14 are fit to the charging and discharging curves plotted in Fig. 3. The fitted curves along with the actual hysteresis data, are shown in the Fig. 3. The Chebyshev polynomial fits for the charging and the discharging curves are denoted by $P_{ch}(x)$ and $P_{dch}(x)$ respectively. During normal operations of a battery, the V_{oc} can attain any value within the boundaries of the hysteresis loop. This value depends on its past value and the direction of the current I. To capture this behavior, V_{oc}^k (V_{oc} at time instant k) is written as in Roscher and Sauer (2011),

Table 1. The tuned forgetting factor values.

Fig. 3. Chebyshev polynomial model of hysteresis.

$$V_{oc}^{k}(SOC,\psi) = \psi P_{ch}^{k}(SOC) + (1-\psi)P_{dch}^{k}(SOC) \quad (18)$$

where $\psi \in [0, 1]$ is a weighing constant and $SOC \in [0, 1]$. Here, $\psi = 1$ and $\psi = 0$ are two special cases when the V_{oc} meets the upper and lower boundaries respectively. When $0 < \psi < 1$, the V_{oc} can be anywhere within the loop forming the minor curves of hysteresis as shown in Fig. 4. Once the V_{oc} is estimated at an instant k, estimation of the corresponding values of SOC and ψ is posed as a non-linear Kalman filtering problem. A constrained unscented Kalman filter (CUKF) (Teixeira et al. (2010)), is used for the SOC estimation.

State Space Model of Hysteresis: The SOC_k and ψ_k follow the state equations,

$$SOC_{k+1} = SOC_k - \eta (I_k \delta t) / C_b \tag{19}$$

$$\psi_{k+1} = \psi_k - (I_k \delta t) / C_{hys} \tag{20}$$

respectively.

Here C_b is the capacity of the lithium ion cell, I_k is the current at instant k and δt is the discrete time interval. η is a constant known as coulombic efficiency, which accounts for the loss during charging and discharging. η for charging and discharging states are separately denoted as η_c and η_d , where $\eta_c \in [0, 1]$ and $\eta_d > 1$. For example, if $\eta_c = 0.98$ for charging and $\eta_d = 1.02$ for discharging indicates 2% loss during both charging and discharging.

The value of V_{oc} in hysteresis minor branch is obtained using (18). The transition of V_{oc} between the hysteresis major curves, see Fig. 4, occurs when the direction of current changes. The direction of the transition depending on sign of current I_k and the past value of V_{oc} . C_{hys} represents the change in capacity during such a transition, see Fig. 4. The value of C_{hys} depends on the current value of SOC and roughly varies from $0.1C_b - 0.3C_b$. Since the accurate value of C_{hys} may vary as battery ages and is difficult to map along all values of SOC, an average value of $0.2C_b$ is used in state prediction equation . From (18), (19) and (20), the state space model for hysteresis can be written as

$$\begin{aligned} x_{k+1} &= Ax_k + Bu_k + w_k \\ y_k &= f(x_k, u_k) + v_k \end{aligned}$$
(21)

where, x_k is the state vector $[SOC_k \quad \psi_k]^T$, u_k is the current I(k), A is a 2 × 2 identity matrix, Matrix B = $[\delta t/C \ \delta t/C_{hys}]^T$, output vector y_k is V_{oc} , and $f(\cdot)$ is the non-linear function (18). w_k and v_k are process noise and measurement noise respectively, which are assumed

Fig. 4. Hysteresis minor branch.

to be Gaussian random variable (GRV) of zero mean with covariance matrices denoted by Q' and R', where,

$$Q' = \sigma_q^2 \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}, \ R' = \sigma_r^2.$$
(22)

Here, σ_q and σ_r are taken as tuning parameters. $\sigma_q = 0.14$ and $\sigma_r = 0.07$ were found to be giving the best results. Since the Chebyshev polynomials are defined in [-1,1], SOC is normalised within this interval.

Using CUKF the values of SOC and ψ are estimated from the state space model (21).

4.3 UKF and the concept of sigma points

UKF is a nonlinear Kalman filter which has the ability to avoid filtering errors generated by linearisation of a nonlinear model. See (Julier and Uhlmann (1997)). In UKF, a set of deterministic vectors- known as sigma points, are generated from the current state vector. These vectors are distributed around the mean state vector in accordance with its variance. The sigma points are propagated through the non-linear process model (21) and the mean and variance of the transformed state vector is recovered from these transformed sigma points. Using this method, the true statistics of the transformed state vector are determined. The sigma points are obtained using a method called unscented transform (UT) which is explained in section 4.3.1.

In CUKF, the sigma points are generated such that the states are restricted within certain limits. This will make the estimation bounded compared with a standard UKF.

Unscented Transform for CUKF: Assume, the state vector x_k is having a mean \hat{x}_k and covariance matrix P_k^{xx} . For a state vector of dimension n, minimum 2n + 1 sigma points are required to capture its statistics. Since $x_k \in \mathbb{R}^2$, in (21), 5 sigma points denoted by $X_{j,k}$, where $X_{j,k} \in \mathbb{R}^2$, j = 0....2n and their weights γ , where $\gamma \triangleq [\gamma_0...\gamma_{2n}]_{1\times 2n+1}$ have to be generated. Sigma points and their corresponding weights should satisfy the conditions

$$\sum_{j=0}^{2n} \gamma_j X_{j,k} = \hat{x}_k, \quad \sum_{j=0}^{2n} \gamma_j = 1,$$
$$\sum_{j=0}^{2n} \gamma_j [X_{j,k} - \hat{x}_k] [X_{j,k} - \hat{x}_k]^T = P_k^{xx},$$

and $\gamma_j \geq 0$, for all $j = 0, 1, \ldots, 2n$. Since, SOC and ψ are confined in the interval [0, 1], all sigma points have to be restricted between the lower and upper limit: $[0, 0]^T$ and $[1, 1]^T$ denoted by d_k and e_k respectively. So, a method called interval constrained unscented transform (ICUT) (Teixeira et al. (2010)) is used to generate the sigma points which confirms to the inequality $d_k \leq \hat{x}_k \leq e_k$.

The sigma point matrix X_k consisting of the sigma point vectors $X_{j,k}$, are generated by,

 $X_k = \hat{x}_k \left[1 \ 1 \ \dots \ 1 \right]_{1 \times 2n+1} + \left[0_{n \times 1} \ M_{k(n \times 2n)} \right]$ (23) where,

$$col_{j}(M_{k}) = \begin{cases} \min(col_{j}(\Theta_{k}))col_{j}[(P_{k}^{xx})^{\frac{1}{2}}], & j = 1...n \\ -\min(col_{j}(\Theta_{k}))col_{j}[(P_{k}^{xx})^{\frac{1}{2}}], & j = n+1...2n. \end{cases}$$
(24)

Here $col_j(\cdot)$ is the j^{th} column of a matrix and $\min(\cdot)$ represents the element having the minimum value in a vector.

For
$$i = 1 \dots n$$
 and $j = 1 \dots 2n$,

$$\Theta_{i,j,k} = \begin{cases} \sqrt{n+\lambda}, & S_{i,j,k} = 0\\ \min\left(\sqrt{n+\lambda}, \frac{(e_{i,k} - \hat{x}_{i,k})}{S_{i,j,k}}\right), & S_{i,j,k} > 0\\ \min\left(\sqrt{n+\lambda}, \frac{(d_{i,k} - \hat{x}_{i,k})}{S_{i,j,k}}\right) & S_{i,j,k} < 0 \end{cases}$$
(25)

and,

$$S_k = \left[(P_k^{xx})^{\frac{1}{2}} - (P_k^{xx})^{\frac{1}{2}} \right]_{2 \times 2n}.$$
 (26)

Here $\lambda > -n$, which needed to be tuned. λ decides the spread of sigma points around the mean and $\lambda = -0.42$ was found to be giving the best result.

The weights $\gamma_{j,k}$ can be calculated by,

$$\gamma_{j,k} = \begin{cases} b_k, & j = 0\\ a_k \min(col_j(\Theta_k)) + b_k, & j = 1 \dots 2n \end{cases}$$
(27)

where,

$$a_{k} = \frac{2\lambda - 1}{(2(n+\lambda)(\sum_{j=1}^{n} \min(col_{j}(\Theta_{k})) - (2n+1)(\sqrt{n+\lambda})))}$$
(28)

0)

$$b_k = \frac{1}{2(n+\lambda)} - a_k \sqrt{(n+\lambda)} \tag{29}$$

The above procedure, which generates X_k and γ_k from x_k, P_k^{xx}, e, d, n , and λ is denoted by,

$$[\gamma_k, X_k] \triangleq \beta_{ICUT}(\hat{x}_k, P_k^{xx}, e, d, n, \lambda).$$
(30)

CUKF algorithm

Step 1: Initialisation. The Kalman gain (K_k) , process covariance matrix (P_k^{xx}) and states $x_k = [S_k, \psi_k]^T$ are set to their respective initial values. K_0 is given an arbitrary positive value. Approximate values for S_0 and ψ_0 can be usually obtained from their last states. P_0^{xx} is usually set as a positive definite matrix having elements with reasonably high values. Here, the initial values are taken as,

$$P_0^{xx} = \begin{bmatrix} 10^3 & 0\\ 0 & 10^3 \end{bmatrix}, K_0 = \begin{bmatrix} 10^3, 10^3 \end{bmatrix}, \begin{bmatrix} S_0\\ \psi_0 \end{bmatrix} = \begin{bmatrix} 0\\ 1 \end{bmatrix}. \quad (31)$$

Step 2: Sigma point generation using ICUT. Sigma points corresponding to the state $\hat{x}_{k-1|k-1}$ and their weights are derived as,

$$[\gamma_{k-1}, X_{k-1|k-1}] \triangleq \beta_{ICUT}(\hat{x}_{k-1|k-1}, P_{k-1|k-1}^{xx}, e, d, n, \lambda)$$
(32)

where e and d are $[1,1]^T$ and $[0,0]^T$ respectively.

Step 3: State prediction. Each of these sigma points are applied to the state prediction equation in (21) to get the corresponding apriori transformed sigma points.

$$X_{j,k|k-1} = AX_{j,k-1|k-1} + BU_{k-1}, j \in 0..2n.$$
(33)

The mean of the apriori state is calculated from transformed sigma points and their weights using the formula,

$$\hat{x}_{k|k-1} = \sum_{j=0}^{2n} \gamma_j X_{j,k-1}.$$
(34)

Using the weighted mean, forecast error covariance matrix can be found,

$$P_{k|k-1}^{xx} = \sum_{j=0}^{2n} \gamma_j [X_{j,k|k-1} - \hat{x}_{k|k-1}] [X_{j,k|k-1} - \hat{x}_{k|k-1}]^T + Q'$$
(35)

where Q' is as in (22).

Step 4: Updating the sigma points and their weights.

$$\begin{bmatrix} \gamma_k, X_{k|k-1} \end{bmatrix} = \beta_{ICUT}(\hat{x}_{k|k-1}, e, d, P_{k|k-1}^{xx}, n, \lambda). \quad (36)$$

Step 5: Generating the output vector. Output vectors for each sigma point

$$Y_{j,k|k-1} = f(X_{j,k|k-1}).$$
(37)

Mean output is,

$$\hat{y}_{k|k-1} = \sum_{j=0}^{2n} \gamma_j . Y_{j,k|k-1}.$$
(38)

Here, $\hat{y}_{k|k-1}$ is the estimated terminal voltage $\hat{V}_t(k|k-1)$ calculated from the predicted states.

Step 6: Generating the covariance matrices. Innovation covariance matrix is derived as,

$$P_{k|k-1}^{yy} = \sum_{j=0}^{2n} \gamma_j [Y_{j,k|k-1} - \hat{y}_{k|k-1}] \left[Y_{j,k|k-1} - \hat{y}_{k|k-1} \right]^T + R'$$
(39)

where R' is taken as per (22).

Cross covariance matrix is obtained as,

$$P_{k|k-1}^{xy} = \sum_{j=0}^{2n} \gamma_j [X_{j,k|k-1} - \hat{x}_{k|k-1}] \left[Y_{j,k|k-1} - \hat{y}_{k|k-1} \right]^T$$
(40)

Step 7: Data assimilation. Kalman gain matrix is calculated

$$K_k = P_{k|k-1}^{xy} \left(P_{k|k-1}^{yy} \right)^{-1}.$$
 (41)

Posteriori sigma points are obtained as,

$$X_{j,k|k} = X_{k|k-1} + K_k(y_k - Y_{j,k|k-1})$$
(42)

where the y_k is the measured $V_t(k)$. Posteriori mean state vector is calculated as,

$$\hat{x}_{k|k} = \sum_{j=0}^{2n} \gamma_j X_{j,k|k}.$$
(43)

Fig. 5. Comparison of SOCs from estimation (SOC_{UKF}) , simulation (SOC_{EM}) and coulomb counting (SOC_{CC})

Posteriori covariance matrix is calculated as,

$$P_{k|k}^{xx} = \sum_{j=0}^{2n} \gamma_j [X_{j,k|k-1} - \hat{x}_{k|k-1}] [X_{j,k|k-1} - \hat{x}_{k|k-1}]^T.$$
(44)

The above steps are repeated for each instance of k. Irrespective of the initial values, the SOC, which is the first element of x_k , will converge to its true value after a few iterations.

5. PERFORMANCE AND ERROR ANALYSIS

A current profile¹ that simulates a typical dynamic charge - discharge scenario in HEVs was used used to study the performance of the algorithm. To determine the actual SOC corresponding to the current profile, a full electrochemical model (EM) of the battery (ANR26650M1A) is simulated using COMSOL² software. A 1D isothermal model is used and the SOC obtained from the simulation is denoted by SOC_{EM} .

The state prediction equation (19) of the UKF algorithm uses an approximate value of η for predicting SOC_{k+1} from SOC_k. Irrespective of the value of η used in the (19), the final estimated SOC by UKF is expected to follow the SOC_{EM}.

The SOC_{CC} profiles for $\eta = (0.94, 1.06)$ is plotted in Fig. 5 along with SOC_{UKF} and SOC_{EM} . Here, SOC_{UKF} can be seen following SOC_{EM} even though the state prediction equation in UKF algorithm uses $\eta = (0.94, 1.06)$.

6. CONCLUSION

A LiFePO₄ battery was modeled as an equivalent circuit. An HPPC current profile was applied to the battery and the corresponding terminal voltages were recorded as the output. From this input-output data, the estimation of the circuit elements and the open circuit voltage V_{oc} were posed as a Kalman filtering problem.

In order to determine the hysteresis curves relating the SOC and the open circuit voltage V_{oc} , the battery was charged and discharged at a very low current. As the current was very low, the terminal voltage V_t was taken

to be equal to V_{oc} . Furthermore, as losses are minimal at low currents, SOC was calculated by coulomb counting. The resulting non-linear curves between V_{oc} and SOC were taken as the major loop of hysteresis.

Minor branches of the hysteresis appear when the battery is switched between charging and discharging modes. Minor branches were modeled as a weighted linear combination of major curves. This model was non-linear, in the weighting coefficients and SOC. An Unscented Kalman Filter (UKF) with states constrained between 0 and 1 was used to estimate the SOC.

The estimated SOC was compared with the SOC obtained using a full electrochemical model from COMSOL. The η in the UKF algorithm was varied and resulting SOC estimations were compared with the simulated SOC.

REFERENCES

- Illig, J., Schmidt, J.P., Weiss, M., Weber, a., and Ivers-Tiffée, E. (2013). Understanding the impedance spectrum of 18650 LiFePO4-cells. J. Power Sources, 239, 670–679.
- Julier, S.J. and Uhlmann, J.K. (1997). New extension of the kalman filter to nonlinear systems. *Proc. SPIE*, 3068, 182–193.
- Lim, K., Ayad, H., Duong, V.h., Wai, K., Zhang, P., and Xue, S. (2016). Fading Kalman filter-based real-time state of charge estimation in LiFePO 4 battery-powered electric vehicles. *Applied Energy*, 169, 40–48.
- Prada, E., Di Domenico, D., Creff, Y., Bernard, J., Sauvant-Moynot, V., and Huet, F. (2012). Simplified Electrochemical and Thermal Model of LiFePO4-Graphite Li-Ion Batteries for Fast Charge Applications. J. Electrochem. Soc., 159(9), A1508–A1519.
- Roscher, M.a. and Sauer, D.U. (2011). Dynamic electric behavior and open-circuit-voltage modeling of LiFePO4based lithium ion secondary batteries. J. Power Sources, 196(1), 331–336.
- Tang, X., Mao, X., Lin, J., and Koch, B. (2011). Li-ion battery parameter estimation for state of charge. In American Control Conference (ACC), 2011, 941–946.
- Teixeira, B.O., a.B. Tôrres, L., Aguirre, L.a., and Bernstein, D.S. (2010). On unscented Kalman filtering with state interval constraints. J. Process Control, 20(1), 45– 57.

¹ http://tinyurl.com/o79vb2a

² http://www.comsol.com