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Abstract

Learning on graphs is a subject of great interest due to the abundance of relational

data from real-world systems. Many of these systems involve higher-order interactions

(super-dyadic) rather than mere pairwise (dyadic) relationships; examples of these are

co-authorship, co-citation, and metabolic reaction networks. Such super-dyadic

relations are more adequately modeled using hypergraphs rather than graphs.

Learning on hypergraphs has thus been garnering increased attention with potential

applications in network analysis, VLSI design, and computer vision, among others.

Especially, hypergraph clustering is gaining attention because of its enormous

applications such as component placement in VLSI, group discovery in bibliographic

systems, image segmentation in CV, etc. For the problem of clustering on graphs,

modularity maximization has been known to work well in the pairwise setting. Our

primary contribution in this article is to provide a generalization of the modularity

maximization framework for clustering on hypergraphs. In doing so, we introduce a

null model for graphs generated by hypergraph reduction and prove its equivalence to

the configuration model for undirected graphs. The proposed graph reduction

technique preserves the node degree sequence from the original hypergraph. The

modularity function can be defined on a thus reduced graph, which can be maximized

using any standard modularity maximization method, such as the Louvain method. We

additionally propose an iterative technique that provides refinement over the obtained

clusters. We demonstrate both the efficacy and efficiency of our methods on several

real-world datasets.

Keywords: Hypergraph clustering, Hypergraph modularity, Null model

Introduction

The graph clustering problem involves dividing a graph into multiple sets of nodes, such

that the similarity of nodes within a cluster is higher than the similarity of nodes belong-

ing to different clusters (Schaeffer 2007; Sankar et al. 2015; Wang et al. 2017; Satuluri and

Parthasarathy 2009). While most graph clustering approaches assume pairwise relation-

ships between entities, many real-world network systems involve entities that engage in

more complex, multi-way relations. In such systems, modeling all relations as pairwise

can lead to a loss of information. The representational power of pairwise graph models
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is insufficient to capture higher-order information and present it for analysis or learning

tasks.

These systems can bemore preciselymodeled using hypergraphswhere nodes represent

the interacting components, and hyperedges capture higher-order interactions (Bretto

and et al. 2013; Klamt et al. 2009; Satchidanand et al. 2014; Lung et al. 2018). A hyperedge

can capture a multi-way relation; for example, in a co-authorship network, where nodes

represent authors, a hyperedge could represent a group of authors who collaborated for

a common paper. If this were modeled as a graph, we would be able to see which two

authors are collaborating, but would not see if multiple authors worked on the same paper.

This suggests that the hypergraph representation is not only more information-rich but

is also conducive to higher-order learning tasks by virtue of its structure. Indeed, there is

a recently expanding interest in research in learning on hypergraphs (Zhang et al. 2018;

Kumar et al. 2020; Zhao et al. 2018; Saito et al. 2018; Feng et al. 2018; Chodrow andMellor

2019).

Analogous to the graph clustering task,Hypergraph clustering seeks to discover densely

connected components within a hypergraph (Schaeffer 2007). This has been the subject

of several research works by various communities with applications to various prob-

lems such as VLSI placement (Karypis and Kumar 1998), discovering research groups

(Kamiński et al. 2019), image segmentation (Kim et al. 2011), de-clustering for par-

allel databases (Liu and Wu 2001) and modeling eco-biological systems (Estrada and

Rodriguez-Velazquez 2005), among others. A few early works on hypergraph clustering

(Leordeanu and Sminchisescu 2012; Bulo and Pelillo 2013; Agarwal et al. 2005; Shashua

et al. 2006; Liu et al. 2010) are confined to k-uniform hypergraphs where each hyperedge

connects exactly k number of nodes. However, most of the real-world hypergraphs have

arbitrary-sized hyperedges, which makes these methods unsuitable for several practical

applications. Within the machine learning community, Zhou et al. (2007), were among

the earliest to look at learning on non-uniform hypergraphs. They sought to support

spectral clustering methods (for example see Shi and Malik (2000); Ng et al. (2002)) on

hypergraphs and defined a suitable hypergraph Laplacian for this purpose. This effort,

like many other existing methods for hypergraph learning, makes use of a reduction of

the hypergraph to a graph (Agarwal et al. 2006) and has led to follow-up work (Louis

2015). Spectral based methods involve expensive computations to determine the eigen-

vector (multiple eigenvectors in case of multiple clusters), which makes these methods

less suitable for large hypergraphs.

An alternative methodology for clustering on simple graphs (those with just dyadic rela-

tions) ismodularity maximization (Newman 2006). This class of methods, in addition to

providing a useful metric for evaluating cluster quality through the modularity function,

also returns the number of clusters automatically and avoids the expensive eigenvec-

tor computation step - typically associated with other popular methods such as spectral

clustering. In practice, a greedy optimization algorithm known as the Louvain method

(Blondel et al. 2008) is commonly used, as it is known to be fast and scalable and can

operate on large graphs.

Kindly note that this paper is a significantly extended version of our work titled A New Measure
of Modularity in Hypergraphs: Theoretical Insights and Implications for Effective Clustering
(Kumar et al. 2019), presented at The 8th International Conference on Complex Networks and
their Applications.
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However, extending the modularity function to hypergraphs is a non-trivial task, as a

node-degree preserving null model would be required, analogous to the graph setting.

A straightforward procedure would be to leverage clique reduction, to reduce a hyper-

graph to a simple graph and then apply a conventional modularity-based solution. Such

an approach ignores the underlying super-dyadic nature of interactions and thus loses

critical information. Additionally, a clique reduction method would not preserve the

node degree sequence of the original hypergraph, which is vital for the null model that

modularity maximization techniques are typically based on.

Recently, there have been several attempts to define the null models on the hypergraphs.

Chodrow (2019) proposed aMonte Carlo Markov Chain based method, in which random

hypergraphs are generated by pairwise reshuffling the edges in the bipartite projection. A

more recent study involves the generalization of the celebrated Chung-Lu random graph

model (Chung and Lu 2002) to hypergraphs, and employs it to solve the problem of hyper-

graph clustering (Kamiński et al. 2019). The hypergraphmodularity objective proposed by

Kamiński et al. (2019) only counts the participation of hyperedges completely contained

inside a cluster. Though this assumption enables the analytic tractability of the solution,

it limits its applicability to real world hypergraphs where hyperedges can be of arbitrary

size. There exists a parallel line of inquiry where hypergraphs are viewed as simplicial

complexes, and null models are defined through the preservation of topological features

of interest (Giusti et al. 2016; Courtney and Bianconi 2016; Young et al. 2017). Such mod-

els make a strong assumption - that of subset-inclusion1, which may not hold often in

real-world data.

Unlike edges in graphs, there are different ways to cut a hyperedge. Depending on where

a hyperedge is cut, the proportion and assignments of nodes on different sides of the cut

will change, influencing the resultant clustering (Veldt et al. 2020). One way of incorpo-

rating the information from the hypergraph’s structural properties is to introduce weights

along hyperedges. These weights can be determined based on a measure or a function of

the input data. For example researchers (Satchidanand et al. 2015) have used the Hellinger

distance to weight hyperedges for transductive inference tasks. While this is a supervised

metric, one can also consider unsupervised hyperedge weighting schemes that incorpo-

rate hyperedge information. One way of incorporating information based on properties

of hyperedges or their vertices, is to introduce hyperedge weights based on a metric or

function of the data. Building on this idea, we make the following contributions in this

work :

• (“Hypergraph modularity” section): We define a null model for graphs generated by

hypergraph reduction that preserves the hypergraph node degree sequence. Using

this null model and the proposed reduction, we define a modularity function that can

be used in conjunction with the popular Louvain method to find hypergraph clusters.

• (“Iterative hyperedge reweighting” section): We propose a generic iterative

refinement procedure for hypergraph clustering. This refinement is done by

reweighting hyperedges and operates natively on the hypergraph structure.

1Subset inclusion assumes that, for each hyperedge, any subset of the nodes is also a hyperedge. For example, if authors
(A, B, C, D) publish a paper together and form a hyperedge in a co-authorship hypergraph, subset-inclusion would also
include all possible subsets such as (A, B), (B, C, D), etc. as observed hyperedges, which may not hold in the real-world
datasets.
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• (“Evaluation on ground truth” section): We perform extensive experiments with the

resultant algorithm, titled Iteratively Reweighted Modularity Maximization (IRMM),

on a wide range of real-world datasets and demonstrate both its efficacy and

efficiency over state-of-the-art methods. We empirically establish that the

hypergraph based methods perform better than their graph-based counterparts.

• (“Results and analysis” section): We investigate the effect of the reweighting

procedure and show that the proposed refinements indeed help us to achieve

balanced hyperedge cuts. Furthermore, the experimental results demonstrate that

the proposed iterative scheme helps achieve better results over their equivalent

non-iterative methods on all datasets.

• (“Results and analysis” section): We examine the scalability of the hypergraph

modularity maximization algorithm using synthetic data.

Background

Hypergraphs

Let V be a finite set of nodes and E be a collection of subsets of V that are collectively

exhaustive. For aw ∈ R
|E|
+ ,G = (V ,E,w) is a hypergraph, with vertex setV and hyperedge

set E. Each hyperedge e has a positive weight w(e) associated with it. The number of

vertices can be denoted by n = |V | and the number of hyperedges can be denoted by

m = |E|.

While a traditional graph edge has just two nodes, a hyperedge can connect multiple

nodes. For a vertex v, we can write its degree as d(v) =
∑

e∈E,v∈e w(e). The degree of a

hyperedge e is the count of nodes it contains; we can write this as δ(e) = |e|.

The hypergraph incidence matrix H is given by h(v, e) = 1 if vertex v is in hyperedge

e, and 0 otherwise. W, Dv and De are the hyperedge weight matrix, vertex degree matrix

and edge degree matrix respectively;W and De are diagonal matrices of sizem × m, and

Dv is a diagonal matrix of size n × n.

Clique Reduction: For a given hypergraph, one can compute its clique reduction

(Hadley et al. 1992) by substituting each hyperedge with a clique induced by its node-set.

For a hypergraph with incidence matrix H, the adjacency matrix of its clique reduction

can be written as:

Aclique = HWHT

To remove the self-loops, we may subtract Dv from the above expression. The resultant

clique reduction becomes Aclique = HWHT − Dv

Modularity

When clustering graphs, it is desirable to cut as few edges (or edges with lesser weights

in case of weighted graphs) within a cluster as possible. Modularity is a metric of cluster-

ing quality that measures whether the number of within-cluster edges is greater than its

expected value. In Newman (2006) the modularity function is defined as:

Q =
1

2m

∑

ij

[Aij − Pij] δ(gi, gj)

=
1

2m

∑

ij

Bijδ(gi, gj)

(1)
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Here, δ(.) is the Kronecker delta function, and gi, gj are the clusters to which vertices

i and j belong. The 1
2m will be dropped for the remainder of this work because it is a

constant (number of edges) for a given graph and doesn’t affect the maximization of Q.

Bij = Aij − Pij is called the modularity matrix. Aij denotes the actual, and Pij denotes the

expected number of edges between node i and node j, given by a null model. For graphs,

the configuration model (Newman 2010) is used, where edges are drawn randomly while

keeping the node-degree preserved. For two nodes i and j, with (weighted) degrees ki and

kj respectively, the expected number of edges between them is hence given by:

Pij =
kikj

∑

j∈V kj

Since the total number of edges in a given network is fixed, maximizing the number of

within-cluster edges is the same asminimizing the number of between-cluster edges. This

suggests that clustering can be achieved bymodularity maximization. Kindly note that in

this article, we focussed on modularity as defined by Newman (2006). Other definitions

of modularity (Courtney and Bianconi 2016) are not in the scope of this work.

Hypergraphmodularity

One possible way to define hypergraph modularity is to introduce a hypergraph null

model and utilize it to define a modularity function. Kaminski et al. (Kamiński et al. 2019)

follow this approach and use a generalized version of the Chung-Lumodel (Chung and Lu

2002) to define hypergraph modularity. The proposed modularity function only counts

the participation of hyperedges entirely contained inside a cluster. Moreover, the modu-

larity function requires separate processing of hypergraphs induced by hyperedges with

different cardinalities. Though such assumptions can provide the analytic tractability of

the solution, they limit its applicability to real-world hypergraphs where the hypergraphs

can be of very large size with varying hyperedge cardinalities.

Another possible way to define hypergraph modularity is to convert the hypergraph

to an appropriate graph and then define modularity on the resultant graph. Such an

approach can get benefits from the already existing tools for graphs. In this section, we

will follow the latter approach to introduce hypergraph modularity.

To introduce the hypergraph modularity, we start by proposing a null model on the

graphs generated by reducing hypergraphs. In a reduced graph, we desire the nodes to

possess the same degree as that of the original hypergraph. In a thus reduced graph, the

expected number of edges connecting nodes i and j can be given as

P
hyp
ij =

d(i) × d(j)
∑

v∈V d(v)
(2)

The proposed null model can be interpreted as amechanism to generate random graphs

where the node degree sequence of a given hypergraph is preserved irrespective of the

count and cardinality of hyperedges. In order to define a modularity matrix, we need

to obtain a graph reduction where the node degree sequence should remain preserved.

One straightforward way could be to use a clique reduction of the original hypergraph.

However, during clique reduction, the degree of a node in the resultant graph does not

remain the same as its degree in the original hypergraph, as verified below.
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Lemma 1 For the clique reduction of a hypergraph with incidence matrix H, the degree

of a node i in the reduced graph is given by:

ki =
∑

e∈E

H(i, e)w(e)(δ(e) − 1)

where δ(e) and w(e) are the degree and weight of a hyperedge e respectively.

Proof For the clique reduction, the adjacency matrix of the resultant graph is given by

Aclique = HWHT

(

HWHT
)

ij
=

∑

e∈E

H(i, e)w(e)H(j, e)

In the resultant graph, each node has a self-loop that can be removed, since they are not

cut during the clustering process. This is achieved by explicitly setting A
clique
ii = 0 for all

i. Considering this, the degree of a node i in the resultant graph can be written as:

ki =
∑

j

A
clique
ij

=
∑

j

∑

e∈E

H(i, e)w(e)H(j, e)

=
∑

e∈E

H(i, e)w(e)
∑

j:j �=i

H(j, e)

=
∑

e∈E

H(i, e)w(e)(δ(e) − 1)

From the above lemma, we can infer that in the clique reduction of a hypergraph, the

degree of a node is not preserved and for each hyperedge e, it is overcounted by a factor

of (δ(e) − 1). We can hence scale down the node degree in the reduced graph by a factor

of (δ(e) − 1). This results in the following reduction equation,

Ahyp = HW (De − I)−1HT (3)

We can now verify that the above adjacency matrix preserves the hypergraph node

degree.

Proposition 1 For the reduction of a hypergraph given by the adjacency matrix Ahyp =

HW (De − I)−1HT , the degree of a node i in the reduced graph (denoted ki) is equal to its

degree d(i) in the original hypergraph.

Proof We have,

(

HW (De − I)−1HT
)

ij
=

∑

e∈E

H(i, e)w(e)H(j, e)

δ(e) − 1
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Following a similar argument from the previous theorem, we can explicitly set A
hyp
ii = 0

for all i. The degree of a node in the reduced graph can be written as

ki =
∑

j

A
hyp
ij

=
∑

e∈E

H(i, e)w(e)

δ(e) − 1

∑

j:j �=i

H(j, e)

=
∑

e∈E

H(i, e)w(e)

= d(i)

With Eq. 3, we can reduce a given hypergraph to a weighted graph and zero out its

diagonals by explicitly setting the diagonal entries to zero. The hypergraph modularity

matrix can subsequently be written as,

B
hyp
ij = A

hyp
ij − P

hyp
ij

This new modularity matrix can be used in Eq. 1 to obtain an expression for the hyper-

graph modularity and can then be used in conjunction with a Louvain-style algorithm.

Qhyp =
1

2m

∑

ij

B
hyp
ij δ(gi, gj) (4)

Fundamental observations:

• Bhyp exhibits all spectral properties of an undirected weighted graph’s modularity

matrix (Bolla et al. 2015; Fasino and Tudisco 2016).

• As with any undirected weighted graph (Blondel et al. 2008), Qhyp ranges from −1 to

+1.

• A negative value of Qhyp indicates a clustering assignment, where a node pair (i, j)

from the same cluster participates in lesser than the expected number of hyperedges.

This situation may arise when the number of within-cluster edges is lower than the

number of across cluster edges.

• A positive value of Qhyp indicates a clustering assignment, where a node pair (i, j)

from the same cluster participates in more than the expected number of hyperedges.

In graphs, typically, a modularity value higher than 0.3 is considered to be significant

(Clauset et al. 2004).

• Qhyp = 0 indicates a clustering assignment, where a node pair (i, j) from the same

cluster participates in the expected number of hyperedges. This situation can occur

because of the random assignment of nodes to the clusters.

In the rest of the section, we will analyze the properties of the proposed modular-

ity function. We will relate the graph reduction equation to the random walk model

for hypergraphs. The relation establishes the link with earlier works on hypergraph

clustering, where the random walk strategies were employed (Zhou et al. 2007).
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Connection to randomwalks:

Consider the clique reduction of the hypergraph. We can distribute the weight of each

hyperedge uniformly among the edges in its associated clique. All nodes within a single

hyperedge are assumed to contribute equally; a given node would receive a fraction of the

weight of each hyperedge it belongs to. The number of edges each node is connected to

from a hyperedge e is δ(e) − 1. Hence by dividing each hyperedge weight by the number

of edges in the clique, we obtain the normalized weight matrixW (De − I)−1. Introducing

this in the weighted clique formulation results in the proposed reduction A = HW (De −

I)−1HT .

Another way of interpreting this reduction is to consider a random walk on the

hypergraph in the following manner -

• pick a start node i

• select a hyperedge e containing i, proportional to its weight w(e)

• select a new node from e uniformly (there are δ(e) − 1 choices)

The behaviour described above is captured by the following random walk transition

model -

Pij =
∑

e∈E

w(e)h(i, e)

d(i)

h(j, e)

δ(e) − 1

=⇒ P = D−1
v HW (De − I)−1HT

By comparing the above with the random walk probability matrix for graphs (P =

D−1A) we can recover the reduction A = HW (De − I)−1HT .

Iterative hyperedge reweighting

When clustering graphs, it is desired that edges within clusters are greater in number than

edges between clusters. Hence when trying to improve clustering, we look at minimizing

the number of between-cluster edges that get cut. For a hypergraph, this would be done

by minimizing the total volume of the hyperedge cut (Zhou et al. 2007). Consider the

two-clustering problem, where the task is to divide the set V into two clusters S and

Sc. Zhou et al. (2007) observed that the volume of the cut ∂S is directly proportional to
∑

e w(e)|e∩ S||e∩ Sc|, for a hypergraph whose vertex set is partitioned into two sets S and

Sc. For a hyperedge e, which has its vertices in both S and Sc, the product |e∩S||e∩Sc| can

be interpreted as the number of cut sub-edges within a clique reduction. It can be seen

that this product is maximized when the cut is balanced and there are an equal number

of vertices in S and Sc. In such a case, there will be
(

δ(e)
2

)2
sub-edges getting cut. On the

other hand, when all vertices of e go into one partition and the other partition is left empty,

the product is zero. Similarly, if one of the vertices of e go into one partition and the other

partition contains all δ(e) − 1 vertices, then the product is δ(e) − 1. A min-cut algorithm

would favor cuts that are as unbalanced as possible, as a consequence of the minimization

of |e∩ S||e∩ Sc|. In the sequel, we will present the intuition behind our proposed iterative

re-weighting technique followed by its mathematical formulation.

Intuition:While clustering in graphs, when an edge gets cut between two clusters, one

of its nodes becomes a member of the first cluster, and the other node becomes part of

the second cluster. But in hypergraphs, a hyperedge can get cut in multiple ways. When

a hyperedge gets cut, if the majority of its vertices go into the first cluster c1 and only a
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smaller fraction of vertices go into the second cluster c2, then it is more likely that the

vertices going into second cluster are similar to the rest and should be drawn into the first

cluster. On the other hand, if a hyperedge gets cut equally across clusters, then its vertices

are equally likely to be part of any cluster; hence it is less informative than a hyperedge that

gets an unbalanced cut. Building on this idea, we would want to cut the less informative

hyperedges (the ones getting balanced cut), and more informative hyperedges that got

unbalanced cut to be left uncut.

This can be done by increasing the weights of hyperedges that get unbalanced cuts, and

(relatively) decreasing the weights of hyperedges that get more balanced cuts. We know

that an algorithm that tries to minimize the volume of the hyperedge boundary would try

to cut as few heavily weighted hyperedges as possible. Since the hyperedges that hadmore

unbalanced cuts get a higher weight, they are less likely to be cut after reweighting, and

instead would reside inside a cluster. Hyperedges that had more balanced cuts get a lower

weight, and on reweighting, continue to get balanced cuts. Thus after reweighting and

clustering, we would observe fewer hyperedges between clusters, and more hyperedges

pushed into clusters. Moreover, after reweighting, we expect that the hyperedges getting

cut between clusters should get balanced cuts. In the remaining section, we will formally

present the solution mentioned above. Its effectiveness can be seen in the example shown

in Fig. 2.

Now, we formally develop a reweighting scheme that satisfies the properties described

above - increasing weight for a hyperedge that received a more unbalanced cut, and

decreasing weight for a hyperedge that received a more balanced cut. Considering the

case where a hyperedge gets partitioned into two clusters with k1 and k2 nodes in

each partition (k1, k2 �= 0), the following equation operationalizes the above metnioned

scheme -

t =

(

1

k1
+

1

k2

)

× δ(e) (5)

Here the multiplicative coefficient, δ(e), seeks to keep t independent of the number of

vertices in the hyperedges. Note that for a hyperedge ewith two partitions, δ(e) = k1+k2.

Figure 1 illustrates an example where t takes two different values depending on the cut.

To see why this satisfies our desired property, note that t is minimized when k1 and k2

are equal. It can be verified by the following proposition.

Fig. 1 Reweighting for different hyperedge cuts
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Proposition 2 In the function, t =

(

1
k1

+ 1
k2

)

× δ(e), the minimum value of t = 4, and

it is achieved when k1 = k2 =
δ(e)
2 . Here, for a hyperedge e, δ(e) is its cardinality and ki

represents the number of nodes in the ith partition.

Proof Let ki ∈ Z
+

Then,

t =

(

1

k1
+

1

k2

)

× δ(e)

(by substitutingδ(e) = k1 + k2)

=
k21
k1k2

+
k22
k1k2

+ 2

=
k1

k2
+

k2

k1
+ 2 + (2 − 2)

=

⎛

⎝

√

k1

k2
−

√

k2

k1

⎞

⎠

2

+ 4

(
√

k1
k2

−

√

k2
k1

)2

is minimized when k1 = k2 and the resultant value of t = 4.

Note: It can be observed that Eq. 5 coincides with the ratio between arithmetic mean

(AM) and harmonic mean (HM) of the two numbers k1 and k2. More precisely, we can

write

t = 4
AM(k1, k2)

HM(k1, k2)

By using the fact that AM(k1, k2) ≥ HM(k1, k2), and AM(k1, k2) = HM(k1, k2) only when

k1 = k2, we can obtain the similar result to Proposition 2.

We can then generalize Eq. 5 to c partitions as follows -

w′(e) =
1

m

c
∑

i=1

1

ki + 1
[ δ(e) + c] (6)

Here, +1 term in the denominator accounts for the cases when ki = 0. To compensate

for this extra +1, +c has been added to the numerator. Additionally, m is the number of

hyperedges, and the division by m is added to normalize the weights (Fig. 1). During the

first iteration of the algorithm, we find clusters in the hypergraph using its default weights.

At the end of the first iteration, we find the updated weights using the Eq. 6. It can be seen

that for a hyperedge e if it does not get balanced cut, the w′(e) will not be minimized, and

its value will be proportional to the extent to which it gets unbalanced cut. Thus, updating

hyperedge weights by Eq. 6 suffices our purpose.

At step t + 1, let wt(e) be the weight of hyperedge e till the previous iteration. Using

Eq. 6, w′(e) can be computed for the current iteration. The weight update equation can be

written as,

wt+1(e) = αwt(e) + (1 − α)w′(e) (7)

Here, α is a hyperparameter which decides the importance to be given to newly cal-

culated weights over the current weights of hyperedges. The complete algorithm for

modularity maximization on hypergraphs with iterative reweighting, entitled Iteratively

Reweighted Modularity Maximization (IRMM), is described in Algorithm 1. In rest of the
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section, we will demonstrate the effectiveness of the hyperedge reweighting scheme by

using a toy example.

Algorithm 1: Iteratively Reweighted Modularity Maximization (IRMM)

input : Hypergraph incidence matrix H , vertex degree matrix Dv, hyperedge degree

matrix De, hyperedge weightsW

output: Cluster assignments cluster_ids, number of clusters c

1 // Initialize weights asW ← I if the hypergraph is unweighted

2 repeat

3 // Compute reduced adjacency matrix

4 A ← HW (De − I)−1HT

5 // Zero out the diagonals of A

6 A ← zero_diag(A)

7 // Return number of clusters and cluster assignments

8 cluster_ids, c = LOUVAIN_MOD_MAX(A)

9 // Compute new weight for each hyperedge

10 for e ∈ E do

11 // Compute the number of nodes in each cluster

12 for i ∈[ 1, .., c] do

13 // Set of nodes in cluster i

14 Ci ← cluster_assignments[ i]

15 ki = |e ∩ Ci|

16 end

17 // Compute new weight

18 w′(e) = 1
m

∑c
i=1

1
ki+1 (δ(e) + c)

19 // Take moving average with previous weight

20 Wprev(e) ← W (e)

21 W (e) = 1
2 (w

′(e) + Wprev(e))

22 end

23 until ‖W − Wprev‖ < threshold

A simple example

Figure 2 illustrates the change in hyperedge cuts on a toy hypergraph for a single iteration.

Initially when clustering this hypergraph by modularity maximization, the hypergraph

had two highly unbalanced cuts. In Fig. 2a, hyperedge h2 gets splitted by Cut 1, Cut 2

and Cut 3 in 1 : 4, 1 : 4 and 2 : 3 ratios respectively. Similarly, hyperedge h3 gets cut by

both Cut 1 and Cut 2 in ratio 1 : 2. After applying one iteration hyperedge reweighting,

hyperedge h1 gets split in a 1 : 1 ratio and h2 gets cut in a 1 : 4 ratio (Fig. 2b). In this case,

hyperedge reweighting procedure decreases the number of cuts and leaves two desired

clusters. With the intital clustering, there were single nodes left out from hyperedges h2

and h3, which are pulled back into the larger clusters after reweighting. This example

illustrates that the reweighting scheme exhibits the desired behavior, as discussed earlier

in this section.

We are now in a position to evaluate our ideas empirically.
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Fig. 2 Effect of iterative reweighting

Evaluation on ground truth

In this section, we will present the experiments conducted to validate the proposed

methods. We used the Rand Index, average F1 measure (Yang and Leskovec 2012) and

purity, three popular metrics to evaluate the clustering quality. We will start with a brief

introduction to the Louvain method, followed by details on the experimental setup and

datasets used.

The Louvain method: The Louvain method is a greedy optimization method for

detecting communities in large networks (Blondel et al. 2008). The method works on the

principle of grouping the nodes that maximize the overall modularity. Since checking all

possible cluster assignments is impractical, the Louvain algorithm uses a heuristic that is

known to work well on real-world graphs. Themethod starts by assigning each node to its

own cluster and merging those clusters, resulting in the highest modularity gain. Merged

clusters are treated as single nodes, and again those cluster-pairs merge that result in the

highest modularity gain. If there are no cluster pairs left that will further increase the

overall network modularity, the algorithm stops and returns the clusters.

Fixing the number of clusters:We use the Louvain algorithm to maximize the hyper-

graph modularity as per Eq. 4. Since this method uses a node-degree-preserving graph

reduction, we refer to it as NDP-Louvain (Node Degree Preserving Louvain). Louvain

algorithm automatically returns the number of clusters. To get a predefined number of

clusters c, we use agglomerative clustering (Ding and He 2002) on the top of clusters

obtained by the Louvain algorithm. For the linkage criterion, we use the average linkage.

It is a bottom-up hierarchical clustering method. The algorithm constructs a dendrogram

that exhibits pairwise similarity among clusters. At each step, two clusters with the short-

est distance are merged into a single cluster. The distance between any two clusters ci and

cj is taken to be the average distance of all distances d(x, y), where node x ∈ ci and node

y ∈ cj.

The proposed methods are shown in the results table as NDP-Louvain and IRMM.

Settings for IRMM

We investigate the effect of the hyperparameter α using a grid search over the set [ 0.1, 0.9]

with a step size of 0.1. We did not observe any difference in the resultant Rand Index,

purity, and F1 scores. While tuning the α, we witnessed a very minimal difference in the
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convergence rate, over a wide range of values (for example, 0.3 to 0.9 on the TwitterFoot-

ball dataset). It can be noted that α is a scalar value in a moving average; it will not cause

any significant variation in the resulting weights. In our experiments, we decided to set it

at α = 0.5. We stop the iterations if the difference between the mod of two subsequent

weight assignments is less than a set threshold. In our experiments, we set chose to set

this threshold at threshold = 0.01

Comparedmethods

To evaluate the performance of our proposed methods, we compared the following

baselines.

Clique Reductions:We reduced the original hypergraph using a clique reduction (A =

HWHT ) and then applied the Louvain method and Spectral Clustering.

Hypergraph-based Spectral Clustering: We use the hypergraph-based spectral clus-

tering method, as defined in Zhou et al. (2007). The given hypergraph is reduced to a

graph

(

A = D
−1
2
v HWD−1

e HTD
−1
2
v

)

and its Laplacian is calculated. The top k eigenvectors

of the Laplacian are found and clustered by the bisecting-k-means clustering procedure.

In the results table, this method is referred to as Zhou-Spectral.

PaToH2 and hMETIS3: These are popular hypergraph partitioning algorithms that

work on the principles of coarsening the hypergraph before partitioning. The coarsened

hypergraph is partitioned using expensive heuristics. In our experiments, we used the

original implementations from the corresponding authors.

Datasets

Dataset statistics are furnished in Table 1. For all datasets, we use the largest connected

component of the hypergraph for our experiments. All the datasets are classification

datasets, where the class labels accompany the data points. We use these class labels as

the proxy for clusters. The detailed description of the hypergraph construction is given

below:

MovieLens 4: This is a multi-relational dataset provided by GroupLens research, where

movies are represented by nodes. We construct a co-director hypergraph by using the

director relationship to represent hyperedges. A hyperedge would connect a group of

nodes if the same individual directed them. Here, the genre of a movie represents the class

of the corresponding node.

Cora andCiteseer: These are bibliographic datasets, where the nodes represent papers.

In each dataset, a set of nodes is connected by a hyperedge if they involve the same set of

words (after removing low frequency and stop words). Different disciplines were used as

clusters (Sen et al. 2008).

TwitterFootball: This is a social network taken from the Twitter dataset (Greene et al.

2012). This dataset involves players of 20 football clubs (classes) of the English Premier

League. Here, the nodes represent players, and if a set of players are co-listed, then the

corresponding nodes are connected by a hyperedge.

Arnetminer: This is a large bibliographic dataset (Tang et al. 2008). Here, the nodes

represent papers, and a set of nodes are connected if the corresponding papers are

2http://bmi.osu.edu/umit/software.html
3http://glaros.dtc.umn.edu/gkhome/metis/hmetis/download
4http://ir.ii.uam.es/hetrec2011/datasets.html

http://bmi.osu.edu/umit/software.html
http://glaros.dtc.umn.edu/gkhome/metis/hmetis/download
http://ir.ii.uam.es/hetrec2011/datasets.html
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Table 1 Dataset description

Dataset # nodes # hyperedges Avg. hyperedge degree Avg. node degree # classes

TwitterFootball 234 3587 15.491 237.474 20

Cora 2708 2222 3.443 2.825 7

Citeseer 3264 3702 27.988 31.745 6

MovieLens 3893 4677 79.875 95.961 2

Arnetminer 21375 38446 4.686 8.429 10

co-cited. The nodes in the hypergraph are accompanied by Computer Science sub-

disciplines. Different sub-disciplines were used as clusters.

Experiments

For the different datasets, we compare the Rand Index (Rand 1971), purity (Manning et

al. 2008), and average F1 scores (Yang and Leskovec 2013) on all the methods discussed

earlier. The number of clusters was first set to that returned by the Louvain method, in an

unsupervised fashion. This is what would be expected in a real-world setting, where the

number of clusters is not given apriori. Table 2 shows the results of this experiment.

Secondly, we ran the same set of methods with the number of ground truth classes set as

the number of clusters. In the case of Louvain method, the clusters obtained are merged

Table 2 Rand Index, Purity and Average F1 scores against ground truth; the number of clusters for

hMETIS, PaToH, Spectral, and Zhou-Spectral is set to the number of clusters returned by the IRMM

method are 13, 79, 8, 18, and 1358 for Citeseer, Cora, Movielens, TwitterFootball, and Arnetminer,

respectively

Citeseer Cora MovieLens TwitterFootball Arnetminer

(a) Rand Index scores against ground truth.

hMETIS 0.6504 0.7592 0.4970 0.7639 0.0416

PaToH 0.6612 0.6919 0.4987 0.7553 0.0052

Spectral 0.7164 0.2478 0.4806 0.7486 0.0610

Zhou-Spectral 0.8210 0.5743 0.4977 0.9016 0.0628

Louvain 0.7361 0.7096 0.4898 0.6337 0.0384

NDP-Louvain 0.7899 0.8238 0.4988 0.9056 0.0821

IRMM 0.7986 0.8646 0.5091 0.9448 0.0967

(b) Purity scores against ground truth.

hMETIS 0.5894 0.6596 0.6893 0.2556 0.6831

PaToH 0.6271 0.5912 0.7017 0.3176 0.3928

Spectral 0.4629 0.3897 0.6832 0.8114 0.9216

Zhou-Spectral 0.5287 0.4145 0.7118 0.8325 0.9378

Louvain 0.7190 0.6836 0.7189 0.8054 0.9138

NDP-Louvain 0.7307 0.7597 0.7245 0.8829 0.9691

IRMM 0.7659 0.8138 0.7291 0.8948 0.9765

(c)Average F1 scores against ground truth.

hMETIS 0.1087 0.1075 0.1291 0.3197 0.0871

PaToH 0.0532 0.1171 0.1104 0.1132 0.0729

Spectral 0.1852 0.1291 0.1097 0.4496 0.0629

Zhou-Spectral 0.2774 0.2517 0.118 0.5055 0.0938

Louvain 0.1479 0.2725 0.1392 0.2238 0.1378

NDP-Louvain 0.2782 0.3248 0.1447 0.5461 0.1730

IRMM 0.4019 0.3709 0.1963 0.5924 0.1768

Louvain, NDP-Louvain, and IRMM return the number of clusters on their own

Best performance in each column is boldfaced
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using the post-processing technique explained earlier. The results of this experiment are

given in Table 3. On some datasets, the Louvainmethod and IRMM return fewer clusters

than the number of ground truth classes. In such cases, we do not report the results and

leave the entries as “-."

We also plotted the results for varying number of clusters using the same methodology

described above, to assess our method’s robustness. The results are shown in Fig. 3. In all

datasets but Arnetminer, we set the number of clusters to a minimum value such as two

and then increase it by a factor of two. For Arnetminer, since the IRMM method returns

a very large number of clusters, we set the initial number of clusters to ten and increase it

by a factor of ten. For all datasets, the maximum number of clusters is set to the number

of clusters returned by the IRMMmethod. On some datasets, Louvain andNDP-Louvain

methods return a fewer number of clusters than IRMM. In such cases, the corresponding

curves in Fig. 3 are left truncated.

Results and analysis

We show that the proposed methods - NDP-Louvain and IRMM perform consistently

better on all the datasets (except on one dataset with RI measure). To test the robustness

Table 3 Rand Index, Purity and Average F1 scores against ground truth; the number of clusters is set

to the number of ground truth classes

Citeseer Cora MovieLens TwitterFootball Arnetminer

(a) Rand Index scores; number of clusters set to the number of ground truth classes

hMETIS 0.6891 0.7853 0.5028 0.7697 0.3116

PaToH 0.7312 0.7208 0.4984 0.7618 0.1820

Spectral 0.7369 0.3117 0.4812 0.7765 0.3762

Zhou-Spectral 0.8267 0.5845 0.5006 0.9112 0.3851

Louvain - 0.7096 0.4982 - 0.4198

NDP-Louvain 0.8197 0.8441 0.5119 - 0.5359

IRMM 0.8245 0.889 0.5347 - 0.5506

(b) Cluster purity scores; number of clusters set to the number of ground truth classes

hMETIS 0.5249 0.6359 0.6914 0.2354 0.2984

PaToH 0.5724 0.6498 0.7139 0.2419 0.2391

Spectral 0.4839 0.5819 0.7294 0.7815 0.5169

Zhou-Spectral 0.5374 0.6115 0.742 0.8191 0.5827

Louvain - 0.7136 0.7364 - 0.4837

NDP-Louvain 0.7495 0.7441 0.7429 - 0.5968

IRMM 0.7732 0.779 0.7737 - 0.6173

(c) Average F1 scores; number of clusters set to the number of ground truth classes

hMETIS 0.1451 0.2611 0.4445 0.3702 0.3267

PaToH 0.071 0.1799 0.3239 0.1036 0.2756

Spectral 0.2917 0.2305 0.2824 0.4345 0.387

Zhou-Spectral 0.3614 0.2672 0.3057 0.5377 0.4263

Louvain - 0.2725 0.2874 - 0.4587

NDP-Louvain 0.3491 0.3314 0.3411 - 0.4948

IRMM 0.441 0.3966 0.4445 - 0.5299

Citeseer, Cora, Movielens, TwitterFootball, and Arnetminer have 6, 7, 2, 20, and 10 classes, respectively. On some datasets, the

Louvain and IRMMmethod return fewer clusters than the number of ground truth classes. In such cases, we do not report the

results and leave the entries as “-."

Best performance in each column is boldfaced
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Fig. 3 F1 scores for varying number of clusters. Here, x-axis represent the number of clusters and y-axis

indicates F1 score

of the proposed method, we vary the number of clusters and report the results in the

latter half of the section. To investigate the effect of the reweighting scheme, we report

the distribution of the sizes of hyperedges getting cut. This is followed by testing the

scalability of the proposed algorithm against one of the competitive baseline.We will start

by discussing the empirical evaluation of the proposed methods.

From the Tables 2 and 3, it is evident that IRMM gives the highest cluster purity scores

and average F1 scores across all the datasets and the highest Rand Index scores are

obtained on all except Citeseer dataset. Besides the fact that IRMM significantly outper-

forms over other methods, we want to emphasize on the following two observations:

Superior performance of hypergraph based methods:

It is evident that hypergraph based methods perform consistently better than their

clique based equivalents. Results indicate that Zhou-Spectral and NDP-Louvain are bet-

ter than Spectral and Louvain respectively. Hence, preserving the super-dyadic structure

helps in getting a better cluster assignment.
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The proposed iterative reweighting scheme helps to boost up the performance:

The proposed hyperedge reweighting scheme aids in the performance across all

datasets. It must be noted that the first iteration of IRMM is the NDP-Louvain and

IRMM performance is consistently better than the NDP-Louvain method, which shows

that balancing the hyperedge cut enhances the cluster quality.

Effect of reweighting on hyperedge cuts

Consider a hyperedge that is cut; its nodes partitioned into different clusters. Looking

at Eq. 6, we can see that w′(e) is minimized when all the partitions are of equal size,

and maximized when one of the partitions is much larger than the other. The iterative

reweighting procedure is designed to increase the number of hyperedges with balanced

partitioning, and decrease the number of hyperedges with unbalanced partitioning. As

iterations pass, hyperedges that are more unbalanced should be pushed into neighbouring

clusters, and the hyperedges that lie between clusters should be more balanced.

We analyze the effect of hyperedge reweighting in Fig. 4. For each hyperedge, we find

the relative proportion of the biggest partition and add them in the bins with interval size

= 0.1. The plot illustrates the variation in the size of each bin over along with iterations.

relative size(e) = max
i

number of nodes in cluster i

number of nodes in the hyperedge e

If a hyperedge is a balanced cut, then the proportion of its largest partition is low; we

call such hyperedges as fragmented. On the other hand, if a hyperedge has a very high

proportion of its largest partition, then the hyperedge is not a balanced cut; we call such

hyperedges as dominated.

On TwitterFootball dataset, the effect of reweighting is distinctly visible as the num-

ber of fragmented edges increases with iterations. This behavior confirms our intuition

of achieving more balanced cuts with the proposed reweighting procedure. After four

iterations, the method converges as we don’t observe any change in the hyperedge

distribution.

A similar trend is observed with the Cora dataset. Here, the number of fragmented

edges fluctuate before their final convergence.

In the case of Arnetminer dataset, the change in fragmented and dominated edges is

very minimal. One possible reason for such behavior could be its significantly large size

as compared to the number of ground truth clusters.

In the case of Citeseer andMovielens datasets, we could not see the convergence in the

change of hyperedge weights in a pre-fixed number of iterations. Though the number of

hyperedges seems to fluctuate with iterations, the algorithm tries to find the best clus-

tering at each step by using the NDP-Louvain algorithm. This results in the improved

performance of the overall algorithm after following the refinement procedure.

Both in Citeseer and Movielens datasets, IRMM returns lesser number of clusters than

NDP-Louvain.NDP-Louvain returns 16 clusters forCiteseer and 13 clusters forMovielens

dataset. These number of clusters are reduced to 13 and 8 for Citeseer and Movielens

datasets respectively. Thus, the refinement procedure tends to minimize the cut value

along with cut-balacing.



Kumar et al. Applied Network Science            (2020) 5:52 Page 18 of 22

Fig. 4 Effect of iterative hyperedge reweighting: % of hyperedges where the relative size of its largest

partition falls in a given bin vs. no. of iterations

Scalability of the NDP-Louvainmethod

To further motivate the extension of modularity maximization methods to the hyper-

graph clustering problem, we look at the scalability of the NDP-Louvain method against

the strongest baseline,Zhou-Spectral. Table 4 shows the CPU times5 for theNDP-Louvain

and Zhou-Spectral on the real-world datasets. We see that while the difference is less pro-

nounced on a smaller dataset likeTwitterFootball, it is much greater on the larger datasets.

In particular, the runtime on Arnetminer for NDP-Louvain is lower by a significant

margin, not having to compute an expensive eigendecomposition.

5The runtime of IRMM is not reported as it is highly dependent on the number of iterations. For some datasets such as
TwitterFootball and Cora, our method converged in 4 and 13 iterations, respectively. For remaining datasets, we
experimented with the number of iterations set to 20.
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Table 4 CPU times (in seconds) for the hypergraph clustering methods on all datasets

Citeseer Cora MovieLens TwitterFootball Arnetminer

Zhou-Spectral 84.16 41.44 155.8 3.88 34790

NDP-Louvain 41.21 24.23 35.9 3.32 4311.2

Note: To compute the eigenvectors for spectral clustering based method, we use of

the eig(.) function from MATLAB. The eig(.) function makes use of orthogonal similar-

ity transformations to convert the matrix into upper Hessenberg matrix followed by QR

algorithm to find its eigenvectors.

Analysis on synthetic hypergraphs: On the real-world data, modularity maximiza-

tion showed improved scalability as the dataset size increased. To evaluate this trend,

we compared the CPU times for the Zhou-Spectral and NDP-Louvain methods on syn-

thetic hypergraphs of different sizes. For each hypergraph, we first ran NDP-Louvain and

found the number of clusters returned, then ran the Zhou-Spectralmethod with the same

number of clusters.

Following the hypergraph generation method used in EDRW: Extended Discriminative

Random Walk6 (Satchidanand et al. 2015), we generated hypergraphs with 2 classes and

a homophily of 0.4 (40% of the hyperedges deviate from the expected class distribution).

The hypergraph followed a modified power-law distribution, where 75% of its hyperedges

contained less than 3% of the nodes, 20% of its hyperedges contained 3%-50% of the nodes,

and the remaining 5% contained over half the nodes in the dataset. To generate a hyper-

graph, we first set the number of hyperedges to 1.5 times the number of nodes. For each

hyperedge, we sampled its size k from the modified power-law distribution and chose k

different nodes based on the homophily of the hypergraph. We generated hypergraphs of

sizes ranging from 1000 nodes up to 10000 nodes, at intervals of 500 nodes.

Figure 5 shows how the CPU time varies with the number of nodes, on the synthetic

hypergraphs generated as given above.

WhileNDP-Louvain is shown to run consistently faster thanZhou-Spectral for the same

number of nodes, the difference increases as the hypergraph grows larger. In Fig. 5, this

is shown by the widening in the gap between the two curves as the number of nodes

increases.

Conclusion and future directions

In this paper, we have defined the problem of clustering on hypergraphs and state chal-

lenges involved to solve it. We start with defining a null model for the graphs generated

by the hypergraph reduction and theoretically show its equivalence to the configuration

model defined for weighted undirected graphs. Our proposed graph reduction technique

preserves the node degree sequence of the actual hypergraph. After reducing the hyper-

graph to a graph, we apply the Louvain algorithm to find clusters. We have motivated the

problem of balancing the hypergraph cuts and provided an iterative solution for the same.

Our extensive set of experiments demonstrates the supremacy of the proposed methods

over state-of-the-art approaches. The promising results confirm the need for hypergraph

modeling and open up new directions for further research. The proposed graph reduc-

tion technique can be used for different tasks such as node classification, link prediction,

node representation learning, etc., that are left as the avenues of future research.

6https://github.com/HariniA/EDRW

https://github.com/HariniA/EDRW
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Fig. 5 CPU time (in secs) on synthetic hypergraphs

Abbreviations

IRMM: Iteratively reweighted modularity maximization; NDP-Louvain: Node degree preserving Louvain; EDRW: Extended

discriminative random walk
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