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Abstract

Homogeneous relaxation is a ubiquitous phenomenon in semiclassical kinetic theo-

ries where the quasiparticles are distributed uniformly in space, and the equilibration

involves only their velocity distribution. For such solutions, the hydrodynamic variables

remain constant. We construct asymptotically AdS solutions of Einstein’s gravity dual

to such processes at strong coupling, perturbatively in the amplitude expansion, where

the expansion parameter is the ratio of the amplitude of the non-hydrodynamic shear-

stress tensor to the pressure. At each order, we sum over all time derivatives through

exact recursion relations. We argue that the metric has a regular future horizon, or-

der by order in the amplitude expansion, provided the shear-stress tensor follows an

equation of motion. At the linear order, this equation of motion implies that the met-

ric perturbations are composed of zero wavelength quasinormal modes. Our method

allows us to calculate the non-linear corrections to this equation perturbatively in the

amplitude expansion. We thus derive a special case of our previous conjecture on the

regularity condition on the boundary stress tensor that endows the bulk metric with

a regular future horizon, and also refine it further. We also propose a new outlook for

heavy-ion phenomenology at RHIC and ALICE.
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1 Introduction

The AdS/CFT correspondence [1, 2, 3] has given us a framework to study non-equilibrium

phenomena in gauge theories at strong ’t Hooft coupling in real time. For conformal gauge

theories at strong ’t Hooft coupling, this correspondence, if applicable, implies that there

exists a universal sector of non-equilibrium states. This universal sector of states maps

to five-dimensional spacetimes with metrics which have regular future horizons, and are

solutions of Einstein’s equation with a negative cosmological constant. Construction of such

solutions of gravity, perturbatively in the limit of slow spatial and temporal variations, leads

us to uncover purely hydrodynamic phenomena in the dual gauge theory and also enables us

to compute the hydrodynamic transport coefficients systematically [4, 5, 6, 7, 8, 9, 10, 11].
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It is, of course, of theoretical and possibly experimental interest, to uncover a wider class

of non-equilibrium phenomena beyond hydrodynamics through the gauge/gravity correspon-

dence. The universal sector of non-equilibrium states itself includes a huge spectrum of such

non-equilibrium phenomena, including probably early time evolution of the quark-gluon

plasma, as has recently been studied for boost invariant flows [12]. 1

The universal sector has a special characteristic in that all states constituting it can be

uniquely characterized and their dynamics can be completely determined by the expectation

value of the energy-momentum tensor alone [14]. This follows from the dual gravity de-

scription. In an earlier work [15], we have proposed a field-theoretic explanation by drawing

analogy to conservative solutions of the Boltzmann equation that we have constructed, and

briefly explain below.

It can be shown that an appropriate relativistic semiclassical Boltzmann equation cap-

tures all perturbative non-equilibrium phenomena in non-Abelian gauge theories at suffi-

ciently high temperature [16, 17]. The conservative solutions of the relativistic semicalssical

Boltzmann equation exist for all values of the ’t Hooft coupling and rank of the gauge group.

These special solutions can again be completely characterized and their dynamics can be

completely determined by the energy-momentum tensor alone.

In these solutions, the components of the energy-momentum tensor follow a closed set of

equations of motion which can be derived systematically from the Boltzmann equation. In

addition to the equations for conservation of energy and momentum, this set also contains

equations for the evolution of the shear-stress tensor. The other parameters of the quasi-

particle distribution function, like the heat current for instance, do not decouple, but are

algebraically determined by the energy-momentum tensor and their spatial derivatives in a

local inertial frame where the mean velocity of the quasiparticles vanishes, and thus have no

independent dynamical parts.

The dynamics is determined by the energy-momentum tensor alone, because any solution

to the closed set of equations of motion of the energy-momentum tensor can be lifted to

a unique solution of the Boltzmann equation through the other algebraically determined

parameters.

A special class of solutions to these equations are purely hydrodynamic in nature and

are known as normal solutions in the literature. 2 Further, any solution of the Boltzmann

1For related work with sources for field theory operators like metric perturbations turned on, please also
see [13].

2The normal solutions were first found by Enskog [18] in order to provide a systematic way of calculating
transport coefficients from the Boltzmann equation. These solutions can be determined exactly by the
hydrodynamic variables, as all other parameters of the quasiparticle distribution are determined algebraically
by the hydrodynamic variables and their spatial derivatives, in a local inertial frame where the mean velocity
of the quasiparticles vanishes. Many formal aspects of these solutions were clarified in [19, 20], and they
were found for the relativistic semiclassical Boltzmann equation by Stewart [21].
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equation can be approximated by an appropriate conservative solution at sufficiently late

times [15].

We proposed that the conservative solutions, when extrapolated to strong ’t Hooft cou-

pling and large rank of the gauge group, exhibit universality in their dynamics and constitute

the states of the universal sector. This explains why all states in the universal sector can be

determined by the energy-momentum tensor alone.

This proposal amounts to saying that the dual solutions of pure gravity will have regular

future horizons, provided the boundary energy-momentum tensor follows a closed set of

equations of motion. The constraints of the equations of motion of gravity imply conservation

of energy and momentum. However these do not suffice to ensure regularity of the future

horizon in the bulk, or determine the evolution of the boundary energy-momentum tensor

completely. Our proposed set of equations also includes the equations of motion for the

shear-stress tensor, which determine the evolution of the boundary energy-momentum tensor

completely and ensure regularity of the future horizon in the bulk for the right values of the

phenomenological parameters.

The structure of these equations cannot be related to the corresponding structure in the

case of conservative solutions because we do not have a known kinetic description at strong

coupling. However, if we know the hydrodynamic transport coefficients up to some orders,

we can phenomenologically construct the most general equation of motion of the shear-stress

tensor in appropriate expansion parameters as we will discuss later. 3 This equation has

purely hydrodynamic solutions, just like conservative solutions, but it also has more general

solutions corresponding to non-hydrodynamic relaxation.

The aim of this work is to chalk out a course for derivation of equations of motion for the

energy-momentum tensor, directly from the requirement of regularity of the future horizon

in the gravity dual, for a special case of non-hydrodynamic relaxation. This special case is

homogeneous relaxation. We will concentrate on the homogeneous case for two important

reasons, firstly because they provide the simplest instances of purely non-hydrodynamic

approach to equilibrium in general, and secondly because we can easily make a connection

here with the physics of non-hydrodynamic branches of quasinormal modes of black branes.

Homogeneous relaxation to equilibrium is a feature of special solutions of all kinetic

theories. In the case of the Boltzmann equation, for instance , these solutions correspond to

the quasiparticle distribution function being spatially uniform, but being non-Maxwellian in

velocity space. The higher moments of the velocity distribution relax such that they vanish

at equilibrium, while the first five velocity moments corresponding to the hydrodynamic

3Our study of homogeneous relaxation shows that the amplitude expansion of these equations of motion
for the shear-stress tensor was not done correctly in [15]. It was actually misguided by the structure of
the amplitude expansion in the Boltzmann limit. Consequently, we failed to connect our equation with the
quasinormal modes after linearization. We will give the correct general phenomenological equation here.
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variables - the density, the mean velocity, and the temperature - remain constant. 4

In such solutions, the components of the energy-momentum tensor in the globally defined

inertial frame with constant zero mean velocity, takes the form,

t00 = ǫ, t0i = ti0 = 0, tij = pδij + πij(t), (1.1)

where ǫ is the energy density, p is the pressure dependent on the constant temperature

T and πij(t) is the shear-stress tensor. This form of the energy-momentum tensor trivially

satisfies conservation of energy and momentum, ∂µtµν = 0 (or equivalently the hydrodynamic

equations) for any πij(t). We also require ǫ = 3p and πijδij = 0 so that the energy-momentum

tensor is traceless.

A special class of such homogeneous solutions are also conservative solutions, where the

full solution can be determined from the solution to the closed set of equations of motion

for πij(t). These equations can be systematically expanded in the amplitude expansion

parameter, which is the typical value of πij divided by the constant pressure.

Remarkably, the scalar channel of quasinormal modes for AdS black branes, which have

zero wavelengths [26, 27, 28, 29, 30] 5, also suggest a similar form of the energy-momentum

tensor. 6 We have a tower of such quasinormal modes, so that for such perturbations the

energy-momentum tensor takes the following form by gauge/gravity duality,

tµν(t) = t(0)µν +

∞
∑

n=1

(

anµνe
−iωRn

t + a∗nµνe
iωRn

t
)

e−ωIn
t, (1.2)

where t
(0)
µν corresponds to the unperturbed AdS black brane and ± ωRn

− iωIn (with ωIn >

0) are the non-hydrodynamic overtones in the scalar channel. Also anµν is traceless and

purely spatial. Given that t
(0)
µν is traceless, it follows that anµν is traceless as well. As the

perturbations are in the scalar channel, anµν is also transverse to the global boost four-vector

uµ of the black brane. It is not difficult to see that the form (1.2) of the energy-momentum

tensor is equivalent to (1.1) in the global inertial frame where the boost four-vector is (1, 0,

0, 0).

Here, we will develop a systematic method to construct solutions of gravity which have the

boundary energy-momentum tensor of the form (1.1), by summing over all time derivatives,

4Spatially uniform solutions of the Boltzmann equation for special intermolecular potentials were first
found by T. Carleman [22]. These solutions were also isotropic. More general solutions were later found by
Wild [23] and Morgenstern [24].

5For an earlier work please see [25].
6The quasinormal modes of AdS black branes reproduces all the poles in the retarded Green’s function

of the dual guage theory [28, 29], so they carry information regarding linear thermal relaxation in the gauge
theory.

4



but perturbatively in the amplitude expansion parameter. 7

We construct the solution both in Fefferman-Graham coordinates and the ingoing Eddington-

Finkelstein coordinates. It will be easier to construct the solution in Fefferman-Graham

coordinates first, because the constraints could be easily solved. The Fefferman-Graham

coordinates will also be suitable for achieving a general construction of metrics, uniform in

the spatial boundary coordinates.

We can then obtain the metric in ingoing Eddington-Finkelstein coordinates by doing

coordinate transformation systematically. The coordinate transformation also receives cor-

rections order by order in the amplitude expansion, and at each order all time derivatives can

be summed up. The whole method will be, in fact, a generalization of the method adopted

in the purely hydrodynamic case in [14].

The metric can be expected to be regular order by order in the amplitude expansion for

appropriate shear-stress tensor πij(t). The shear-stress tensor becomes arbitrarily small close

to equilibrium, analogous to the spacetime variations of the hydrodynamic variables. In the

latter case, the metric is regular order by order in the derivative expansion for right choice of

transport coefficients. Thus we can expect that the metric should be regular for appropriate

πij(t), order by order in the amplitude expansion after summing over all time derivatives at

each order. As we will see, the time derivatives of πij(t) will not become arbitrarily small

even close to equilibrium. This will necessitate summing over all time derivatives at each

order in the amplitude expansion.

We can argue that the metric is manifestly regular in the ingoing Eddington-Finkelstein

coordinates order by order in the amplitude expansion when πij(t) follows an equation of

motion. This equation of motion can also be found order by order in the amplitude expansion,

summing over all time derivatives at each order. At the first order, we reproduce the scalar

channel of quasinormal modes at zero wavelengths. At the next order, we obtain non-linear

corrections, which can potentially modify the behavior drastically at early times.

Organization of the paper : The organization of the rest of the paper is as follows.

In Section 2, we will develop the method to construct solutions of gravity uniform in the

spatial boundary coordinates, in the Fefferman-Graham system, order by order in the am-

plitude expansion while summing over all time derivatives. In Section 3, we will translate

these solutions to the Eddington-Finkelstein coordinates. In Section 4, we will analyze the

regularity condition on the future horizon and see how it gives us an equation of motion

for πij(t). In Section 5, we will show how the analysis done here can be used to study the

7A class of translationally invariant and isotropic solutions were previously constructed in [31], where
the sources in the boundary corresponding to the non-normalizable modes were turned on and black hole
formation in the bulk was studied. Our method of summing over time derivatives in the perturbation
expansion here will be different and we can deal with arbitrary anisotropic configurations. We will adopt
a different procedure for regularity analysis of the metric at the horizon here. For related earlier numerical
study of homogeneous anisotropic asymptotically AdS metrics, please see [32].
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space-time evolution of the matter created by ultrarelativistic heavy-ion collisions at RHIC

and ALICE. Finally in the Discussion we will conclude by mentioning a few open questions.

2 The metric in Fefferman-Graham coordinate system

in the amplitude expansion

In this section, we will develop a method to construct asymptotically AdS metrics, where

the energy-momentum tensor at the boundary takes the same form (1.1) as in homogeneous

relaxation in kinetic theories. The metric should have a regular future horizon when this

boundary energy-momentum tensor satisfies further constraints, which will be investigated

later.

We will construct the metric order by order in the amplitude expansion, while summing

over all time derivatives. We will use Fefferman-Graham coordinate system for both, a

purpose of principle and a purpose of convenience.

The purpose of principle is that the Fefferman-Graham coordinate system allows us to

construct solutions for the most general form of the energy-momentum tensor corresponding

to homogeneous relaxation, before we impose constraints for regularity at the future horizon.

A similar point of view was taken in [14] in the purely hydrodynamic case, where the metric

in the bulk was constructed in Fefferman-Graham coordinates for purely hydrodynamic

boundary energy-momentum tensor with arbitrary transport coefficients, in the derivative

expansion. It was then shown that, for a unique choice of transport coefficients, the future

horizon was regular order by order in the derivative expansion.

In the present case of homogeneous relaxation, we have no standard phenomenological

equation for the shear-stress tensor that can be reliably applied at strong coupling. Thus,

in principle, we should construct the metric for the most general form of the shear-stress

tensor at the boundary and then find out how the regularity condition at the future horizon

in the bulk constrains it. When the boundary energy-momentum tensor is arbitrary, the

Fefferman-Graham coordinate system is the suitable choice for constructing the metric.

The purpose of convenience is that the Fefferman-Graham coordinate system allows us

to satisfy the constraints easily. The constraints can be elegantly solved in the Fefferman-

Graham coordinates, because they simply impose boundary conditions on the dynamical

equations for evolution of the boundary metric in the radial direction. However, in other

coordinate systems, the dynamical equations are not simply the evolution of the boundary

metric. So, it is not easy to generate a simple algorithm to satisfy the constraints. We will

find that the constraints here are more involved than in the purely hydrodynamic case, so

the Fefferman-Graham coordinate system is indeed very convenient.
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We will begin with obtaining the form of the metric order by order in the amplitude

expansion. Then we will show how we obtain the equations for motion at each order in

the amplitude expansion and how we can sum over all time derivatives at each order. The

procedure will involve Fourier transformation of the time dependence, and this will introduce

a few subtleties which we will also discuss.

2.1 The form of the metric in the amplitude expansion

Einstein’s equation of gravity in five dimensions with a negative cosmological constant takes

the following convenient form

RMN − 1

2
RGMN =

6

l2
GMN . (2.1)

Any metric which solves the above equation will have constant scalar curvature R = −4/l2.

Further, any asymptotically AdS metric which is a solution of this equation can be written

in the Fefferman-Graham coordinate system in the form,

ds2 =
l2

ρ2
(

dρ2 + gµν(ρ, z)dz
µdzν

)

. (2.2)

This coordinate system should be able to cover a part of the the five-dimensional upper half

plane ρ ≥ 0, so it will have a coordinate or a real singularity only at a finite radial distance

from the boundary ρ = 0 [33, 14]. For the rest of this paper, we will choose our units such

that l = 1.

The boundary metric is defined as

g(0)µν(z) = lim
ρ→0

gµν(ρ, z). (2.3)

By rules of gauge/gravity duality, which we will not review here, it turns out that the

boundary metric is the metric on the four dimensional spacetime in which the gauge theory

is living [2, 3].

When the boundary metric is flat, i.e. when g(0)µν(z) = ηµν , the four dimensional metric

gµν(ρ, z) in (2.2) will have a Taylor expansion in the radial coordinate near ρ = 0 [14], such

that

gµν(ρ, z) = ηµν +
∞
∑

n=0

g(2n)µν(z)ρ
2n. (2.4)

By the rules of gauge/gravity duality, when the boundary metric is flat, it also turns out that

g(4)µν is the expectation value of the energy-momentum tensor in the dual non-equilibrium

state (aside from a factor which is essentially a power of the rank of the gauge group [34, 36]).
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This result can also be obtained in a manifestly coordinate-independent manner [35, 36].

Since we are in the limit where the rank of the gauge group is infinite, we will normalize

tµν , the expectation value of the energy-momentum tensor in the dual state, such that

g(4)µν(z) = tµν(z).

We note that this identification of g(4)µν wth tµν makes sense only when the bulk metric

has a regular future horizon. More generally, we should think of it as a boundary stress

tensor.

Einstein’s equation automatically guarantees that g(4)µν satisfies the equation of conserva-

tion of energy and momentum, ∂µg(4)µν = 0, and is also traceless, i.e. it satisfies Tr(g(4)) = 0

[34, 36]. These allow us to identify it more generally with a conformally covariant energy-

momentum tensor even when the bulk metric is not endowed with a regular future horizon.

Einstein’s equation for the metric (2.2) reduces to a tensor, a vector and a scalar equation

of motion. The tensor equation, which gives the dynamical equation of motion for evolution

of the boundary metric in the radial coordinate, is

1

2
g′′ − 3

2ρ
g′ − 1

2
g′g−1g′ +

1

4
Tr(g−1g′)g′ − 1

2ρ
Tr(g−1g′)g −Ric(g) = 0, (2.5)

where ′ denotes differentiation with respect to the radial coordinate ρ. The vector and tensor

equations give the constraints on g(4)µν . The vector equation is

∇µTr(g
−1g′)−∇νg′µν = 0, (2.6)

where ∇ denotes the covariant derivative constructed from g. The scalar equation is,

Tr[g−1g′′]− 1

ρ
Tr[g−1g′]− 1

2
Tr[g−1g′g−1g′] = 0. (2.7)

Actually, it turns out that the true dynamical equation is

1

2
g′′ − 3

2ρ
g′ − 1

2
g′g−1g′ +

1

4
Tr(g−1g′)g′ − Ric(g)

+g
[1

6
R(g) +

1

24
Tr(g−1g′g−1g′)− 1

24

(

Tr(g−1g′)
)2
]

= 0, (2.8)

which can be obtained by combining the tensor equation with the salar equation, after

multiplying the latter with the four-dimensional metric g [14]. Also, the true scalar constraint

is

R(g) +
3

ρ
Tr(g−1g′) +

1

4
Tr(g−1g′g−1g′)− 1

4
[Tr(g−1g′)]2 = 0, (2.9)

which can be obtained by combining the trace of the tensor equation with the scalar equation.

The best way to see how these equations work is to substitute the form of the metric

8



(2.4) in (2.8), (2.6) and (2.9), and Taylor expand these equations in ρ about ρ = 0 (the

boundary). At the leading order, the dynamical equation (2.8) does not determine g(4)µν ,

but the vector constraint (2.6) imposes the conservation of energy and momentum and the

scalar constraint imposes the condition that it should be traceless. This is expected because

g(4)µν , being the boundary stress-tensor, is indeed independent data other than the boundary

metric g(0)µν on the initial hypersurface ρ = 0, so it cannot be determined by the dynamical

equation. On the other hand, the constraints impose the desired conditions on this initial

data.

Using the true dynamical equation (2.8), we can determine all the higher coefficients in

the Taylor expansion g(2n) for n ≥ 3 uniquely and algebraically in terms of polynomials of

g(4)µν and its derivatives, or equivalently in terms of tµν and its derivatives. A few coefficients

are

g(6)µν = − 1

12
✷tµν ,

g(8)µν =
1

2
t ρ
µ tρν −

1

24
ηµν(t

αβtαβ) +
1

384
✷

2tµν , ... , (2.10)

where all indices have been lowered or raised using the boundary metric η or its inverse. It

is easy to see why in these coefficients of the Taylor expansion (2.4), the derivatives come

only in pairs. The only sources of these derivatives in the dynamical eq. (2.8) are Ric(g)

and R(g) where they do occur in pairs only.

When the coefficients of the Taylor expansion (2.4) (like the ones above in (2.10)), as

determined by the true dynamical eq. (2.8), are substituted in the vector constraint (2.6) and

scalar constraint (2.9), we find that the constraints trivially vanish, provided ∂µtµν = 0 and

Tr(t) = 0 (as obtained at the lowest order). The consistency of the power series expansion

can be demonstrated once this trivialisation of the constraint equations has been proved to

all orders and this has been done in [14].

The discussion above has been general and will apply to any tµν as an initial data on the

hypersurface ρ = 0. We will now specialize to the form of the energy-momentum tensor in

a non-equilibrium state undergoing homogeneous relaxation to equilibrium.

To specify this form, we have to define the hydrodynamic variables, the four velocity uµ

and the temperature T first. In kinetic theories, usually uµ is defined as the local velocity

of particle transport. However, it will convenient for us to use the so-called Landau frame

in which uµ is the local velocity of energy transport. By this definition, uµ is also a timelike

unit vector satisfying uµuµ = −1. We will define the temperature such that the local energy

density given by ǫ = tµνu
µuν is (3/4)(πT )4. We will also define b through b = 1/(πT ).

At equilibrium, of course, the hydrodynamic variables uµ and T are constants, and the

9



energy-momentum tensor takes the following Lorentz-covariant form

tµν =
3uµuν + Pµν

4b4
, (2.11)

where Pµν is the tensor which projects to the spatial hyperplane orthogonal to uµ, and is

given by

Pµν = uµuν + ηµν . (2.12)

It is easy to see that this energy-momentum tensor (2.11) is traceless. The equilibrium

pressure is given by 1/(4b4).

The energy-momentum tensor of any non-equiibrium state can be parametrised by

tµν(z) =
3uµ(z)uν(z) + Pµν(z)

4b4(z)
+ πµν(z), (2.13)

where the hydrodynamic variables are now functions of the boundary space and time coor-

dinates, while πµν(z) is the shear-stress tensor which vanishes only at equilibrium.

At non-equilibrium, the four-velocity uµ becomes the local velocity of energy-transport

and 3/(4b4) becomes the local energy-density. The shear-stress tensor πµν should be such

that it does not modify the local energy density and the energy current, so it must satisfy

uµπµν = 0. Further the shear-stress tensor also satisfies Tr(π) = 0, because the full energy-

momentum tensor is traceless, and the equilibrium part is traceless by itself. Therefore, the

shear-stress tensor πµν actually has only five independent components, and together with

the four hydrodynamic variables (the temperature T and three independent components of

the four-velocity uµ), it can parametrize the nine independent components of a traceless

boundary stress tensor.

To specialize to homogeneous relaxation, we make the hydrodynamic variables constant

and the shear-stress tensor dependent only on a global time, defined through −uµz
µ = t, so

that

tµν(z) =
3uµuν + Pµν

4b4
+ πµν(t). (2.14)

Given that uµπµν = 0, it is easy to check that ∂µtµν = 0 is satisfied for any πµν(t).

We can further simplify the above form by going to the global comoving frame where

uµ = (1, 0, 0, 0). In this frame, we have,

t00 =
3

4b4
, t0i = ti0 = 0, tij =

1

4b4
δij + πij(t), (2.15)

which is exactly the same as in (1.1) with ǫ = 3p = 3/(4b4). In this form, it is easy to see

that the covariant πµν indeed conforms with ∂µtµν = 0 for any πij(t). Also in this frame,

the traceless-ness condition becomes πijδij = 0. Given that the conservation of energy

10



and momentum is trivially satisfied and also that the energy-momentum tensor is traceless

for any traceless πij(t), corresponding to any boundary stress tensor of the form (2.14) or

equivalently of form (2.15), a unique bulk metric is guaranteed to exist [14]. 8

The amplitude expansion parameter is the typical value of the shear-stress tensor πµν

divided by the pressure 1/(4b4). We note that the energy-momentum tensor which takes the

form (2.14), or equivalently the form (2.15), is exactly given only by the sum of the zeroth

order and the first order terms in the amplitude expansion, where the zeroth order term

is the equilibrium part and the first order term is the shear-stress tensor itself. Unlike the

purely hydodynamic case, the energy-momentum tensor itself does not get corrected order

by order in the expansion parameter.

At the zeroth order in the amplitude expansion, the metric is just that of the unperturbed

boosted AdS black brane, dual to a finite temperature equilibrium state at zero chemical

potentials in the gauge theory. The metric in Fefferman-Graham coordinates (2.2) is fully

specified by gµν . We will refer to the AdS black brane gµν as g
(0)
µν , since it is the zeroth order

term in the amplitude expansion. It is given by

g(0)µν = − (4b4 − ρ4)2

4b4(4b4 + ρ4)
uµuν +

(

1 +
ρ4

4b4

)

Pµν . (2.16)

It is easy to see from the coefficient of the ρ4 term that the boundary stress-tensor in this

metric indeed takes the equilibrium form (2.11). The coefficients of the higher terms of

the Taylor expansion about ρ = 0 also agree with (2.10), where the derivatives should be

dropped.

In the global comoving frame,

g
(0)
00 = − (4b4 − ρ4)2

4b4(4b4 + ρ4)
, g

(0)
0i = g

(0)
i0 = 0, g

(0)
ij =

(

1 +
ρ4

4b4

)

δij . (2.17)

At the first order in the amplitude expansion, the possible corrections to gµν should

involve tensors of rank two which have one πµν in them. It is not hard to see that since uµ is

constant, and uµπµν = 0 by definition of πµν , we get that u
µ(u·∂)nπµν or u

µ(d/dt)nπµν should

vanish for all n. Further, because Tr(π) = 0, the corrections to the metric at the first order

in amplitude expansion can only be proportional to ✷
nπµν , or equivalently (−)n(d/dt)2nπµν .

Therefore, in the global comoving frame these corrections are of the form (−)n(d/dt)2nπij .

An easier way to arrive at the conclusion above is to go to the global comoving frame

directly, where we can readily see that the corrections take the form (d/dt)2nπij . We will

8It is not so obvious given that the boundary stress-tensor is not Cauchy data. But, it has been shown in
[14] that a unique bulk solution exists if the bulk metric can be smoothly connected to the AdS black brane
by turning on one or more perturbation parameters.
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stick to the global comoving frame for the rest of this paper, until we extract the general phe-

nomenological equation for the shear-stress tensor in Lorentz-covariant form. The regularity

analysis of the metric is also convenient in the global comoving frame.

Further inspection of the coefficients like (2.10) of the Taylor expansion (2.4) of gµν in the

Fefferman-Graham metric (2.2) shows that, at the first order in the amplitude expansion,

the corrections to gµν should be of the form,

∞
∑

n=0

∞
∑

m=0

b−mρ4+2n+m

(

d

dt

)2n

πij(t),

in the global comoving frame. Putting all our arguments together, at first order in the

amplitude expansion, gµν in the Fefferman-Graham metric (2.2) takes the form,

g
(1)
00 = g

(1)
ti = g

(1)
i0 = 0, g

(1)
ij =

∞
∑

n=0

b4+2nf (1,2n)(ρ)

(

d

dt

)2n

πij(t), (2.18)

in the global comoving frame.

By definition, the functions f (1,2n)(ρ) are dimensionless, so they should be functions of

the dimensionless variable (ρ/b). Also,

f (1,2n) = O

(

(ρ

b

)4+2n
)

, at ρ = 0, (2.19)

so that the vector constraint (2.6) and the scalar constraint (2.9) are satisfied. Explicit

calculations of the coefficients like (2.10), consistent with these constraints, clearly show

that the leading term has to be coefficient of (d/dt)2nπij , or equivalently ✷
ntµν .

The dynamical equation (2.8) determines all the leading and subleading terms of f (1,2n)

for all n, except for the leading ρ4 term of f (1,0). The correction to the boundary stress-tensor

at the first order in the amplitude expansion is πij(t), therefore its coefficient has to be ρ4.

This implies

f (1,0) =
(ρ

b

)4

+O

(

(ρ

b

)8
)

, at ρ = 0. (2.20)

The subleading terms of f (1,0) are all of O((ρ/b)4n). This is because the coefficients like (2.10)

of Taylor expansion of gµν can pick up powers of 4n of ρ only in absence of derivatives, since

ρ4n accompany polynomials of the boundary stress tensor. A similar logic shows that f (1,2n)

involves powers of 4 + 2n + 4m of ρ/b only, for m ≥ 0.

It will be convenient to do the Fourier transform of πij(t), so that,

πij(t) =

∫ ∞

−∞

dω e−iωtπij(ω). (2.21)
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Similarly, we can do the Fourier transforms of the components of g
(1)
µν . Let us further define

f (1)(ρ, ω) such that

f (1)(ρ, ω) =
∞
∑

n=0

(−)nb2nω2nf (1,2n)(ρ). (2.22)

With the above definition, g
(1)
µν in Fourier space can be captured in terms of this single

dimensionless function f (1)(ρ, ω). This single function encodes all the time derivatives of πij ,

since the Fourier transform of (2.18) implies

g
(1)
00 (ρ, ω) = g

(1)
0i (ρ, ω) = g

(1)
i0 (ρ, ω) = 0, g

(1)
ij (ρ, ω) = b4f (1)(ρ, ω)πij(ω). (2.23)

The reality of πij(t) and g
(1)
µν implies that

πij(−ω) = (πij(ω))
∗ , f (1)(ρ,−ω) =

(

f (1)(ρ, ω)
)∗

. (2.24)

The latter is readily satisfied by the definition (2.22) of f (1)(ρ, ω), as the f (1,2n)(ρ)’s are real.

The dynamical equation (2.8) determines all coefficients of Taylor expansion of f (1)(ρ, ω)

given that the coefficient of the leading term ρ4/b4 is 1, so that the boundary stress tensor

is corrected by πij . We thus find that

f (1)(ρ, ω) =
ρ4

b4
− b2ω2

12

ρ6

b6
+

(

1

4
+

b4ω4

384

)

ρ8

b8
−
(

b2ω2

30
+

b6ω6

23040

)

ρ10

b10
+O

(

ρ12
)

. (2.25)

In the following subsection we will derive the equation of motion for f (1)(ρ, ω), in terms of

which we capture the full metric at first order in the amplitude expansion.

Similarly, we can argue that at second order in the amplitude expansion, the corrections

to gµν in the Fefferman-Graham metric (2.2) should take the form

g
(2)
00 =

∞
∑

n=0

n
∑

m=0

b8+2nf
(2,2n,2m)
3 (ρ)

n
∑

a,b=0
a+b=n,|a−b|=m

(

(

d

dt

)2a

πpq(t)

(

d

dt

)2b

πpq(t)

)

,

g
(2)
0i = g

(2)
i0 = 0,

g
(2)
ij =

∞
∑

n=0

n
∑

m=0

b8+2nf
(2,2n,2m)
2 (ρ)δij

n
∑

a,b=0
a+b=n,|a−b|=m

(

(

d

dt

)2a

πpq(t)

(

d

dt

)2b

πpq(t)

)

+
∞
∑

n=0

n
∑

m=0

b8+2nf
(2,2n,2m)
1 (ρ)

n
∑

a,b=0
a+b=n,|a−b|=m

[

(

d

dt

)2a

πik(t)

(

d

dt

)2b

πkj(t)

−1

3
δij

(

d

dt

)2a

πpq(t)

(

d

dt

)2b

πpq(t)

]

.(2.26)
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We can easily see that in the summation above over a and b for fixed n and m, when m 6= 0,

(a, b) is either ((n + m)/2, (n − m)/2), or ((n − m)/2, (n + m)/2), and when m = 0, they

are (n/2, n/2). We see that the dimensionless functions f
(2,2n,2m)
3 ’s capture corrections to

the time-time components of the metric, f
(2,2n,2m)
2 ’s capture corrections proportional to the

purely spatial identity matrix, and f
(2,2n,2m)
1 ’s capture corrections which are purely spatial

and traceless.

In Fourier space, the above can be captured in terms of just three dimensionless functions

f
(2)
1 (ρ, ω, ω1), f

(2)
2 (ρ, ω, ω1) and f

(2)
3 (ρ, ω, ω1) as

g
(2)
00 = b8

∫ ∞

−∞

dω e−iωt

∫ ∞

−∞

dω1 f
(2)
3 (ρ, ω, ω1)πpq(ω1)πpq(ω − ω1),

g
(2)
0i = g

(2)
i0 = 0,

g
(2)
ij = b8δij

∫ ∞

−∞

dω e−iωt

∫ ∞

−∞

dω1 f
(2)
2 (ρ, ω, ω1)πpq(ω1)πpq(ω − ω1)

+
b8

2

∫ ∞

−∞

dω e−iωt

∫ ∞

−∞

dω1 f
(2)
1 (ρ, ω, ω1)

[

πik(ω1) πkj(ω − ω1)

+πik(ω − ω1)πjk(ω1)

−2

3
δijπrs(ω1)πrs(ω − ω1)

]

, (2.27)

where

f
(2)
i (ρ, ω, ω1) =

∞
∑

n=0

n
∑

m=0

(−)nb2n
(

ωn+m
1 (ω − ω1)

n−m + ωn−m
1 (ω − ω1)

n+m
)

f
(2,2n,2m)
i (ρ), for i = 1, 2, 3. (2.28)

It is important to note that the definitions of f
(2)
i (ρ, ω, ω1) are such that they is symmetric

under the exchange of ω1 and ω−ω1. The powers of ω1 above denote time derivatives acting

on the first π and the powers of ω− ω1 denote time derivatives acting on the second π, so it

is natural to define these functions in the symmetric fashion mentioned.

In the following subsections we will obtain equations of motion for these f
(2)
i (ρ, ω, ω1)’s.

However, from the discussion so far, it is easy to see that the dynamical equation (2.8)

determines all the coefficients of f
(2)
i (ρ, ω, ω1)’s in the Taylor expansion about ρ = 0, given

the Taylor series for f (1)(ρ, ω) has been obtained previously at the first order. We thus
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obtain,

f
(2)
1 (ρ, ω, ω1) =

ρ8

2b8
− b2(ω2

1 + (ω − ω1)
2)

24

ρ10

b10
+O

(

ρ12
)

,

f
(2)
2 (ρ, ω, ω1) =

ρ8

8b8
−
(

b2(ω2
1 + (ω − ω1)

2)

90
− b2ω1(ω − ω1)

720

)

ρ10

b10
+O

(

ρ12
)

,

f
(2)
3 (ρ, ω, ω1) =

ρ8

24b8
−
(

b2(ω2
1 + (ω − ω1)

2)

240
− b2ω1(ω − ω1)

240

)

ρ10

b10
+O

(

ρ12
)

. (2.29)

We can also check that the vector constraint (2.6) and the scalar constraint (2.9) vanish

at the second order in the amplitude expansion, if we substitute the above expansions in

them and Taylor expand about ρ = 0. We also note that the above expansions are O(ρ8) at

the leading order, so that the boundary stress-tensor receives no corrections at this order as

discussed before.

We note that the reality of g
(2)
µν implies

f
(2)
i (ρ,−ω,−ω1) =

(

f
(2)
i (ρ, ω, ω1)

)∗

. (2.30)

The above is guaranteed by the definitions (2.28).

We can similarly obtain the forms of the expansion of gµν at higher orders in the ampli-

tude expansion. The corrections can be always grouped into three categories, namely the

corrections in the time-time component, the corrections which are proportional to the spatial

identity matrix, and finally the corrections which are purely spatial and traceless. In each

category, we can have one or more independent tensor structures. However, after Fourier

transforming the dependence on the time coordinate, all these corrections can be captured

by a finitely few functions, which also efficiently sum over all time derivatives.

2.2 The equations of motion and their solutions in the amplitude

expansion

We proceed to obtain the explicit equations of motion of the metric, order by order in the

amplitude expansion, summing over all time derivatives. We will see that in the Fefferman-

Graham coordinates, one can generate a simple algorithm to satisfy the constraints.

In the previous section we made a distinction between the true dynamical equation (2.8),

and the four-dimensional tensorial components (2.5) of Einstein’s equation. The former

was obtained by suitably combining the latter with the scalar component (2.7) of Einstein’s

equation multiplied by the four-dimensional metric g. This distinction will not matter much

in practice. The tensor equation (2.5) is almost as good as the true dynamical equation

(2.8) in determining the coefficients g(2n)µν of the Taylor expansion (2.4) of gµν for n > 2,
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given a flat boundary metric g(0)µν and a particular boundary stress-tensor which satisfies

energy-momentum conservation, is traceless, and is identified with g(4)µν . It is almost as

good because it fails only in the case of one coefficient of the Taylor expansion, for n > 2,

which is g(8)µν . It will turn out that this will just introduce a slight modification in the

general scheme, only at the second order in the amplitude expansion.

We will use the tensor equation (2.8) therefore to obtain the equations of motion, order

by order in the amplitude expansion Once we impose the correct boundary conditions for the

equations of motion, the solutions will automatically satisfy the vector constraint (2.6) and

the scalar constraint (2.9). Also, we will not make a distinction between checking the true

scalar constraint (2.9) and the scalar component of Einstein’s equation (2.7). The former is

obtained by combining the latter with the trace of the tensor equation (2.5), which we are

now treating as the dynamical equation. So, it is sufficient to check if the latter is satisfied.

2.2.1 The metric at the first order in the amplitude expansion

At the first order in the amplitude expansion, we recall that gµν takes the form (2.18). After

Fourier transforming the dependence on the time coordinate, the metric takes the compact

form (2.23), which involves a single function f (1)(ρ, ω) defined in (2.22). We can readily find

the equation of motion of f (1)(ρ, ω) by expanding the tensor equation up to first order in the

amplitude expansion and then Fourier transforming the time dependence.

Let us define the differential operator D1ω through

D1ω =
∂2

∂ρ2
+ L11(ρ)

∂

∂ρ
+ L12(ρ) + ω2L13(ρ), (2.31)

where,

L11(ρ) = −(12b4 − ρ4)(4b4 + 3ρ4)

ρ(4b4 − ρ4)(4b4 + ρ4)
, L12(ρ) =

128ρ6b4

(4b4 − ρ4)(4b4 + ρ4)2
,

L13(ρ) =
4b4(4b4 + ρ4)

(4b4 − ρ4)2
. (2.32)

The equation of motion of f (1)(ρ, ω) obtained from the Fourier transform of the tensor

equation is (2.5) is

D1ωf
(1)(ρ, ω) = 0. (2.33)

At the first order in the amplitude expansion, the vector equation (2.6) and the scalar

equation (2.7) identically vanish. It follows from the definitions of πij , that in Fourier space

πij(ω)δij = 0. A simple inspection reveals this makes the both the vector and scalar equations

vanish.
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However, in order that the solution can be extended at higher orders in the amplitude

expansion, without conflicting with the constraints, and also because the correction to the

boundary stress-tensor at first order in the amplitude expansion has to be πij , we need the

solution to the equation of motion (2.33) for f (1)(ρ, ω) to satisfy the boundary condition

f (1)(ρ, ω) =
(ρ

b

)4

+O

(

(ρ

b

)6
)

, at ρ = 0. (2.34)

One can readily see that the above boundary condition specifies the solution of f (1)(ρ, ω)

uniquely, by Taylor expanding eq. (2.33) in ρ about ρ = 0 and checking this determines all

the coefficients of ρ2n of the Taylor expansion of f (1)(ρ, ω) for n > 3. One can also check

that this reproduces the known Taylor series of (2.25) of f (1)(ρ, ω).

To sum up, we have thus determined that at the first order the metric in Fourier space

is given by f (1)(ρ, ω), which is the unique solution of eq. (2.33) with the boundary condition

(2.34). This solution sums up the time derivatives to all orders.

Unfortunately, (2.33) is not exactly solvable unless ω = 0. We can, however, devise the

following strategy. We use (2.22) which relates f (1)(ρ, ω) to the metric in real time. This

relation actually is also the Taylor expansion of f (1)(ρ, ω) in ω about ω = 0. It is easy to see

that (2.33) in conjunction with (2.22) implies that

D̂1f
(1,0) = 0, (2.35)

and

D̂1f
(1,2n) =

L13(ρ)

b2
f (1,2(n−1)), for n ≥ 1, (2.36)

where D̂ is the differential operator D1ω at ω = 0, i.e.

D̂1 =
d2

dρ2
+ L11(ρ)

d

dρ
+ L12(ρ), (2.37)

with L11 and L12 as defined in (2.32). Also, the boundary condition (2.34) implies (2.19)

and (2.20).

The solutions of the homogeneous eq. (2.35) are

s1(ρ) = 1 +
ρ4

4b4
, s2(ρ) =

(

1 +
ρ4

4b4

)

log

(

4b4 − ρ4

4b4 + ρ4

)

. (2.38)

The boundary condition (2.20) for f (1,0) implies that

f (1,0)(ρ) = −2s2(ρ) = −2

(

1 +
ρ4

4b4

)

log

(

4b4 − ρ4

4b4 + ρ4

)

. (2.39)
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The eqs. (2.36) alongwith the boundary conditions (2.19) imply the following recursion series

f (1,2n)(ρ) =
1

b2
(−s1(ρ)

∫ ρ

0

dρ
′ s2(ρ

′

)

W (s1, s2)(ρ
′)
L13(ρ

′

)f (1,2(n−1))(ρ
′

)

+s2(ρ)

∫ ρ

0

dρ
′ s1(ρ

′

)

W (s1, s2)(ρ
′)
L13(ρ

′

)f (1,2(n−1))(ρ
′

)), for n ≥ 1, (2.40)

where W (s1, s2) is the Wronskian of s1 and s2.

Through the exact recursion relations given by (2.39) and (2.40), we thus efficiently

sum over all time derivatives in the metric at first order in the amplitude expansion, or

equivalently define the coefficients of the Taylor series (2.22) of f (1)(ρ, ω) about ω = 0.

2.2.2 The metric at the second order in the amplitude expansion

At the second order in the amplitude expansion, we have seen that we can express gµν in the

Fefferman-Graham metric (2.2) in terms of three functions f
(2)
i (ρ, ω, ω1), for i = 1, 2, 3 after

Fourier transforming the time dependence as shown earlier in (2.27).

The tensor equation (2.5) gives the equation of motion for all three f
(2)
i ’s. When we

Fourier transform the dependence on time of this equation, to be consistent with the defini-

tions of f
(2)
i ’s, the Fourier transform is done such that it is symmetric under the exchange

of ω1 and ω − ω1.

The part of this equation of motion which is purely spatial and traceless at the second

order in the amplitude expansion, gives the equation of motion for f
(2)
1 ,

D1ωf
(2)
1 (ρ, ω, ω1) = S

(2)
1 (ρ, ω, ω1) , (2.41)

where D1ω is defined through (2.31), and

S
(2)
1 (ρ, ω, ω1) = R

(2)
11 (ρ)

(

∂

∂ρ
f (1)(ρ, ω1)

∂

∂ρ
f (1)(ρ, ω − ω1)

)

+R
(2)
12 (ρ)

(

f (1)(ρ, ω1)
∂

∂ρ
f (1)(ρ, ω − ω1) + f (1)(ρ, ω − ω1)

∂

∂ρ
f (1)(ρ, ω1)

)

+
(

R
(2)
13 (ρ) + ω1(ω − ω1)R

(2)
14 (ρ)

)

f (1)(ρ, ω1)f
(1)(ρ, ω − ω1), (2.42)

with

R
(2)
11 (ρ) =

4b4

(4b4 + ρ4)
, R

(2)
12 (ρ) = − 16ρ3b4

(4b4 + ρ4)2
,

R
(2)
13 (ρ) =

64ρ6b4

(4b4 + ρ4)3
, R

(2)
14 (ρ) =

16b8

(4b4 − ρ4)2
. (2.43)
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Since f
(2)
1 captures the contributions to the metric which are purely spatial and traceless

(just like the entire contribution of the metric at the first order in the amplitude expansion),

it follows that its equation of motion should be given by the same differential operator D1ω

acting on it, but with source terms on the right hand side. In fact, this structure of the

equation of motion for the purely spatial and traceless parts is maintained to all orders in

the amplitude expansion.

The equations of motion couple f
(2)
2 and f

(2)
3 . Let us define the following differential

operators

D21ω =
∂2

∂ρ2
+ L21(ρ)

∂

∂ρ
+ L22(ρ) + ω2L23(ρ),

D22 = L24(ρ)
∂

∂ρ
+ L25(ρ),

D31 =
∂2

∂ρ2
+ L31(ρ)

∂

∂ρ
+ L32(ρ),

D32ω = L33(ρ)
∂

∂ρ
+ L34(ρ) + ω2L35(ρ), (2.44)

with

L21(ρ) = − 8b4(12b4 + ρ4)

ρ(4b4 − ρ4)(4b4 + ρ4)
, L22(ρ) =

4ρ2(48b8 + 8ρ4b4 + 3ρ8)

(4b4 − ρ4)(4b4 + ρ4)2
,

L23(ρ) =
4b4(4b4 + ρ4)

(4b4 − ρ4)2
, L24(ρ) =

(4b4 + ρ4)

ρ(4b4 − ρ4)
, L25(ρ) =

4ρ2(12b4 + ρ4)

(4b4 − ρ4)2
,

L31(ρ) = −2(32b8 − 36ρ4b4 − ρ8)

ρ(4b4 − ρ4)(4b4 + ρ4)
, L32(ρ) = −4ρ2(192b12 − 336ρ4b8 − 60ρ8b4 + ρ12)

(4b4 − ρ4)2(4b4 + ρ4)2
,

L33(ρ) =
3(4b4 − ρ4)(16b8 + 24ρ4b4 + ρ8)

ρ(4b4 + ρ4)3
,

L34(ρ) = −12ρ2(4b4 − ρ4)(16b8 + 24ρ4b4 + ρ8)

(4b4 + ρ4)4
, L35(ρ) = − 12b4

(4b4 + ρ4)
. (2.45)

The part of the tensor equation (2.5) which is proportional to the purely spatial identity

matrix gives

D21ωf
(2)
2 (ρ, ω, ω1) +D22f

(2)
3 (ρ, ω, ω1) = S

(2)
2 (ρ, ω, ω1) , (2.46)
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where

S
(2)
2 (ρ, ω, ω1) = R

(2)
21 (ρ)

(

∂

∂ρ
f (1)(ρ, ω1)

∂

∂ρ
f (1)(ρ, ω − ω1)

)

+R
(2)
22 (ρ)

(

f (1)(ρ, ω1)
∂

∂ρ
f (1)(ρ, ω − ω1) + f (1)(ρ, ω − ω1)

∂

∂ρ
f (1)(ρ, ω1)

)

+
(

R
(2)
23 (ρ) + ω1(ω − ω1)R

(2)
24 (ρ)

)

f (1)(ρ, ω1)f
(1)(ρ, ω − ω1), (2.47)

with

R
(2)
21 (ρ) =

4b4

3(4b4 + ρ4)
, R

(2)
22 (ρ) = −2b4(12b4 + 5ρ4)

3ρ(4b4 + ρ4)2
,

R
(2)
23 (ρ) =

16ρ2b4(12b4 + ρ4)

3(4b4 + ρ4)3
, R

(2)
24 (ρ) =

16b8

3(4b4 − ρ4)2
. (2.48)

The time-time component of the tensor equation (2.5) gives

D31f
(2)
3 (ρ, ω, ω1) +D32ωf

(2)
2 (ρ, ω, ω1) = S

(2)
3 (ρ, ω, ω1) , (2.49)

where

S
(2)
3 (ρ, ω, ω1) = R

(2)
31 (ρ)

(

f (1)(ρ, ω1)
∂

∂ρ
f (1)(ρ, ω − ω1) + f (1)(ρ, ω − ω1)

∂

∂ρ
f (1)(ρ, ω1)

)

+
(

R
(2)
32 (ρ) +

(

ω2
1 + (ω − ω1)

2 + ω1(ω − ω1)
)

R
(2)
33 (ρ)

)

f (1)(ρ, ω1)f
(1)(ρ, ω − ω1), (2.50)

with

R
(2)
31 (ρ) =

2b4(4b4 − ρ4)(16b8 + 24ρ4b4 + ρ8)

ρ(4b4 + ρ4)4
,

R
(2)
32 (ρ) = −16ρ2b4(4b4 − ρ4)(16b8 + 24ρ4b4 + ρ8)

(4b4 + ρ4)5
, R

(2)
33 (ρ) = − 8b8

(4b4 + ρ4)2
. (2.51)

The eqs. (2.41), (2.46), and (2.49) sum the dynamical equations of motion.

As discussed previously, to be consistent with the constraints, we require that

f
(2)
1 (ρ, ω, ω1) = O

(

(ρ

b

)8
)

, at ρ = 0. (2.52)

The equation of motion (2.41) determines the leading and the subleading terms of the ex-

pansion. We require the same asymptotic behaviour of f
(2)
2 and f

(2)
3 , however the eqs. (2.46)

and (2.49) only determine the sum of the coefficients of ρ8 of f
(2)
2 and f

(2)
3 . We have already
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discussed that the origin of this incapability is that the parent tensor eq. (2.5) from which

these are derived is not the true dynamical equation given by (2.8).

This incapability is easily rectifiable, since the tensor eq. (2.5) is only incapable of

determining the full coefficient of the ρ8 term in the Taylor expansion of gµν about ρ = 0, in

terms of the boundary metric and boundary stress tensor. We should therefore use the true

dynamical equation (2.8) to determine the coefficient of ρ8 in Taylor series of either f
(2)
2 or

f
(2)
3 , then the eqs. (2.46) and (2.49) determine the other coefficient and all other subleading

terms of both the expansions. So, the boundary conditions of f
(2)
2 and f

(2)
3 are

f
(2)
2 (ρ, ω, ω1) =

ρ8

8b8
+O

(

(ρ

b

)10
)

, at ρ = 0,

f
(2)
3 (ρ, ω, ω1) = O

(

(ρ

b

)8
)

, at ρ = 0. (2.53)

One can check that, with the boundary conditions (2.52) and (2.53), the equations of motion

(2.41), (2.46) and (2.49) reproduce the known Taylor series (2.29) of f
(2)
i ’s that are consistent

with the constraints. Also, these boundary conditions make it explicit that the boundary

stress-tensor is uncorrected at this order.

We have also observed before that checking the constraints is equivalent to checking

the vector eq. (2.6) and the scalar eq. (2.7). We have reproduced these equations at

the second order in the amplitude expansion in appendix A. These equations vanish if we

substitute the solutions of the dynamical eqs. (2.41), (2.46) and (2.49), determined uniquely

by the boundary conditions (2.52) and (2.53) in them. We can readily check this by Taylor

expanding these equations in ρ about ρ = 0 and substituting the Taylor expansions (2.29)

of f
(2)
i ’s in them.

To sum up, we have captured gµν in the Fefferman-Graham metric (2.2) at the second

order in the amplitude expansion (2.27), through three functions f
(2)
i (ρ, ω, ω1), for i = 1, 2, 3,

which are determined uniquely by the equations of motion (2.41), (2.46) and (2.49), along

with the boundary conditions (2.52) and (2.53). This allows us to sum over all time deriva-

tives at this order. We also note that all of these equations along with the constraints, after

Fourier transforming the time dependence, are local in both the arguments ω1 and ω1, simply

because these equations are local in time as well.

Unfortunately again, this system of linear ODEs comprising (2.41), (2.46) and (2.49), is

not solvable exactly unless ω = ω1 = 0. Therefore, we repeat our strategy at the first order

to sum over the ω and ω1 dependence through an exact recursion series.

We use the previously defined Taylor expansion of the f
(2)
i (ρ, ω, ω1)’s in ω and ω1 as

defined in (2.28), and use the full equations of motion (2.41), (2.46) and (2.49) to find

equations of motion for the coefficients f
(2,2n,2m)
i (ρ). We recall that, by definition 0 ≤ m ≤ n.
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The first equation of motion (2.41) along with (2.28) implies

D̂1f
(2,0,0)
1 = R

(2)
11 (ρ)

(

d

dρ
f (1,0)

)2

+ 2R
(2)
12 (ρ)

(

f (1,0) d

dρ
f (1,0)

)

+R
(2)
13 (ρ)

(

f (1,0)
)2

, (2.54)

when n = m = 0, D̂1 is as defined in (2.37),

D̂1f
(2,2n,2m)
1 =

L13(ρ)

b2

(

f
(2,2n−2,2m−2)
1 + 2f

(2,2n−2,2m)
1 Θ(n−m− 1)

+f
(2,2n−2,2m+2)
1 Θ(n−m− 2)

)

+R
(2)
11 (ρ)

d

dρ
f (1,n+m) d

dρ
f (1,n−m)

+R
(2)
12 (ρ)

(

f (1,n+m) d

dρ
f (1,n−m) + f (1,n−m) d

dρ
f (1,n+m)

)

+R
(2)
13 (ρ)f

(1,n−m)f (1,n+m), n ≥ 1, (m + n) = 0(mod 2), (2.55)

and

D̂1f
(2,2n,2m)
1 =

L13(ρ)

b2

(

f
(2,2n−2,2m−2)
1 + 2f

(2,2n−2,2m)
1 Θ(n−m− 1)

+f
(2,2n−2,2m+2)
1 Θ(n−m− 2)

)

−R
(2)
14 (ρ)

b2
f (1,n−m−1)f (1,n+m−1), n ≥ 1, (m + n) = 1(mod 2). (2.56)

The terms with Θ(n−m− 1) contribute only when n ≥ m+1 and those with Θ(n−m− 2)

contribute only when n ≥ m + 2. The R1i’s above have been defined in (2.43) and L13 has

been defined in (2.32). Also the f (1,p)’s are as obtained in (2.39) and (2.40) at the first order,

and contribute only when p is even and non-negative, otherwise they vanish.

The boundary condition (2.52) implies the solutions

f
(1,2n,2m)
1 (ρ) = −s1(ρ)

∫ ρ

0

dρ
′ s2(ρ

′

)

W (s1, s2)(ρ
′)
S
(2,2n,2m)
1 (ρ

′

)

+s2(ρ)

∫ ρ

0

dρ
′ s1(ρ

′

)

W (s1, s2)(ρ
′)
S
(2,2n,2m)
1 (ρ

′

), (2.57)

where s1 and s2 are the solutions of the homogeneous eq D̂1f = 0 as defined in (2.38),

W (s1, s2) is their Wronskian, and S
(2,2n,2m)
1 is whatever that appears in the right hand

side of equations of motion (2.54), (2.55) and (2.56) for f
(2,2n,2m)
1 ’s, according to whether

n = m = 0, or n ≥ 1 and n + m = 0( mod 2), or n ≥ 1 and n + m = 1( mod 2),
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respectively. When n = m = 0, the integration above can be explicitly done, so that

f
(2,0,0)
1 (ρ) = 2

(

1 +
ρ4

4b4

) (

Log

(

4b4 − ρ4

4b4 + ρ4

))2

. (2.58)

To find the equations of motion for f
(2,2n,2m)
2 ’s and f

(2,2n,2m)
3 ’s, it is convenient to first de-

couple the equations of motion (2.46) and (2.49) for ω = ω1 = 0 and then use the expansions

(2.28).

Let us define the differential operator D̂2 through

D̂2 =
d3

dρ3
− (144b8 + 16ρ4b4 + 3ρ8)

ρ(4b4 + ρ4)(4b4 − ρ4)

d2

dρ2
+

3(112b8 + 16ρ4b4 + 5ρ8)

ρ2(4b4 + ρ4)(4b4 − ρ4)

d

dρ
, (2.59)

and the differential operator D̂3 through

D̂3 =
d

dρ
+

4ρ3(12b4 + ρ4)

(4b4 + ρ4)(4b4 − ρ4)
. (2.60)

The solutions of the homogeneous differential equation D̂2f = 0 are

t1 = 1, t2 = 1 +
ρ4

4b4
, t3 =

(

1 +
ρ4

4b4

)

log

(

4b4 − ρ4

4b4 + ρ4

)

. (2.61)

The solution of the homogeneous differential equation D̂3f = 0 is

u =
(4b4 − ρ4)2

4b4(4b4 + ρ4)
. (2.62)

The equations of motion for f
(2,2n,2m)
2 ’s and f

(2,2n,2m)
3 can be written as

D̂2f
(2,2n,2m)
2 = S

(2,2n,2m)
2 ,

D̂3f
(2,2n,2m)
3 = S

(2,2n,2m)
3 , (2.63)

where

S
(2,2n,2m)
2 =

(

d

dρ
− (48b8 + 8ρ4b4 + 3ρ8)

ρ(4b4 + ρ4)(4b4 − ρ4)

)

T
(2)
2 (ρ)− L24(ρ)T

(2)
3 (ρ),

S
(2,2n,2m)
3 =

1

L24(ρ)

(

T
(2)
2 (ρ)−

(

d2

dρ2
+ L21(ρ)

d

dρ
+ L22(ρ)

)

f
(2,2n,2m)
2

)

, (2.64)
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with

T
(2)
2 (ρ) = R

(2)
21 (ρ)

(

d

dρ
f (1,0)

)2

+ 2R
(2)
22 (ρ)

(

f (1,0) d

dρ
f (1,0)

)

+R
(2)
23 (ρ)

(

f (1,0)
)2

, when n = m = 0,

=
L23(ρ)

b2

(

f
(2,2n−2,2m−2)
2 + 2f

(2,2n−2,2m)
2 Θ(n−m− 1)

+f
(2,2n−2,2m+2)
2 Θ(n−m− 2)

)

+R
(2)
21 (ρ)

d

dρ
f (1,n−m) d

dρ
f (1,n+m)

+R
(2)
22 (ρ)

(

f (1,n+m) d

dρ
f (1,n−m) + f (1,n−m) d

dρ
f (1,n+m)

)

+R
(2)
23 (ρ)f

(1,n−m)f (1,n+m), when n ≥ 1, (m+n) = 0(mod 2)

=
L23(ρ)

b2

(

f
(2,2n−2,2m−2)
2 + 2f

(2,2n−2,2m)
2 Θ(n−m− 1)

+f
(2,2n−2,2m+2)
2 Θ(n−m− 2)

)

−R
(2)
24 (ρ)

b2
f (1,n−m−1)f (1,n+m−1),when n ≥ 1, (m+n) = 1(mod 2), (2.65)

and

T
(2)
3 (ρ) = 2R

(2)
31 (ρ)

(

f (1,0) d

dρ
f (1,0)

)

+R
(2)
32 (ρ)

(

f (1,0)
)2

, when n = m = 0,

=
L35(ρ)

b2

(

f
(2,2n−2,2m−2)
2 + 2f

(2,2n−2,2m)
2 Θ(n−m− 1)

+f
(2,2n−2,2m+2)
2 Θ(n−m− 2)

)

+R
(2)
31 (ρ)

(

f (1,n+m) d

dρ
f (1,n−m) + f (1,n−m) d

dρ
f (1,n+m)

)

+R
(2)
32 (ρ)f

(1,n−m)f (1,n+m)

−R
(2)
33 (ρ)

b2

(

f (1,n−m−2)f (1,n+m)

+f (1,n−m)f (1,n+m−2)
)

, when n ≥ 1, (m+n) = 0(mod 2),

=
L35(ρ)

b2

(

f
(2,2n−2,2m−2)
2 + 2f

(2,2n−2,2m)
2 Θ(n−m− 1)

+f
(2,2n−2,2m+2)
2 Θ(n−m− 2)

)

−R
(2)
33 (ρ)

b2
f (1,n−m−1)f (1,n+m−1),when n ≥ 1, (m+n) = 1(mod 2). (2.66)
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In the above eqs. R
(2)
2i ’s and R

(2)
3i ’s are as defined in (2.48) and (2.48) respectively, and L23

and L35 are as defined in (2.45). Further, the terms with Θ(n−m−1) contribute only when

n ≥ m + 1 and those with Θ(n −m− 2) contribute only when n ≥ m + 2. The f (1,p)’s are

as obtained in (2.39) and (2.40), and they vanish if p is not even and non-negative.

The boundary condition (2.53) determines the solutions of eq. (2.63) uniquely. The

solutions of f
(2,2n,2m)
2 ’s are

f
(2,0,0)
2 (ρ) =

ρ4

6b4
+

4b4 + ρ4

12b4
log

(

4b4 − ρ4

4b4 + ρ4

)

+
4b4 + ρ4

6b4

(

log

(

4b4 − ρ4

4b4 + ρ4

))2

,

f
(2,2n,2m)
2 (ρ) =

3
∑

a=0

ta

∫ ρ

0

dρ
′ Wa(ρ

′

)

W (t1, t2, t3)(ρ
′)
, for n ≥ 1. (2.67)

Here W (t1, t2, t3) denotes the Wronskian of ta’s defined in (2.61). We recall that the

Wronskian is the determinant of the 3 × 3 matrix whose i-th column is the transpose of

(ti, dti/dρ, d
2ti/dρ

2), for i = 1, 2, 3. Here Wa denotes the determinant of the same matrix

with the a-th column replaced by the transpose of (0, 0, S
(2,2n,2m)
2 ), where S(2,2n,2m) is as

defined in (2.64).

The solutions of f
(2,2n,2m)
3 ’s are

f
(2,0,0)
3 (ρ) = − (4b4 − ρ4)2

6b4(4b4 + ρ4)
+

2

3

(4b4 − ρ4)(4b4 + 3ρ4)

(4b4 + ρ4)2
+

(4b4 − ρ4)2

4b4(4b4 + ρ4)
log

(

4b4 − ρ4

4b4 + ρ4

)

,

f
(2,2n,2m)
3 (ρ) =

∫ ρ

0

dρ
′ S

(2,2n,2m)
3 (ρ

′

)

u(ρ′)
, for n ≥ 1. (2.68)

Here u is as defined in (2.62) and S(2,2n,2m) is as defined in (2.64).

To summarize, the solutions (2.57), (2.67) and (2.68) exactly capture the entire correction

to the metric at second order, by specifying the coefficients of the Taylor series (2.28) of

f
(2)
i (ρ, ω, ω1) in ω and ω1 about ω = ω1 = 0, recursively.

We can clearly extend our method to higher orders in the amplitude expansion, where

we can solve the time dependence through similar recursion relations.

2.3 Subtleties in the Fourier space

We have seen that order by order in the amplitude expansion, all the time derivatives can

be summed up efficiently in terms of a finitely few functions once we Fourier transform the

time dependence. The equations of motion, which are ODEs in ρ with source terms, can

also be obtained for these finitely few functions from the amplitude expansion of the tensor

eq (2.5) and Fourier transforming its time-dependence as well.

We will point out here that the Fourier transform involves some subtleties. These sub-
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tleties, are however, not new and could be readily illustrated with Navier-Stokes equation

with no forcing term as an example. It is believed, though there is no rigorous proof, that

the solutions will decay in the future and become homogeneous. Similarly, we believe in the

case of AdS gravity, that the perturbations will decay and the solution will settle down to

a boosted black brane. The point is that such decaying functions, like e−αt for instance, for

α > 0, typically grow in the past and have no well-defined Fourier transform by the standard

contour prescription, where the integration in t runs along the real axis from −∞ to ∞.

The remedy for this is well known. It is convenient to state this remedy in terms of the

inverse Fourier transform. Let

f(ω) =
1

2π

(

1

α− iω

)

, α > 0. (2.69)

We see that f(ω) has a simple pole in the lower half plane at ω = −iα with residue −1/(2πi).

Let us inverse Fourier transform f(ω) by doing this integration over ω using the following

contour. We go slightly below the real axis and integrate in ω from −∞ − iǫ to ∞ + iǫ,

where ǫ is infinitesimal and positive, and then close the contour in the lower half plane by

going along the semicircle at infinity. With this contour prescription, the inverse Fourier

transform picks up contribution only from the pole in the lower half plane, so we get

f(t) = e−αt, (2.70)

which decays in the future.

This contour prescription is simple, but has an important physical significance. We have

a similar well-known contour prescription when one defines the retarded correlator in real

time. The physical significance is that we pick up an arrow of time. In the case of solutions

of gravity at the non-linear level, the result is even more drastic.

We know that for purely hydrodynamic solutions of gravity, we can either have a regular

future horizon or a regular past horizon, but not both [14]. The former happens at the first

order in the derivative expansion when 4πη/s = 1, and the latter happens when 4πη/s = −1.

The regular perturbations of the AdS black brane and the AdS white brane cannot be

glued without encountering some discontinuity, which is disallowed by Einstein’s equation

in vacuum with a negative cosmological constant. Therefore, the past of the solution which

is purely hydrodynamic in the future will have drastically different behavior.

The same situation will be repeated here in the case of homogeneous relaxation. In this

case also, we will be interested in the solution which will settle to an AdS black brane in

the future. Quite generally, the past behavior of the solution will depend on the specific

initial condition. However, the behavior in the future can be expected to be governed by

a generic phenomenological equation like the Navier-Stokes equation. provided the future
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horizon is regular. Remarkably, this generic behavior at late time is exactly what is expected

also in the dual theory. Our contour prescription isolates the generic future behavior from

the non-generic behavior in the past, the latter being dependent on the specific details of

the initial state.

3 Translation to ingoing Eddington-Finkelstein coor-

dinate system in the amplitude expansion

The ingoing Eddington-Finkelstein coordinates are particularly suitable for analyzing the

future horizon. The position of the future horizon at late time is revealed in these coordinates

manifestly. In the case of stationary black holes, the metric is also manifestly regular at the

future horizon in these coordinates.

For more general geometries, which are perturbations of AdS black branes, we need to give

a definition of the ingoing Eddington-Finkelstein coordinate system. This can be achieved

by noting that the unperturbed boosted AdS black brane takes the following covariant form

ds2 = −2uµdx
µdr +Gµν(r)dx

µdxν , (3.1)

where uµ is the boost parameter of the black brane as before, and

Gµν = −r2
(

1− 1

b4r4

)

uµuν + r2Pµν , (3.2)

with Pµν being as in (2.12), the projection tensor on the spatial hyperplane orthogonal to

uµ.

We can think of r as the Eddington-Finkelstein radial coordinate and xµ’s as the boundary

coordinates. The horizon can be located by finding where Gµνu
µuν has a simple zero. We

can readily see that the horizon is located at r = 1/b. Further the Hawking temperature

T = 1/(πb), so we can legally use the same notation b as in the previous section, where b

was defined as 1/(πT ). The generators of the horizon in these coordinates are also limits

of radial outgoing null rays. So this horizon is a future horizon. We also note that if we

have chosen the outgoing Eddington-Finkelstein coordinates, the (µr) and (rµ) components

of the metric would have been uµ instead of −uµ, and the horizon would have been a past

horizon.

The natural generalization of this form of the metric, to geometries which are perturba-

tions of the boosted black brane, is

ds2 = −2uµ(x)dx
µdr +Gµν(r, x)dx

µdxν , (3.3)
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where uµ is now the local boost parameter and Gµν also depends on the boundary coordinates

xµ. As in [14], we define the ingoing Eddington-Finkelstein coordinate system as the system

in which the metric assumes the above form.

When uµ is a constant four-vector, as in the previous section, it is convenient to go

to the global comoving frame where the boost parameter uµ is (1, 0, 0, 0). We define the

ingoing Eddington-Finkelstein time v, as v = −uµx
µ and call the spatial coordinates in the

orthogonal spatial plane xi’s, where i = 1, 2, 3. The boosted black brane metric given by

(3.1) and (3.2) now assumes the form

ds2 = 2dvdr +G
(0)
00 (r)dv

2 +G
(0)
ij (r)dx

idxj , (3.4)

where,

G
(0)
00 = −r2

(

1− 1

b4r4

)

, G
(0)
ij = r2δij . (3.5)

In our case of homogeneous relaxation, the metric in the global comoving frame in this

coordinate system should assume the form,

ds2 = 2dvdr +G00(r, v)dv
2 +Gij(r, v)dx

idxj , (3.6)

where G00 and Gij are also dependent on the time v. We note that Gi0 = G0i = 0 as in the

case of gi0 and g0i in the Fefferman-Graham coordinate system, because there is no vector

which can be constructed just from the boundary data πij(t). We will soon show that this is

indeed the case when we obtain the metric explicitly by translating the Fefferman-Graham

metric into this coordinate system.

3.1 The equations for translation

We have seen in the previous section that when the boundary stress-tensor assumes the

form of homogeneous relaxation, the metric in Fefferman-Graham coordinates, in the global

comoving frame, summing over all orders in the amplitude expansion, assumes the form

ds2 =
dρ2 + g00(ρ, t)dt

2 + gij(ρ, t)dz
idzj

ρ2
(3.7)

If we do the following change of coordinates,

ρ = Φ(r, v), (3.8)

t = v + k(r, v),

zi = xi,
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the Fefferman-Graham metric (3.7) indeed translates to the ingoing Eddington-Finkelstein

metric (3.6) provided

(

∂Φ

∂r

)2

+ g00 (ρ(r, v), t(r, v))

(

∂k

∂r

)2

= 0,

∂Φ

∂r

∂Φ

∂v
+ g00 (ρ(r, v), t(r, v))

∂k

∂r

(

1 +
∂k

∂v

)

= Φ2, (3.9)

where g00 is now evaluated as a function of r and v. These equations thus determine

the change of coordinates (3.8) from the Fefferman-Graham coordinates to the Eddington-

Finkelstein coordinates.

Once the Fefferman-Graham coordinates are determined as functions of the ingoing

Eddington-Finkelstein coordinates, one can readily translate the Fefferman-Graham metric

to the ingoing Eddington-Finkelstein metric. We note that, just like the Fefferman-Graham

metric (3.7) is fully specified by g00 and gij, the ingoing Eddington-Finkelstein metric (3.6)

is also fully specified by G00 and Gij . The change of coordinates (3.8), determined by (3.9),

implies

(

∂Φ

∂v

)2

+ g00 (ρ(r, v), t(r, v))

(

1 +
∂k

∂v

)2

= G00Φ
2

gij (ρ(r, v), t(r, v)) = GijΦ
2. (3.10)

The above equations thus translate the metric. We note that the equations above are alge-

braic equations and not PDEs like (3.9), where r and v derivatives of the unknowns Φ and

k appear. In the above equations, the r and v derivatives of the unknowns, G00 and Gij do

not appear.

For the purely hydrodynamic case too, similar equations like (3.9) and (3.10) for changing

coordinates and translating the metric respectively from the Fefferman-Graham to ingoing

Eddington-Finkelstein system were derived [14]. However, there the equations for changing

coordinates and that for translating the metric did not disentangle nicely like here.

For the unpertubed AdS black brane, Φ(0)(r, v) and k(0)(r, v), which completely specify

the change of coodinates (3.8) translating the gµν in the Fefferman-Graham metric (2.17) to

the Gµν in Eddington-Finkelstein coordinates (3.5) are,

Φ(0)(r, v) = Φ(0)(r) =

√
2b

√

b2r2 +
√
b4r4 − 1

,

k(0)(r, v) = k(0)(r) = b

(

π − 2 arctan(br) +
1

4
log

(

br + 1

br − 1

))

. (3.11)
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We can readily see that these solve the eqs. (3.9). Further, the eqs. (3.10) are also satisfied

when G
(0)
00 and G

(0)
ij are given by (3.5). We also observe that both Φ(0)(r) and k(0)(r) behave

like 1/r, as we go towards the boundary at r = ∞.

We will now see how to implement eqs. (3.9) and (3.10) for changing the coordinates

and translating the metric respectively, from the Fefferman-Graham system to the ingoing

Eddington-Finkelstein system, order by order in the amplitude expansion. At each order,

we will sum over all derivatives with respect to the Eddington-Finkelstein time v through

recursion relations, just like we summed over all derivatives in Fefferman-Graham time t in

the previous section.

3.2 Translation at the first order in the amplitude expansion

At each order in the amplitude expansion, it will be easier to solve the eqs. (3.9) specifying

change of coordinates (3.8) first. At the first order in the amplitude expansion, the change

of coordinates do not receive any correction. We note that the change of coordinates from

the Fefferman-Graham system to the ingoing Eddington-Finkelstein system, given by (3.8)

maintains spatial translational and rotational symmetry of the former manifestly, to all

orders in the amplitude expansion. It is easy to see that since πijδij = 0, there is no scope to

write anything which is invariant under spatial rotations and translations, that can possibly

correct Φ(r, v) and k(r, v), from their forms at the zeroth order given by (3.11).

We recall that gµν in the Fefferman-Graham coordinates at the first order in the derivative

expansion takes the form (2.18), where g
(1)
00 vanishes and g

(1)
ij is traceless. The equations for

translation of the metric (3.10) at the first order in the amplitude expansion therefore implies

G
(1)
00 = 0,

G
(1)
ij =

g
(1)
ij

(

ρ = Φ(0)(r), t = v + k(0)(r)
)

(Φ(0)(r))
2 , (3.12)

where Φ(0)(r) and k(0)(r) are as in (3.11) for the unperturbed AdS black brane.

Further, just like g
(1)
ij in (2.18), we can write G

(1)
ij as follows

G
(1)
ij =

∞
∑

n=0

b2+nF (1,n)(r)

(

d

dv

)n

πij(v). (3.13)

The difference from (2.18) here is that πij is a function of the Eddington-Finkelstein time

v and not a function of the Fefferman-Graham time t. Additionally, the time derivatives

run over both even and odd powers, unlike even orders only in the latter case. Also, by

definition, F (1,n)’s are dimensionless functions like f (1,2n)s.
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Substituting (2.18) and (3.13) in (3.12), we get

F (1,n)(r) =
b2

(Φ(0)(r))
2

n

2
∑

m=0

f (1,2m)
(

ρ = Φ(0)(r)
)

(

k(0)(r)
)n−2m

bn−2m(n− 2m)!

when n is even,

F (1,n)(r) =
b2

(Φ(0)(r))
2

n−1
2
∑

m=0

f (1,2m)
(

ρ = Φ(0)(r)
)

(

k(0)(r)
)n−2m

bn−2m(n− 2m)!

when n is even. (3.14)

We recall that we have solved f (1,2m) in the previous section recursively and our solutions

are given by (2.39) and (2.40). Thus the equations above also give us recursive solutions for

F (1,n)(r). We will not make these recursion relations more explicit here. The leading term

F (1,0)(r) in this recursion can be easily found to take the form

F (1,0)(r) = −b2r2 log

(

1− 1

b4r4

)

. (3.15)

The recursion series (3.14) allows us to sum over all the time derivatives at the first order in

the amplitude expansion.

When we derived the recursion series in the Fefferman-Graham coordinate system to sum

over all time derivatives, we went to Fourier space. This has not been necessary at the first

order in the amplitude expansion here, because we had to only solve the algebraic eq. (3.12).

At the second order in the amplitude expansion, the equations for changing coordinates will

be PDEs and not algebraic equations, so Fourier transforming the time dependence will be

necessary again.

Therefore, for the sake of completeness, let us see if the metric here also assumes a

compact form here in Fourier space too. The Fourier transform of πij(v) can be defined

through

πij(v) =

∫ ∞

−∞

dω e−iωvπij(ω). (3.16)

We note that since πij(v) is the same function of v as πij(t) is a function of t. Given that we

defined the Fourier transform of πij(t) in (2.21) in the same way, it follows that the Fourier

transforms πij(ω) are identical.

Similarly, we can define the Fourier transform of G
(1)
ij (r, v) in v. Let us also define

F (1)(r, ω) in analogy with f (1)(ρ, ω) in (2.22) ,as

F (1)(r, ω) =

∞
∑

n=0

(−iωb)nF (1,n)(r). (3.17)
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Then we can indeed write G
(1)
ij which gives the entire first order correction to the metric

compactly in Fourier space as

G
(1)
ij (r, ω) = b2F (1)(r, ω)πij(ω). (3.18)

This equation is analogous to (2.23) where the full correction to the metric at the first

order has been captured by a single function f (1)(r, ω) after Fourier transforming the time

dependence in Fefferman-Graham coordinates.

Finally, the equation for translation (3.12) when Fourier transformed in v, gives the

following algebraic relationship between F (1) and f (1),

F (1)(r, ω) =
b2

(Φ(0)(r))
2f

(1)
(

ρ = Φ(0)(r), ω
)

e−iωk(0)(r). (3.19)

If we were able to solve the ODE for f (1)(ρ, ω) given by (2.33) exactly, we could have easily

used the algebraic equation above to know F (1)(r, ω) exactly. However, this has not been

possible, so we have taken care of the dependence on ω, or equivalently summed the time

derivatives recursively. We have already translated the same strategy here in (3.14).

3.3 Translation at the second order in the amplitude expansion

As in the case of the first order in the amplitude expansion, it is instructive to begin with

how the changes in coordinates (3.8) take their form at the second order in the amplitude

expansion. Taking into account manifest invariance under spatial translations and rotations,

clearly Φ(2)(r, v) and k(2)(r, v) specifying the change of coordinates at the second order in

the amplitude expansion, should take the form,

Φ(2)(r, v) =

∞
∑

n=0

n
∑

m=0
n+m is even

b9+nΦ(2,n,m)(r)

n
∑

a,b=0
a+b=n
|a−b|=m

(

d

dv

)a

πpq(v)

(

d

dv

)b

πpq(v),

k(2)(r, v) =
∞
∑

n=0

n
∑

m=0
n+m is even

b9+nk(2,n,m)(r)
n
∑

a,b=0
a+b=n
|a−b|=m

(

d

dv

)a

πpq(v)

(

d

dv

)b

πpq(v), (3.20)

where, by definition, Φ(2,n,m)(r) and k(2,n,m)(r) are dimensionless functions, and n + m is

even ensures that the sum over m is over even integers if n is even, and is over odd integers

if n is odd, so that both (n +m)/2 and (n−m)/2, i.e. a and b, are integers.

In Fourier space, we can put these changes of coordinates, compactly in terms of just two
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functions, Φ(2)(r, ω, ω1) and k(2)(r, ω, ω1), through the following relation,

Φ(2)(r, v) = b9
∫ ∞

−∞

dω e−iωv

∫ ∞

−∞

dω1 Φ(2)(r, ω, ω1)πpq(ω1)πpq(ω − ω1),

k(2)(r, v) = b9
∫ ∞

−∞

dω e−iωv

∫ ∞

−∞

dω1 k(2)(r, ω, ω1)πpq(ω1)πpq(ω − ω1), (3.21)

where,

Φ(2)(r, ω, ω1) =
∞
∑

n=0

n
∑

m=0
n+m is even

(−ib)n(ω
n+m

2
1 (ω − ω1)

n−m

2

+ω
n−m

2
1 (ω − ω1)

n+m

2 )Φ(2,n,m)(r),

k(2)(r, ω, ω1) =

∞
∑

n=0

n
∑

m=0
n+m is even

(−ib)n(ω
n+m

2
1 (ω − ω1)

n−m

2

+ω
n−m

2
1 (ω − ω1)

n+m

2 )k(2,n,m)(r). (3.22)

We note that, by definition Φ(2)(r, ω, ω1) and k(2)(r, ω, ω1) are dimensionless functions.

We can readily obtain the equations for Φ(2)(r, ω, ω1) by expanding the equations for

change of coordinates (3.9) up to second order in the amplitude expansion, and then Fourier

transforming the time dependence. Thus we have,

dΦ(0)(r)

dr

∂Φ(2)

∂r
(r, ω, ω1) + g

(0)
00

(

ρ = Φ(0)(r)
) dk(0)(r)

dr

∂k(2)

∂r
(r, ω, ω1)

+
1

2

(

dg
(0)
00

dρ

)

(

ρ = Φ(0)(r)
)

(

dk(0)(r)

dr

)2

Φ(2)(r, ω, ω1)

= − 1

2b
f
(2)
3

(

ρ = Φ(0)(r), ω, ω1

)

e−iωk(0)(r)

(

dk(0)

dr

)2

,

g
(0)
00

(

ρ = Φ(0)(r)
) ∂k(2)

∂r
(r, ω, ω1) − (iω

dΦ(0)(r)

dr

−
(

dg
(0)
00

dρ

)

(

ρ = Φ(0)(r)
) dk(0)(r)

dr

+2Φ(0)(r)) Φ(2)(r, ω, ω1)

−iωg
(0)
00

(

ρ = Φ(0)(r)
) dk(0)(r)

dr
k(2)(r, ω, ω1)

= −1

b
f
(2)
3

(

ρ = Φ(0)(r), ω, ω1

)

e−iωk(0)(r)dk
(0)

dr
. (3.23)
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The solutions are uniquely specified by the boundary conditions,

Φ(2)(r, ω, ω1) = O

(

1

b9r9

)

, at r → ∞,

k(2)(r, ω, ω1) = O

(

1

b9r9

)

, at r → ∞. (3.24)

These boundary conditions follows from simple dimensional analysis. The leading behavior

of Φ(0)(r) and k(0)(r) at the boundary r = ∞ is 1/r, and is independent of b. The leading

bahavior of Φ(2)(r, v) and k(2)(r, v) also should be independent of b, so dimensional analysis

shows that their leading behavior should be 1/r9. This begets the above boundary conditions.

The eqs. (3.23) which are ordinary differential equations in r are unfortunately not

solvable for arbitrary ω and ω1. Therefore, we can adopt the same strategy as in the previous

section, to solve these exactly first when ω = ω1 = 0, so that we know Φ(2,0,0)(r) and k(2,0,0)(r)

exactly and then sum over the dependence over ω and ω1 in (3.22) by obtaining Φ(2,n,m)(r)

and k(2,n,m)(r) recursively. We will not repeat this here because it will turn out that these

exact recursion relations will not be important for the regularity analysis.

We also note that the eqs. (3.23) are first order ordinary differential equations in r.

Given that the equations for translation of the metric which we will derive next are algebraic,

we bypass solving second order differential equations with constraints, involved in directly

obtaining the metric in Eddington-Finkelstein coordinates from Einstein’s equation.

The Gµν in the ingoing Eddington-Finkelstein metric (3.6), similarly, should take the

following form at the second order in the amplitude expansion,

G
(2)
00 (r, v) =

∞
∑

n=0

n
∑

m=0
n+m is even

b6+nF
(2,n,m)
3 (r)

n
∑

a,b=0
a+b=n
|a−b|=m

(

d

dv

)a

πpq(v)

(

d

dv

)b

πpq(v),

G
(2)
ij (r, v) =

∞
∑

n=0

n
∑

m=0
n+m is even

b6+nF
(2,n,m)
2 (r)δij

n
∑

a,b=0
a+b=n
|a−b|=m

(

d

dv

)a

πpq(v)

(

d

dv

)b

πpq(v)

+
∞
∑

n=0

n
∑

m=0
n+m is even

b6+nF
(2,n,m)
1 (r)

n
∑

a,b=0
a+b=n
|a−b|=m

[

(

d

dv

)a

πik(v)

(

d

dv

)b

πkj(v)

−1

3
δij

(

d

dv

)a

πpq(v)

(

d

dv

)b

πpq(v)

]

. (3.25)

By definition, F
(2,n,m)
i s are dimensionless functions. Once again the sum over m runs over

even intergers if n is even, and over odd integers if n is odd.
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After Fourier transforming the time dependence, in analogy with g
(2)
µν (ρ, ω, ω1) in the

Fefferman-Graham metric at the second order in the amplitude expansion given by (2.27),

G
(2)
µν (r, ω, ω1) can be compactly written in terms of three dimensionless functions F

(2)
i (r, ω, ω1),

for i = 1, 2, 3 as

G
(2)
00 (r, v) = b6

∫ ∞

−∞

dω e−iωv

∫ ∞

−∞

dω1 F
(2)
3 (r, ω, ω1)πpq(ω1)πpq(ω − ω1),

G
(2)
ij (r, v) = b6

∫ ∞

−∞

dω e−iωv

∫ ∞

−∞

dω1 F
(2)
2 (r, ω, ω1)πpq(ω1)πpq(ω − ω1)

+
b6

2

∫ ∞

−∞

dω e−iωv

∫ ∞

−∞

dω1 F
(2)
1 (r, ω, ω1)[πik(ω1)πkj(ω − ω1)

+πik(ω − ω1)πkj(ω1)

−2

3
δijπpq(ω1)πpq(ω − ω1)], (3.26)

where

F
(2)
i (r, ω, ω1) =

∞
∑

n=0

n
∑

m=0
n+m is even

(−ib)n(ω
n+m

2
1 (ω − ω1)

n−m

2

+ω
n−m

2
1 (ω − ω1)

n+m

2 )F
(2,n,m)
i (r), for i = 1, 2, 3. (3.27)

The equations for the translation of the metric (3.10) at the second order in the amplitude

expansion, after Fourier transforming the time dependence implies,

F
(2)
3 (r, ω, ω1) =

b2

(Φ(0)(r))
2 (f

(2)
3

(

ρ = Φ(0)(r), ω, ω1

)

e−iωk(0)(r)

+b

(

dg
(0)
00

dρ

)

(

ρ = Φ(0)(r)
)

Φ(2)(r, ω, ω1)

−i2bωg
(0)
00 k

(2)(r, ω, ω1)

−2bG
(0)
00 (r)Φ

(0)(r)Φ(2)(r, ω, ω1)),

F
(2)
2 (r, ω, ω1) =

b2

(Φ(0)(r))
2 (f

(2)
2

(

ρ = Φ(0)(r), ω, ω1

)

e−iωk(0)(r)

+

(

Φ(0)(r)
)3

b3
Φ(2)(r, ω, ω1)

−2br2Φ(0)(r)Φ(2)(r, ω, ω1)),

F
(2)
1 (r, ω, ω1) =

b2

(Φ(0)(r))
2 f

(2)
1

(

ρ = Φ(0)(r), ω, ω1

)

e−iωk(0)(r). (3.28)

Here we have used the explicit second order form of g
(2)
µν (ρ, ω, ω1) as given by (2.27). The
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above equations are algebraic. We recall that (2.41), (2.46) and (2.49) gives the equations of

motion for f
(2)
i (ρ, ω, ω1), for i = 1, 2 and 3 respectively, and they have unique solutions given

the boundary conditions (2.52) and (2.53). If we use these and the solution for Φ(2)(r, ω, ω1),

we obtain the full translation of the metric into the ingoing Eddington-Finkelstein coordi-

nates through these algebraic equations.

In practice, we need to solve for the time dependence, or equivalently the ω and ω1

dependence of F
(2)
i (r, ω, ω1) for i = 1, 2, 3 given by (3.27), by solving the eqs. (3.28) for

ω = ω1 = 0 first, and then obtaining F (2,n,m)(r) and k(2,n,m)(r) recursively. We need to use

the recursion relations for f
(2,2n,2m)
i (ρ) given by (2.57), (2.67) and (2.68) for i = 1, 2 and 3

respectively and also the recursion relations for Φ(2,n,m)(r).

It will turn out that for the regularity analysis, we will only need recursion relations for

F
(2,n,m)
1 (r) which, according to (3.9), can be obtained without knowing Φ(2,n,m)(r). We get

the recursion relations,

F
(2,n,m)
1 (r, ω, ω1) =

b2

2 (Φ(0)(r))
2

n

2
∑

p=0

(

m
∑

q=0

f
(2,2p,m−q)
1

(

ρ = Φ(0)(r)
)

+

2p−m
∑

q=0

f
(2,2p,m+q)
1

(

ρ = Φ(0)(r)
)

)

(

k(0)(r)
)n−2p

bn−2pq!(n− 2p− q)!
,

when n is even,

F
(2,n,m)
1 (r, ω, ω1) =

b2

2 (Φ(0)(r))
2

n−1
2
∑

p=0

(

m
∑

q=0

f
(2,2p,m−q)
1

(

ρ = Φ(0)(r)
)

+

2p−m
∑

q=0

f
(2,2p,m+q)
1

(

ρ = Φ(0)(r)
)

)

(

k(0)(r)
)n−2p

bn−2pq!(n− 2p− q)!
,

when n is odd, (3.29)

where in turn f
(2,r,s)
1 (ρ) are defined through the recursion relations (2.57), and vanish unless

both r and s are even by their definitions in (2.28). As a specific instance,

F
(2,0,0)
1 (r) =

b2r2

2

(

log

(

1− 1

b4r4

))2

, (3.30)

which is the only contribution to F
(2)
1 if πij is time-independent.

Clearly, we can use our method for translating the metric into ingoing Eddington-

Finkelstein coordinates from the Fefferman-Graham coordinates at higher orders in the

amplitude expansion, summing over all time derivatives at each order.
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4 Regularity analysis of the metric and new phenomeno-

logical parameters

As discussed in the Introduction, it can be expected that the metric will be manifestly

regular at the future horizon in an appropriate coordinate system order by order in the

amplitude expansion provided we sum over all time derivatives. The amplitude of the non-

hydrodynamic shear-stress tensor becomes arbitrarily small when compared to the pressure

close to equilibrium. However, its time derivatives are not small compared to the temperature

even close to equilibrium. This necessitates summing over all time derivatives while treating

the amplitude expansion perturbatively.

When the energy-momentum tensor is purely hydrodynamic, the derivatives of the hydro-

dynamic variables are small compared to the local temperature. The derivative expansion,

therefore, can be employed perturbatively. This logic was instrumental in the construction

of the metric perturbatively in the derivative expansion, which was regular at the future

horizon for appropriate choice of the transport coefficients. We expect that in our case, sim-

ilarly, we will be able to extract an equation of motion for the shear-stress tensor order by

order in the amplitude expansion, so that when the shear-stress tensor follows this equation

of motion with appropriate values of the phenomenological parameters, the metric will be

regular order by order in the amplitude expansion. In this Section, we will outline the details

of this analysis.

Before we go through the details, we need to consider if we can do the regularity analysis

more efficiently by calculating curvature invariants like RµνρσRµνρσ at the horizon. Unlike

the hydrodynamic case, where the regularity simply involves the transport coefficients, and

regularity analysis simply tells us we have a regular horizon provided some algebraic equa-

tions involving the transport coefficients are satisfied, we expect that the regularity condition

here will involve an equation of motion for πij(t). Calculation of curvature invariants, which

we will not reproduce here, also indicates so. However, a curvature invariant can at best

reproduce the trace of the equation of motion for πij(t), with for instance, a linear combi-

nation of πij(t) and its time-derivatives. Therefore, one needs to compare several curvature

invariants, to extract the equation of motion itself. This has proved to be a very difficult

task when we have tried to do it. More than this practical issue, one cannot be sure of

the regularity unless one has compared all possible curvature invariants and this requires

utilising geometric properties of the spacetime. It seems that it is very difficult to do this

also. The most elegant way to do the regularity analysis, it appears, is to go to a coordinate

system where the metric can be argued to be manifestly regular. Here, we will show that we

can indeed do so in the ingoing Eddington-Finkelstein coordinates.

We will first do the regularity analysis at the linear order, that is at the first order in the
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amplitude expansion. Then we will extend our analysis to higher orders in the amplitude

expansion. This will allow us to extract the equation of motion for πij(t) in the amplitude

expansion, such that when this is obeyed, the corresponding metric in the bulk has a regular

future horizon. Finally, we will connect our results with our previous work and see how we

can fix some more general phenomenological coefficients at strong coupling.

4.1 Regularity at the linear order

At the level of linearized gravity perturbations with right asymptotic behavior, quasinormal

modes are those which are ingoing at the future horizon. Though there is no rigorous proof,

there are strong arguments [26, 30] to suggest that for linearized gravity perturbations, the

ingoing boundary condition at the future horizon is equivalent to manifest regularity of the

metric at the future horizon in ingoing Eddington-Finkelstein coordinates. In other words,

when the metric is perturbed with the quasinormal modes, not only combinations of the

linear perturbations of the metric invariant under linearized diffeomorphisms, but the full

metric tensor itself will still be manifestly regular at the future horizon in ingoing Eddington-

Finkelstein coordinates.

At the first order in amplitude expansion, the dependence on the perturbation of the non-

hydrodynamic shear-stress tensor is linear, so the manifest regularity at the future horizon

in ingoing Eddington-Finkelstein coordinates should require that the shear-stress tensor has

time dependence given by a linear superposition of the quasinormal mode frequencies at zero

wavelengths.

In the computations of the quasinormal modes for AdS black branes, usually the ingoing

boundary condition is imposed first and the dispersion relation is then extracted by requiring

that the Dirichlet boundary condition is obeyed at asymptotic spatial infinity. This would

imply that the non-normalizable mode of the perturbation vanishes. However, in the ap-

proach employed here, we first find the metric corresponding to an arbitrary πij(t) in a flat

background in the dual theory, thus fixing both the non-normalizable and the normalizable

modes of the metric perturbations. These determine the solution uniquely. The quasinormal

modes can be expected to be extracted by requiring manifest regularity of the metric at

the future horizon in ingoing Eddington-Finkelstein coordinates. Our method can be read-

ily generalized at the non-linear level, besides it will give us the most general metrics with

regular future horizons dual to homogeneous relaxation.

To see how this works, it will be instructive to review the case of the purely hydrodynamic

shear-stress tensor in this new light.

Let us consider a fluid at constant four-velocity u(0)µ and constant temperature T (0). It

is convenient to define b(0) as 1/(πT (0)) as before, so that1/b(0) is the radial location of the

future horizon in the dual geometry in ingoing Eddington-Finkelstein coordinates. Further
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we define the projection tensor in the spatial plane orthogonal to u(0)µ as

P (0)µν = u(0)µu(0)ν + ηµν . (4.1)

The most general purely hydrodynamic shear-stress tensor linear in the fluctuation in veloc-

ity, δuµ and the temperature, δT , is

tµν =
4u

(0)
µ u

(0)
ν + ηµν

4b(0)4
− 4u

(0)
µ u

(0)
ν + ηµν
b(0)4

(

δb

b(0)

)

+
u
(0)
µ δuν + δuµu

(0)
ν

b(0)4

− γ

2b(0)3
σµν +O(ǫ2), with (4.2)

σµν =

(

(

P (0)α
µ P (0)β

ν

) (∂αδuβ + ∂βδuα)

2
− 1

3
P (0)
µν (∂αδu

α)

)

, (4.3)

where O(ǫ2) denote terms at second and higher orders in the derivative expansion. Also γ

is a dimensionless quantity defined through

γ =
4πη

s
, (4.4)

with η being the shear viscosity and s the entropy density.

The corresponding metric in ingoing Eddington-Finkelstein coordinates up to first order

in the derivative expansion is,

ds2 = −2(u(0)
µ + δuµ)dx

µdr +Gµνdx
µdxν , (4.5)

Gµν = r2P (0)
µν + (−r2 +

1

b(0)4r2
)u(0)

µ u(0)
ν − 4

b(0)4r2

(

δb

b(0)

)

u(0)
µ u(0)

ν

+
1

b(0)4r2
(

u(0)
µ δuν + δuµu

(0)
ν

)

−r

(

u(0)
µ (u(0)α∂α)δuν + u(0)

ν (u(0)α∂α)δuµ −
2

3
u(0)
µ u(0)

ν (∂αδuα)

)

+

(

2b(0)r2H
(

b(0)r
)

+
(γ − 1)

4
b(0)r2 log

(

1− 1

b(0)4r4

))

σµν +O
(

ǫ2
)

,

where σµν is as defined in (4.2), O(ǫ2) denotes terms at higher orders in the derivative

expansion, and

H(x) =
1

4

(

log

(

(x+ 1)2(x2 + 1)

x4

)

− 2 arctan(x) + π

)

. (4.6)

The metric above is just the linearization of the metric for arbitrary γ in [14], which gener-

alizes the metric in [10] for γ = 1.

39



We see that corrections toGµν in the metric in ingoing Eddington-Finkelstein coordinates,

which is linear in δuµ and δT , can be decomposed into four categories based on whether the

components are in the direction of the flow u(0)µ or orthogonal to it. The first category is

longitudinal-longitudinal, i.e. proportional to u
(0)
µ u

(0)
ν ; the second category is longitudinal-

transverse , i.e proportional to terms like u
(0)
µ δuν, or u

(0)
µ (u(0) · ∂)δuν ; the third category is

pure trace and transverse-transverse, i.e. proportional to P
(0)
µν ; and the fourth one is traceless

and transverse-transverse, i.e proportional to terms like σµν . This division can obviously be

done at any order in the derivative expansion.

We also see that, at the first order in the derivative expansion, the leading divergence

at the late-time horizon which coincides with the unperturbed horizon r = 1/b(0) is ((γ −
1)/4) log(b(0)r− 1)σµν and belongs to the fourth category, which is traceless and transverse-

transverse. This divergence vanishes provided γ = 1, i.e. when η/s = 1/4π. The other

divergences are of the same category, and are coefficients of (b(0)r − 1) log(b(0)r − 1) and

(b(0)r− 1)2 log(b(0)r− 1), both of which are proportional to (γ − 1)σµν , which vanish for the

same choice of η/s. These terms are potentially divergent at the horizon because their first

or second derivatives, or both, with respect to r diverges at the horizon, i.e. at r = 1/b(0).

If we do not fix γ (or equivalently η/s) at the first order and obtain the metric at higher

orders in the derivative expansion, we find various other kinds of divergence in all four

categories of Gµν in the ingoing Eddington-Finkelstein metric. When γ = 1 all divergences

in all four categories of Gµν , with higher powers of the logarithm, like
(

log(b(0)r − 1)
)2

and

proportional to derivatives of σµν vanish. However, only three divergences of lower orders

remain.

These are as follows, one is a log(b(0)r−1) divergence, another is a (b(0)r−1) log(b(0)r−1)

divergence and the other one is a (b(0)r − 1)2 log(b(0)r − 1), all of which at the second order

in the derivative expansion, for instance, are proportional to (u(0) · ∂)σµν (which is Weyl

covariant at linear order in the velocity fluctuation δu), and belongs to the traceless and

transverse-transverse category as it is orthogonal to uµ. The cancellation of these divergences

requires fixing the only linear transport coefficient at the second order in the derivative

expansion in a flat background, whose contribution to the shear-stress tensor at the second

order in the derivative expansion, is proportional to (u(0)·∂)σµν . Further, all these divergences

are proportional to a polynomial which is linear in the arbitrary choice of this second order

transport coefficient and vanish when this transport coefficient takes the same value, which

is (2− log 2)/b(0)2.

It can be shown that the feature just mentioned persists up to arbitrary higher orders

in the derivative expansion. The transport coefficients at any order can always be fixed by

taking care of the log(b(0)r − 1) divergence in the traceless and transverse-transverse part

of Gµν , and once these are fixed at any given order, there is no other kind of divergence in
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any category of Gµν provided the transport coefficients at all lower orders have been chosen

correctly. Also this log(b(0)r−1) divergence is linear in the arbitrary choices of the transport

coefficients at that order. To summarize, the cancellation of the log(b(0)r − 1) divergence

ensures that all other divergences vanish order by order in the derivative expansion, but not

vice-versa.

Therefore, the regularity condition at the future horizon is simply that the coefficient

of log(b(0)r − 1) term in the traceless and transverse-transverse part of Gµν should vanish,

and this fixes the value of all transport coefficients to all orders in the derivative expansion.

Up to second order in the derivative expansion, explicit calculations have shown that the

values of transport coefficients determined by regularity at the future horizon in ingoing

Eddington-Finkelstein coordinates match with those obtained from the dispersion relations

of the hydrodynamic shear and sound quasinormal modes.

Even in the case of homogeneous relaxation, the regularity condition at the horizon should

be the same. The argument for it is easy. The regularity condition should be a condition

on πij(t), therefore it is independent of r. If the divergence at the late-time horizon has

to vanish at all times, the coefficient of each singular term in the series expansion of Gµν

in r has to vanish at r = 1/b, where the future horizon is located at late time. 9 The

singular terms should also appear in the traceless and transverse-transverse part of Gµν ,

since all the corrections to the metric at the first-order in the amplitude expansion being

porportional to πij(t) and its time derivatives as shown in (3.12) and (3.13), are traceless

and transverse-transverse.

Further, the singular term in the series expansion of Gµν in r at r = 1/b, whose coefficient

should give a sufficient condition for all other divergent terms in r to vanish at the late time

horizon, can be identified as the log(br − 1) term, by looking at the case when πij is time-

independent. In this case, the entire contribution to the metric at the first order in the

amplitude expansion, according to (3.13) and (3.15) is given by

G
(1)
ij (r) = b2F (1,0)(r)πij = −b4r2 log

(

1− 1

b4r4

)

πij . (4.7)

Indeed the vanishing of the log(br−1) term, which is the leading divergence at r = 1/b here,

gives the sufficient condition πij = 0, for regularity. This is expected because the black hole

cannot support any tensor hair.

Time-dependence of πij(t) brings in divergences with arbitrary higher powers of the

logarithm, i.e. terms like (log(br − 1))n, where n > 1 is an integer; however it is the time-

dependent corrections to the coefficient of log(br − 1) that should control all the other

divergences. In fact, simple inspection of F (1)(r, ω) through (3.19), shows that the coefficient

9We recall that b is constant here to all orders in the amplitude expansion.
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of log(br − 1)n term for n ≥ 2 is O(ωn). As these coefficients of such singular terms have

higher powers of ω at the leading order itself, these should be total time derivatives of the

coefficient of the log(br− 1) term, which is O(1) in the ω expansion. Thus, the vanishing of

the latter can ensure that other divergences vanish, but not vice-versa.

Therefore, the regularity condition at the future horizon is that the coefficient of the

log(br−1) term in the traceless and transverse-transverse part of Gµν in the ingoing Eddington-

Finkelstein metric should vanish, which implies that πij(t) should obey a linear differential

equation that can be calculated from Einstein’s equation.

If the perturbations corresponding to quasinormal modes are indeed manifestly regular in

the ingoing Eddington-Finkelstein coordinates, by the argument above, the only possibility

for the regularity condition at the horizon is that the coefficient of the log(br−1) term should

vanish, so that it will also provide a sufficient condition for all other divergences to vanish.

We need to understand now how we can reproduce the quasinormal mode frequencies at

zero wavelengths from this regularity condition. Let the coefficient of the log(br − 1) term

in the series expansion in r of F (1)(r, ω) about r = 1/b be D
(1)
R (ω). Then our regularity

condition at the linear order is

CR ij(v) = b2
∫ ∞

−∞

dω e−iωvD
(1)
R (ω)πij(ω) = 0, (4.8)

where the integration is done with the contour prescription mentioned before, which picks up

contributions only from the poles of the analytic continuation of D
(1)
R (ω)πij(ω) as a function

of the complex variable ω in the lower half plane. By definition, D
(1)
R (ω) is a dimensionless

function. We have also observed before that πij(ω) is identical if it is the Fourier transform

of πij(t) or πij(v), because the latter are the same functions, though of different variables.

So, the regularity condition on πij(ω) leads directly to the regularity condition on πij(t) after

doing Fourier transform in t.

Further, near ω = 0, we can write,

D
(1)
R (ω) =

∞
∑

n=0

D
(1,n)
R (−ibω)n, (4.9)

where clearly D
(1,n)
R is the coefficient of log(br − 1) term in the series expansion of F (1,n)(r)

about r = 1/b as is obvious from (3.17). By definition, D(1,n)’s are dimensionless numbers

which can be explicitly evaluated using (3.14). For instance,

D
(1,0)
R = −1, D

(1,1)
R = −(π/2)− (1/4) log(2), etc. (4.10)

However, this power series (4.9) can have a radius of convergence. So, it is necessary to
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define an analytic continuation of D
(1)
R (ω) beyond this radius of convergence in the lower half

plane, for doing the Fourier transform using the mentioned contour prescription. It is also

important to realize that it is the analytic continuation of D
(1)
R (ω) and πij(ω) in the lower

half plane as a function of the complex variable ω which is required to make connection with

the quasinormal modes.

If the analytic continuation of D
(1)
R (ω) have simple zeroes at ± ωRn

− iωIn, with ωIn > 0,

in the lower half plane, and πij(ω) have at most simple poles at ± ωRn
−iωIn in the lower half

plane, then it follows that D
(1)
R (ω)πij(ω) is analytic in the lower-half plane and its Fourier

transform vanishes by our contour prescription as required by the regularity condition (4.8).

Thus the regularity condition implies that in the lower half complex ω plane, πij(ω) should

have the following general form

πij(ω) =

∞
∑

n=0

(

1

2π

)(

an ij

ωIn − i(ω − ωRn
)
+

a∗n ij

ωIn − i(ω + ωRn
)

)

+ f(ω), (4.11)

where f(ω) for large values of |ω| decays like O(1/|ω|2). So for t > 0, the Fourier transform

of πij(ω) is

πij(t) =

∞
∑

n=0

(

an ije
−iωRn

t + a∗n ije
iωRn

t
)

e−ωIn
t, (4.12)

which will match with the prediction of the quasinormal modes if ± ωRn
− iωIn , with ωIn > 0

are the quasinormal mode frequencies in the scalar channel when the wavelengths vanish.

This spectrum in the scalar channel has been numerically calculated in [27, 29]. 10

The coefficients of other singular terms, like log(br − 1)2, for instance, in Gµν in ingoing

Eddington-Finkelstein metric at this order, should also take the form,

∫ ∞

−∞

dω e−iωvD(1)(ω)πij(ω) = 0, (4.13)

where D(1)(ω) is the coefficient of the log(br − 1)2 term in the of F (1)(r, ω) obtained in the

previous section. We require that the analytic continuation of D(1)(ω) also should have

simple zeroes at the same points ± ωRn
− iωIn in the lower half complex plane. We recall

that, in the purely hydrodynamic case, for instance, at the second order in the derivative

expansion, the analogous coefficient was a second order polynomial in γ (i.e. 4πη/s), which

had a simple zero at γ = 1, just like the coefficient of the log(br−1) term. Thus the regularity

condition (4.8) should provide sufficient condition for cancellation of all divergent terms.

To summarize, we see that at the first order in the amplitude expansion, regularity

analysis at the late-time horizon simply implies that the metric perturbations are composed

10In [27], it was also found that the quasinomal spectrum at zero wavelengths in the scalar channel is well
approximated by 2πTn (±1− i) for large n.
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of the infinite tower of quasinormal modes in the scalar channel with zero wavelengths.

To check this explicitly, we need to find the power series (4.9) defining D
(1)
R (ω) about

ω = 0 explicitly. We have been able to define this implicitly as D
(1,n)
R are the coefficients of

the log(br − 1) terms of F (1,n)(r), which have been obtained through the recursion relation

(3.14). If we can find an explicit recursion relation in terms of D
(1,n)
R directly, we will be able

to see how we can analytically continue the power series (4.9) in the lower half complex ω

plane, and check explicitly if it has only simple zeroes and if they match with the quasinormal

spectrum. This explicit recursion relation is unfortunately a hard combinatorial problem and

we have been unable to solve it here.

4.2 The full regularity analysis

When the shear-stress tensor is purely hydrodynamic, the metric continues to be manifestly

regular at the late-time horizon in the ingoing Eddington-Finkelstein coordinates at the non-

linear level too, order by order in the derivative expansion. It is this feature that allows us to

determine the non-linear transport coefficients which do not affect the dispersion relations of

the hydrodynamic shear mode and sound modes, order by order in the derivative expansion.

At second order in the derivative expansion, in fact, we have three such non-linear transport

coefficients, whose values have been determined by this method [10].

An arbitrary quasinormal mode, even if it is non-hydrodynamic, can be expected to

be manifestly regular at the future horizon in ingoing Eddington-Finkelstein coordinates.

However, at the non-linear level, when we build solutions corresponding to a ”liquid” of such

fluctuations, we have no strong general argument why the solution should be manifestly

regular at the late-time horizon in ingoing Eddington-Finkelstein coordinates.

Fortunately, in our present case of homogeneous relaxation we can strongly argue that

the regularity of the metric at the late-time horizon will still be manifest in the ingoing

Eddington-Finkelstein coordinates, order by order in the amplitude expansion.

The metric in the Fefferman-Graham coordinates always maintains the symmetries of

the dual boundary configuration, in this case the symmetry under spatial translations and

rotations. However, this metric is not manifestly regular at the late-time horizon even

when the regularity condition is satisfied. The change of coordinates which will achieve the

manifest regularity at the late-time horizon can also be expected to respect the symmetries of

the dual boundary configuration. This means that the spatial Fefferman-Graham coordinates

zi’s should translate to the new spatial coordinates xi’s in order to maintain manifest spatial

translation and rotational invariance up to rotations and shifts which depend on the new

radial coordinate r and new time coordinate v only. So,

zi = Ri
j(r, v)x

j + Si(r, v). (4.14)
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However, it is not possible to write an orthogonal matrix Ri
j and a shift vector Si using just

πij and its derivatives. The rotational matrix and the shift vector, therefore are constants,

in which case of course the metric remains invariant.

Further, to maintain manifest spatial translational and rotational symmetries, we obvi-

ously require that the Fefferman-Graham radial coordinate ρ and time-coordinate t, should

be translated to new radial coordinate r and time coordinate v without involving the spatial

coodinates, so that both ρ and t will be functions of r and v only. Besides, we want manifest

regularity only at the future horizon and not at the past horizon. So the obvious choice is the

ingoing Eddington-Finkelstein gauge where grv = gvr = 1 (rather than -1) and grr = gri = 0,

as at the zeroth order this choice makes the regularity at the future horizon manifest. We

can expect this choice to achieve manifest regularity at the future horizon to all orders in

the amplitude expansion.

Repeating the analysis at the linear level or at the first order in the amplitude expansion,

the regularity should be guaranteed by the vanishing of a certain singular term in the series

expansion in r of Gµν in the ingoing Eddington-Finkelstein coordinates, otherwise we cannot

guarantee regularity at all times. Further, the choice of this singular term can be made by

doing the regularity analysis at the linear level, so the regularity condition up to any given

order in the amplitude expansion is the vanishing of the coefficient of the log(br − 1) term

in the traceless and transverse-transverse part of Gµν in the ingoing Eddington-Finkelstein

metric.

Clearly, the regularity condition up to second order in the amplitude expansion can be

written in the form,

CR ij(t) = b2
∫ ∞

−∞

dω e−iωt
[

D
(1)
R (ω)πij(ω)

+
b6

2

∫ ∞

−∞

dω1D
(2)
R (ω, ω1)

[

(πik(ω1)πkj(ω − ω1) + πik(ω − ω1)πkj(ω1)

−2

3
δijπrs(ω1)πrs(ω − ω1))

]

+O(δ3)
]

= 0, (4.15)

where all the integrations are done with our contour prescription which picks up contributions

only from poles in the lower half plane. Further, D
(2)
R (ω, ω1) is dimensionless like D

(1)
R (ω)

and can be readily identified as the coefficient of the log(br− 1) term in the series expansion

of F
(2)
1 (r, ω, ω1) at the late-time horizon r = 1/b.
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We can also series expand D
(2)
R (ω, ω1) near ω = ω1 = 0 as below,

D
(2)
R (ω, ω1) =

∞
∑

n=0

n
∑

m=0
n+m is even

(−ib)n(ω
n+m

2
1 (ω − ω1)

n−m

2

+ω
n−m

2
1 (ω − ω1)

n+m

2 )D
(2,n,m)
R , (4.16)

where D
(2,n,m)
R are dimensionless numbers and the sum over m runs over even integers only if

n is even, and odd integers only if n is odd, so that both (n+m)/2 and (n−m)/2 are integers.

Comparing with (3.27) and recalling that D
(2)
R (ω, ω1) is the coefficient of the log(br−1) term

of the series expansion of F
(2)
1 (r, ω, ω1) at r = 1/b, we obtain that D

(2,n,m)
R is the coefficient

of the log(br − 1) term of the series expansion of F
(2,n,m)
1 (r) at r = 1/b. For instance,

D
(2,0,0)
R = 1/2, etc. (4.17)

Given the explicit recursion relations for F
(2,n,m)
1 (r)s given by (3.29) and (2.57), we in-

deed obtain recursion relations for D
(2)
R (ω, ω1) implicitly. A more explicit answer, which is

essentially a combinatorial question, will tell us how we can analytically continue the series

(4.16) in the lower half complex ω and ω1 planes, to obtain the regularity condition explicitly

through the Fourier transform (4.15). Unfortunately, we have not been able to achieve this

here.

However, the series expansion (4.16) allows us to write the regularity condition (4.15) up

to second order in the amplitude expansion in the following form,

CR ij(t) = b2
∞
∑

n=0

bnD
(1,n)
R

(

dt

dt

)n

πij

+b6
∞
∑

n=0

n
∑

m=0
n+m is even

D
(2,n,m)
R bn

n
∑

a,b=0
a+b=m
|a−b|=m

[

(

d

dt

)a

πik

(

d

dt

)b

πkj

−1

3
δij

(

d

dt

)a

πpq

(

d

dt

)b

πpq

]

+O(δ3) = 0, (4.18)

where again the sum over m is over even integers only when n is even, and over odd integers

only if n is odd, so that both a and b are integers. Further, the reader may recall that the

above equation has been derived in the global comoving frame where the velocity of the flow

vanishes. However, this equation can be also written in a Lorentz-covariant form, with t

replaced by −u.x and d/dt replaced by u · ∂. Also the covariant form of πij is πµν , which by

definition is such that its non-vanishing part is the projection to the spatial plane orthogonal

46



to uµ, i.e. P ρ
µ P σ

ν πρσ, with P ρ
µ being the spatial hyperplane projection tensor uµu

ρ + δ ρ
µ .

The regularity condition in gravity stated here, which is the vanishing of the log(br−1) term

in the series expansion of traceless and transverse part of Gµν , is also Lorentz-covariant and

therefore automatically yields this form.

The non-linear terms in this equation of motion for πij(t) can have drastic effects. A

specific question can be elegantly framed in the Fourier space. We know from the discussion

in the previous subsection that the regularity condition at the linear order implies that

πµν(ω), when analytically continued as a function of ω in the LHP, should have an infinite

series of discrete poles implying exponential decay in real time. The question is how the

behavior is modified at the non-linear level, do the residues of the poles get related and the

subleading O(1/ω2) asymptotic behavior constrained by the non-linear corrections, or is the

modification more radical, like appearance of branch cuts, etc.?

We conclude our regularity analysis here by emphasizing again that the eq (4.18) is valid

only when the amplitude of the non-hydrodynamic πij is small compared to the pressure,

though its time derivatives can be large. Further, such solutions should be smoothly con-

nected to the equilibrium solution, where πij = 0, because the dual metric in gravity from

which this eq (4.18) has been obtained, is connected to the equilibrium solution by smooth

variation of the amplitude perturbation parameter. This also implies that the meaningful

solutions equilibrate at late-time. It thus makes no sense, for instance, to look for time-

independent solutions to (4.18) truncated up to second order in the amplitude expansion,

though such non-trivial solutions discrete up to constant spatial rotations exist. Besides, one

can also check that, for this instance, the amplitude is of O(1) and hence the perturbation

expansion can not be trusted anyway.

4.3 Extracting new phenomenological parameters

In the case of the Boltzmann equation, as discussed in the Introduction, we can construct

conservative solutions [15] for homogeneous relaxation, where we can obtain an equation of

motion for the shear-stress tensor πij(t), such that any solution of this equation lifts to a

unique solution of the full Boltzmann equation.

The shear-stress tensor πij is actually the local symmetric and traceless rank two veloc-

ity moment tensor of f(x, v), the quasiparticle distribution function. In the homogeneous

solutions of the Boltzmann equation, the hydrodynamic variables are constant in space and

time. Further, in the conservative homogeneous solutions πij(t) obeys an equation of motion
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which can be obtained order by order in the amplitude expansion and takes the form 11,

dπij

dt
= B(2)(ρ, T )πij +B(4,2,2)(ρ, T )

(

πikπkj + πjkπki −
2

3
δijπlmπlm

)

+O(δ3), (4.19)

where B(2) and B(4,2,2) can be calculated from the collision kernel of the Boltzmann equation

as functions of the thermodynamic variables, the density ρ and the temperature T , and

O(δ3) denote terms third order in the amplitude expansion and beyond [15]. We recall that

the velocity is constant, and in a Lorentz covariant notation, t = −u · x and d/dt = u · ∂.
Also the covariant form of πij is the non-vanishing part of πµν , which is the projection to

the spatial plane orthogonal to uµ, i.e. P ρ
µ P σ

ν πρσ, with P ρ
µ being the projection tensor

uµu
ρ + δ ρ

µ . In the conservative solutions, all velocity moments of f(x, v) other than the

constant hydrodynamic variables are algebraic functions of πij and their time derivatives, so

they do not have independent dynamical parts.

The important difference of (4.19) derived via the Boltzmann equation which holds at

small ’t Hooft coupling, from (4.18) which holds at large ’t Hooft coupling λ, is this equation

is only first-order in time. In fact, we know that such a Boltzmann equation is equivalent to

perturbative non-Abelian gauge theory [16, 17] at sufficiently high temperature, so this is in-

deed a feature of perturbative non-equilibrium non-Abelian gauge theories. The higher order

time derivatives in (4.18) therefore have their origins in the intrinsic energy-time uncertainty

of quantum dynamics going beyond the semiclassical approximation in the Boltzmann equa-

tion, according to which we cannot define the energy of the excitation at short time scales.

As of now, we do not know how to capture these effects in non-equilibrium non-Abelian

gauge theories systematically.

In case of a general inhomogeneous conservative solution, πij(x, t) can be split as π
(nh)
ij (x, t)+

π
(h)
ij (x, t). Here, π

(h)
ij is purely hydrodynamic and is given as an algebraic function of the hy-

rodynamic variables and their spatial derivatives in the derivative expansion (in relativistic

case, this is true only in a local inertial frame where the local mean velocity of the quasipar-

ticles vanishes). On the other hand π
(nh)
ij satisfies a equation of motion which is first order

in time derivative (in the relativistic case only in the mentioned local inertial frame), and

can be expanded in both the amplitude and derivative expansions. Both can be obtained

systematically from the Boltzmann equation. In both cases, the derivative expansion refers

to the spatial derivatives also in a local inertial frame where the local mean velocity vanishes.

Because the Boltzmann equation itself is first-order in time, all higher time derivatives can

be eliminated in favour of spatial derivatives in the conservative solutions, in an appropriate

11Here we assume that the Boltzmann equation is that of an underlying continuum system, it is not for
instance a lattice Boltzmann equation. Further, the continuum system is not subject to external forces and
its equilibrium state is isotropic. All these assumptions apply to gauge-theory plasmas.
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local inertial frame just mentioned, so that the equation of motion of the hydrodynamic

variables and the shear-stress tensor are first order in time. All other velocity moments

of f(x, v) are algebraic functions of the hydrodynamic variables, the shear-stress tensor

and their spatial derivatives, in the same local inertial frame, so do not have independent

dynamical parts.

The amplitude and derivative expansion become complicated if we go beyond the Boltz-

mann approximation. The conservative solutions should also exist beyond this approxima-

tion, as at large N and ’t Hooft coupling λ this would naturally explain why in the super-

gravity approximation the universal sector of non-equilibrium states can be determined from

the dynamics of energy-momentum tensor alone. This has already been discussed in the

Introduction. However, there is no reason why the equations of motion for hydrodynamic

variables and πij should be only first-order in time in a local inertial frame where the mean

velocity vanishes.

In presence of higher order time derivatives in the kinetic equation, we cannot treat

the time derivatives of the non-hydrodynamic π
(nh)
ij perturbatively. Though π

(nh)
ij becomes

arbitrarily small compared to the pressure close to equilibrium, its time derivatives do not

become small with respect to average time between quasiparticle collisions even close to

equilibrium, as it decays exponentially at linear order. This means that we should treat the

derivatives of hydrodynamic variables perturbatively (including time derivatives), but we

can treat the amplitude of π
(nh)
ij perturbatively only if we sum over all its time derivatives.

However, close to equilibrium, we can consider a regime where the spatial derivatives are

small.

At large ’t Hooft coupling λ and large N , we can expect that the conservative solutions

will form the universal sector of non-equilibrium states dual to the solutions of pure gravity

with regular future horizons. In that case, we get the desired equation of motion of the

energy-momentum tensor from the regularity condition on the late-time horizon in the bulk

metric. In the purely hydrodynamic case before, and here in the case of homogeneous

relaxation, such equations of motion have been thus obtained from gravity. However, we

can also write down a phenomenological equation for the energy-momentum tensor which

will hold for an abitrary configuration which equilibrates in the future. In absence of a

known Boltzmann-like equation or any well-defined reliable formalism in the strongly coupled

regime, the only guide to such a phenomenological equation is conformal covariance.

In [15], we did propose such a phenomenological equation for the energy-momentum

tensor, such that for the right values of the dimensionless phenomenological coefficients, it

should reproduce all solutions of gravity with regular future horizons which equilibrate at

late-time. However, we did not realize that we need to sum over all time derivatives of

the non-hydrodynamic shear-stress tensor at each order in the amplitude expansion. This
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did not allow us to compare with quasinormal modes correctly. We rectify this here and

see how the analysis of homogeneous relaxation fixes some of the general phenomenological

coefficients.

To begin with, we will split the relativistic shear-stress tensor πµν into a purely hy-

drodynamic part π
(h)
µν algebraically determined by hydrodynamic variables and π

(nh)
µν whose

evolution has dependence on both hydrodynamic and non-hydrodynamic parameters, and is

therefore independent of the hydrodynamic variables dynamically. The amplitude expansion

is concerned with only the non-hydrodynamic part, the dimensionless expansion parameter

being its ratio with the pressure at late-time equilibrium. The hydrodynamic π
(h)
µν is by

definition an algebraic functional of the hydrodynamic variables and their derivatives (even

time derivatives). The derivative expansion is concerned with spatial and temporal rate of

variation of the hydrodynamic variables and only spatial rate of variations of π
(nh)
µν , compared

to the temperature at late-time equilibrium. Note the spatial variation of even π
(nh)
µν is small

close to equilibrium, but its time derivative is not.

Time-derivatives involve (u · ∂), however if this acts on a Weyl-covariant quantity like

π
(nh)
µν , the resulting quantity will not be Weyl-covariant. So, we need to define a Weyl-

covariant form of the time derivative D, following [37], whose action on a Weyl-covariant

tensor Aµν turns out to be

DAµν = (u · ∂)Aµν +
4

3
Aµν(∂ · u)−

(

A β
µ uν +A β

ν uµ

)

(u · ∂)uβ . (4.20)

Therefore, more precisely by time derivatives of π
(nh)
µν we will denote successive actions of

the Lorentz invariant and Weyl-covariant derivative D. The spatial derivatives will denote

actions of P ν
µ ∂ν , where P

ν
µ as before denotes uµu

ν+δ ν
µ , the projection on the spatial plane

orthogonal to uµ.

The conservation of energy-momentum tensor implies

∂ν

(

3uµuν + Pµν

4b4
+ π(h)

µν + π(nh)
µν

)

= 0, (4.21)

where b = 1/(πT ) as before, and all quantities are dependent on both space and time

coordinates. We also use the earlier field definitions of T and uµ, such that (3/4)(πT )4

is the local energy density and uµ is the local four-velocity of energy-transport so that

uµπ
(h)
µν = uµπ

(nh)
µν = 0. The traceless-ness of the energy-momentum tensor also implies that

Tr(π(h)) = Tr(π(nh)) = 0. With these conditions, π
(nh)
µν has five independent components

only. As π
(h)
µν is an algebraic function of uµ and T , and their derivatives, the nine independent

variables parametrising the energy-momentum tensor are T , the three independent variables

of the four velocity uµ and the five independent components of π
(nh)
µν .
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The form of the hydrodynamic part of the shear-stress tensor can be determined by Weyl

covariance and the transport coefficients can be fixed by the regularity condition at the future

horizon, order by order in the derivative expansion. Up to second order in the derivative

expansion, we obtain

π(h)
µν = − 2

b3
σµν +

2− log 2

b2
Dσµν

+
2

b2

(

σ α
µ σαν −

1

3
Pµνσαβσ

αβ

)

+
log 2

b2
(σ α

µ ωαν + σ α
ν ωαµ) +O(ǫ3), (4.22)

where O(ǫ3) denotes terms higher order in the derivative expansion (where the expansion

parameter ǫ is the typical length scale of variation with respect to the temperature), and

σµν =
1

2
P α
µ P β

ν (∂αuβ + ∂βuα)−
1

3
Pµν(∂ · u),

ωµν =
1

2
P α
µ P β

ν (∂αuβ − ∂βuα). (4.23)

The equation of motion of π
(nh)
µν should be such that it is (a) Weyl-covariant and (b) we

can consistently put π
(nh)
µν = 0, so that we can go to the pure hydrodynamic limit. In the

case of the conservative solutions of the Boltzmann equation, this is always possible. Even

in the case of gravity, we can construct solutions which are regular order by order in the

derivative expansion when π
(nh)
µν = 0, hence requirement (b) is essential.

With these two requirements we can write the most general equation of motion for π
(nh)
µν

as

(

∞
∑

n=0

D
(1,n)
R

1

bn
Dn

)

π(nh)
µν =

λ1

2b

(

π(nh)α
µ σαν + π(nh)α

ν σαµ −
2

3
Pµνπ

(nh)
αβ σαβ

)

(4.24)

+
λ2

2b

(

π(nh)α
µ ωαν + π(nh)α

ν ωαµ

)

− 1

b4

∞
∑

n=0

n
∑

m=0
n+m is even

D
(2,n,m)
R

1

bn

n
∑

a,b=0
a+b=n
|a−b|=m

[

Daπ(nh)α
µ Dbπ(nh)

αν

−1

3
Pµν Daπ

(nh)
αβ Dbπ(nh)αβ

]

+O(ǫ2δ, ǫδ2, δ3).

Here, we note that the RHS is at least linear in the amplitude expansion (where the expansion
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parameter δ is the ratio of the typical non-hydrodynamic shear-stress with respect to the

equilibrium pressure), so that π(nh) can be put to zero consistently. Further we have included

terms only up to first order in derivative expansion on the RHS. The terms explicitly shown

in RHS are thus O(ǫδ) and O(δ2). We cannot include any term like ∂µπ
(nh)
µν here because by

(4.21) it gets related to purely hydrodynamic quantities and their derivatives. By definition,

all the phenomenological parameters λ1, λ2, D
(1,n)
R and D

(2,n,m)
R are dimensionless. Further

the condition n+m is even in the summation, denotes that sum over m is over odd integers

only when n is odd and is over even integers only when n is even, so that both (n+m)/2 and

(n−m)/2, i.e. a and b, are integers. This phenomenological equation is the right equation to

consider so that we have indeed summed over all time derivatives of the non-hydrodynamic

shear-stress tensor correctly.

This equation (4.24), together with (4.21) and (4.22) give the complete equations of

motion for the energy-momentum tensor in the general case. Further for the right choices of

the phenomenological coefficients in (4.24), the dual solution in gravity should have regular

future horizons.

We note that when uµ and T are constants in space and time, and the fluid is at rest,

the equation for conservation of energy and momentum given by (4.21) implies that π
(nh)
00 =

π
(nh)
0i = π

(nh)
i0 = 0, and π

(nh)
ij is a function of time only. Also, in such a case, the Weyl-

covariant derivative D reduces to an ordinary time derivative. We can readily see that the

equation (4.24) rduces to (4.18), so that we recover the regularity condition at the late-time

horizon for metrics dual to homogeneous relaxation.

We cannot determine the phenomenological coefficients λ1 and λ2 appearing in (4.24) by

considering homogeneous configurations as we have done here, because the corresponding

terms involving derivatives of the velocity like σµν and ωµν vanish, as the velocity remains

constant. We can determine these coefficients by considering inhomogeneous configurations

and adapting our method, provided we can argue that the metric should be regular in the

ingoing Eddington-Finkelstein coordinates.

5 Outlook for RHIC and ALICE

We briefly mention here the relevance of this work for the great challenge of modelling the

space-time evolution of the matter formed by ultra-relativistic heavy ion collisions at RHIC

and ALICE. Experiments at RHIC suggest the validity of the following picture [38] : (i) a

large fraction of the initial kinetic energy of the colliding ions is thermalized astonishingly fast

(in time≤ 1 fm) forming a locally equilibrated hot and dense fireball parametrized by a profile

of the hydrodynamic variables - namely the temperature, four-velocity and chemical potential

fields, (ii) the strongly interacting fireball undergoes hydrodynamic expansion which can be
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described by the hydrodynamic equations like the Navier-Stokes’ equation, and (iii) the initial

transverse hydrodynamic flow at the time of local thermalization in most cases vanishes.

Most of the data at RHIC is in good agreement with this simplistic picture especially in the

mid-rapidity region, i.e. for the most central collisions at the highest beam energy of
√
sNN =

200 GeV. However, despite the success in explaining the transverse momentum spectra of

hadrons, the elliptic flow coefficient, etc., this does not reproduce pion interferometric data

like HBT radii leading to the well-known RHIC HBT puzzle.

It is necessary to have a better phenomenological model for the space-time evolution

of the fireball to explain the data completely, and also to reduce theoretical uncertainties.

The best theoretical tool at hand for studying evolution of strongly coupled matter of gauge

theories in real time is the AdS/CFT correspondence. It is well-known that the AdS/CFT

correspondence gives η/s = 1/4π [4], while the current analysis of experimental data suggests

1 < 4π
(

η/s
)

< 2.5 for temperatures probed at RHIC [39].

Here we will propose that the AdS/CFT correspondence can be used to develop a com-

plete phenomenology for the evolution of the strongly coupled matter, describing both the

late stages of local thermalization and the subsequent hydrodynamic expansion in an unified

framework. These phenomenological equations involve a closed set of equations for evo-

lution of the energy-momentum tensor and the baryon number charge current alone. For

simplicity, if we assume that the baryon number chemical potential is zero throughout the

evolution, then the full set of phenomenological equations are (4.21), (4.22), (4.24). It should

be straightforward to include the dynamics of the charge current but we will not attempt

this here.

The advantage of our proposal is that there is a very natural way to connect the expansion

of the fireball with any model which describes the early stages of the collision process, as for

instance the parton cascade model [40]. All that is needed is to match the evolution of the

energy-momentum tensor and conserved charge currents before and after the matter enters

in the strongly coupled phase of evolution. Importantly, the matching with the initial regime

does not require the energy-momentum tensor to be hydrodynamic.

To state more concretely, the space-time evolution of the matter till chemical and kinetic

freezeout with subsequent hadronization can be divided into two phases :

• The entry into strongly coupled phase : This phase describes the very initial stage

of particle production at high energies and can probably be described in the perturba-

tive framework as in the parton cascade model [40]. The energy-momentum tensor can

be computed by such models and the local temperature fields can be obtained from the

Landau-Lifshitz decomposition of the energy-momentum tensor. As mentioned before,

any arbitrary energy-momentum tensor can be written in the Landau-Lifshitz form

and thus we can always obtain the local effective temperature. However, this requires
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using an appropriate equation of state for the initial phase. The effective temperature

will automatically give us when the matter locally enters the strongly coupled phase.

A more detailed analysis of this initial phase is beyond the scope of this paper.

• The fireball formation and its expansion : Once the matter enters into the

strongly coupled phase, we can use the phenomenological equations from AdS/CFT to

describe both the local thermalization and late hydrodynamic expansion in an unified

framework. The initial conditions can be obtained by matching the energy-momentum

tensor with the model describing the initial stage 12. As the matter is expanding and

boost invariance is a good approximation for central collisions, we may use the boost

invariant versions of eqs. (4.21), (4.22), (4.24).

Homogeneous relaxation in the boost-invariant regime which estimates the time for

local thermalization or fireball formation has been studied in the linearized approxima-

tion in [41]. Furthermore, as also shown in [41], the homogeneous quasinormal modes

in the static case can be mapped readily to boost invariant geometries. The boost-

invariant version of our equations, as discussed here, must reproduce these linearized

fluctuations of the boost-invariant geometry which are homogeneous in transverse co-

ordinates. The lowest static homogeneous quasinormal mode gives an estimate of the

time for local equilibration, i.e. fireball formation. In the boost invariant case, the

time-dependence in the linearized plane wave approximation is not exponential, but

given by a Bessel function as in
√
τJ± 3

4

(

3
2
ωτ

2
3 (πTf)

− 1
3

)

, where ω ≈ 2.74667(πTf) and

Tf is the fireball temperature which is about 175 MeV at RHIC. At late time, this

reduces to a proper-time damping of the form : exp
(

− 3
2
· 2.74667 · (πTfτ)

2
3 ·
)

.

In future work, we would like to study the boost-invariant version of the non-linear

homogeneous equations given by (4.24) and see numerically how this behavior both

qualitatively and quantitatively changes due to non-linearities. Further, it should be

also possible to include inhomogeneities in transverse directions and also study the

transition of the fireball to the hydrodynamic regime using the full set of equations

- (4.21), (4.22), (4.24). In practice, one needs to use these equations in a coordinate

system (as in [6]) better adapted for the late equilibrium state of the fireball which

is an ideal fluid undergoing boost-invariant expansion. This coordinate system com-

prises of the proper time coordinate τ of the late time expansion, the coordinate y

parameterizing rapidity, and the two transverse coordinates x1 and x2.

12This matching is however complicated as the equations of evolution involve time derivatives of arbitrary
orders.
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6 Discussion

From the point of view of gauge/gravity duality, our work leads a few open questions. To

conclude, we will discuss two of the most immediate and important of them here.

• Is there an entropy current for homogeneous relaxation? In the case of pure

hydrodynamic behavior, it is known that the horizon in the bulk metric also gets

deformed mildly, and the deformation can be calculated order by order in the derivative

expansion. This has been shown in [42], where it has been also demonstrated that the

pull-back of the Hodge-dual of the area form on the horizon world-volume to the

boundary gives the construction of a family of entropy currents whose divergences are

positive-definite, order by order in the derivative expansion.

This is an interesting finding, because to our knowledge, this gives the first construction

of an exact entropy current in the hydrodynamic regime, beyond any approximation

like the limit of validity of the Boltzmann equation. An interesting question is whether

gauge/gravity duality implies the existence of such entropy currents at large N , even

beyond the hydrodynamic regime.

In our case of spatially homogeneous relaxation, even with the explicit metrics obtained

here, this is a question which is not easy to answer. This is because the location of the

horizon r(t) as a function of time will fluctuate only perturbatively in the amplitude

expansion, but its time derivatives will not be under control. Since we have summed

the time derivatives only recursively here, this does not reveal the global nature of the

horizon even perturbatively in the amplitude expansion. We would have to tackle this

question possibly numerically later.

Alternatively, we can also analyze the general phenomenological eqs. (4.21), (4.22)

and (4.24) and find conditions under which these imply existence of entropy current(s).

Then, one can verify if these conditions are satisfied by the phenomenological coeffi-

cients obtained by gauge/gravity duality.

• What are the field-theoretic definitions of the general phenomenological

coefficients? Recently, it has been possible to obtain a systematic procedure for

constructing Kubo-like formulae for all hydrodynamic transport coefficients (including

those which appear only non-linearly) in terms of the low frequency and large wave-

length expansion of n-point correlation functions of the energy-momentum tensor [43].

It has so far not been possible to define such general formulae for non-hydrodynamic

parameters beyond any approximation scheme.

Our phenomenological coefficients (including those involved in homogeneous relax-

ation), can be in principle obtained by constructing conservative solutions of non-
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equilibrium field theory. However, we have been able to construct these solutions in

[15] in the perturbative regime in non-Abelian gauge theories only. It would be in-

teresting to see if we can also find a non-perturbative method of constructing these

conservative solutions and relate the phenomenological coefficients to n-point correla-

tion functions of the energy-momentum tensor.

If the above is possible, it would also provide a non-trivial consistency check of gauge/gravity

duality. The n-point correlation functions of the energy-momentum tensor can be inde-

pendently calculated by gauge/gravity duality, so we can obtain the phenomenological

coefficients through them and see if they match with the values required by the regu-

larity condition on the future horizon.

• Is the ingoing Eddington-Finkelstein coordinate system the right choice for

all configurations which equilibrate? It would be certainly of interest to see if

the bulk metric is manifestly regular at the future horizon in the ingoing Eddington-

Finkelstein coordinate system, for general configurations which equilibrate at late time.

If this is so, we can readily extend our proof to show that the general regularity

condition for the future horizon in the bulk, is indeed given by (4.21), (4.22) and

(4.24), for the right values of the phenomenological coefficients.
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A The Fefferman-Graham vector and scalar equations

at the second order in the amplitude expansion

The vector eq. (2.6) at the second order in the amplitude expansion reduces to

ω

(

Vl(ρ) + 3
∂

∂ρ

)

f
(2)
2 (ρ, ω, ω1) = ωV1r(ρ)f

(1)(ρ, ω1)f
(1)(ρ, ω − ω1)

+V2r(ρ)(ω + ω1)f
(1)(ρ, ω − ω1)

∂

∂ρ
f (1)(ρ, ω1)

+V2r(ρ)(2ω − ω1)f
(1)(ρ, ω1)

∂

∂ρ
f (1)(ρ, ω − ω1),(A.1)
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where

Vl(ρ) =
12ρ3

(4b4 − ρ4)
, V1r(ρ) =

4ρ3b4(4b4 + 3ρ4)

(4b4 − ρ4)(4b4 + ρ4)2
, V2r(ρ) =

b4

(4b4 + ρ4)
. (A.2)

A close inspection shows that the right hand side of (A.1) is symmetric under the exchange

of ω1 with ω − ω1 as it should be.

The scalar eq. (2.7) at the second order in the amplitude expansion reduces to

(

S1l(ρ) + S2l(ρ)
∂

∂ρ
+ S3l(ρ)

∂2

∂ρ2

)

f
(2)
2 (ρ, ω, ω1)

+

(

S4l(ρ) + S5l(ρ)
∂

∂ρ
+ S6l(ρ)

∂2

∂ρ2

)

f
(2)
3 (ρ, ω, ω1)

= S1r(ρ)f
(1)(ρ, ω1)f

(1)(ρ, ω − ω1) + S2r(ρ)
∂

∂ρ
f (1)(ρ, ω1)

∂

∂ρ
f (1)(ρ, ω − ω1)

+S3r(ρ)

(

f (1)(ρ, ω1)
∂

∂ρ
f (1)(ρ, ω − ω1) + f (1)(ρ, ω − ω1)

∂

∂ρ
f (1)(ρ, ω1)

)

+S4r(ρ)

(

f (1)(ρ, ω1)
∂2

∂ρ2
f (1)(ρ, ω − ω1) + f (1)(ρ, ω − ω1)

∂2

∂ρ2
f (1)(ρ, ω1)

)

, (A.3)

where,

S1l(ρ) =
24ρ2(4b4 − ρ4)

(4b4 + ρ4)3
, S4l(ρ) =

8ρ2(192b12 + 48ρ4b8 + 36ρ8b4 + r12)

(4b4 − ρ4)4(4b4 + ρ4)
,

S2l(ρ) =
3(4b4 + 5ρ4)

ρ(4b4 + ρ4)2
, S5l(ρ) =

(−16b8 + 48ρ4b4 + 5ρ8)

ρ(4b4 − ρ4)3
,

S3l(ρ) = − 3

(4b4 + ρ4)
, S6l(ρ) =

(4b4 + ρ4)

(4b4 − ρ4)2
. (A.4)
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