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ABSTRACT

For millimetre to micron sized bubbles, floating at the free surface of different low viscosity fluids with different surface tensions, and then
collapsing, we study the ensuing expansion of the outer radius of the hole (ro) at the free surface, as well as its velocity of expansion (uo). Since
the thin film cap of the bubble disintegrates before the hole in it reaches the static rim, the hole expansion at intermediate times occurs as if it
initiates at the bubble’s static rim of radius Rr ; the evolution of ro then results to be a strong function of gravity, since Rr depends strongly on
the bubble radius R. A scaling analysis, which includes the increase in the tip radius due to mass accumulation and the resulting change in the
retraction force, along with the gravity effects by considering the hole radius in excess of its initial static radius, re = ro − Rr , results in a novel

scaling law re/R ∼ (t/tc)4/7, where tc ≙
√
ρR3/σ is the capillary time scale; this scaling law is shown to capture the evolution of the hole radii

in the present study. The dimensionless velocities of hole expansion, namely, the Weber numbers of hole expansion, Weo ≙ ρu2oR/σ, scale
as Weo ∼ (t/tc)−6/7, independent of gravity effects, matching the observations. We also show that these Weber numbers, which reduce with
time, begin with a constant initial Weber number of 64, while the viscous limit of the present phenomena occurs when the bubble Ohnesorge
number Oh ≙ μ/√σρR ≃ 0.24.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5139569., s

I. INTRODUCTION

Bubbles floating at a liquid surface break after a short time
due to hole formation in their upper thin film cap, resulting in an
unstable cavity at the surface; the mouth of the cavity expands, cre-
ating an expanding hole at the free surface. The phenomenon behind
this hole expansion, despite its importance as a unique free surface
singularity, remains largely unexplored. Hole formation from free
surface bubbles also has practical applications in materials science,1

cell death in biological reactors,2 self-assembly of particles,3 emul-
sion formation,4 and many geophysical situations.5,6 In the present
work, we study the expansion of a hole at the surface of different low
viscosity fluids with different surface tensions due to the breakup of
a bubble of different sizes. Novel scaling laws—different from those
observed for the analogous phenomena of neck expansion in drop
and bubble coalescence—are observed due to the non-negligible

effect of the accumulation of fluid at the retracting tip of the rim,
as well as due to the gravitational effect, which occurs through the
static shape of the bubble.

Three regions can be identified in the geometry of a bubble
at a free surface, namely, the spherical thin film cap, the menis-
cus projecting above the horizontal liquid surface, and the bubble
cavity below the liquid surface; the three surfaces join at a circu-
lar ring termed the rim [see Figs. 1(a) and 2(a)]. The thin film cap
is of approximately uniform thickness of the order of h = 10 nm–
10 μm, while the thickness of the meniscus increases with distance
away from the rim.7 A hole initiates in the thin film cap—with
processes similar to those discussed by Vaynblat et al.8 and Thete
et al.9—usually at its base due to gravitational drainage and
Marangoni convection,7 which then expands rapidly over the thin
film to reach the rim and then proceeds along the meniscus and
then along the horizontal liquid surface [see Figs. 1(b) and 1(e)
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FIG. 1. Hole expansion at the free sur-
face from a bubble of R = 2.32 mm (Bo
= 0.73) in water. (a) The static bubble
shape, (b) hole expansion in the thin film
and its subsequent fragmentation, (c)
hole expansion in the meniscus region,
and [(d) and (e)] hole expansion along
the free surface. Each image width is
9.2 mm. A movie showing a magnified
view of hole expansion for the sequence
is attached (f). Multimedia view:
https://doi.org/10.1063/1.5139569.1

(Multimedia view)]. In up to centimeter sized bubbles, since the vari-
ation of h is negligible along the cap, and since the film is of low
mass resulting in negligible centrifugal effects, the hole expansion in
the spherical thin film cap is known to occur with a constant veloc-

ity equal to the well-known Taylor–Culick velocity UTC ≙
√
2σ/ρh,

where σ is the surface tension and ρ is the fluid density.7,10–13 For a
bubble at the surface of a low viscosity fluid like water, UTC in the
thin film cap is large, of the order of 50 m/s.7 When viscous effects

become important at the film Ohnesorge number Ohf ≙ μ/
√
σρh

≫ 1, where μ is the dynamic viscosity, the velocity of hole expan-
sion in the film is expected to deviate fromUTC.

14 We do not discuss
these viscous cases further since our study is for low viscosity fluids;
the reader is referred to Refs. 15 and 16 for hole formation in floating
bubbles in high viscous fluids.

Once the hole in the thin film encounters the rim, the veloc-
ity of its expansion changes from the constant UTC, since unlike the
thin film cap, the thickness of the meniscus increases with distance
from the rim [see Fig. 2(a)]. These changes have been proposed to
be analogous to those occur in the neck expansion in drop or bub-
ble coalescence.17 In drop coalescence, the neck expansion occurs in
an initial viscous regime where the expansion velocity scales as the
viscous-capillary velocity uμσ = σ/μ,18–20 which then later changes to
an inertial regime. In bubble coalescence in a viscous outer fluid, a√
t scaling of the neck radius has been recently observed during the

initial viscous stage as well as during the later inertial stage of neck
expansion;18,21 a similarity solution based explanation for the same
has also been provided.22

Considering the phenomena similar to the neck expansion in
drop coalescence, San Lee et al.,17 in the only available study of
long time expansion of the hole at a liquid surface from bubble

breakup in low viscosity fluids, observed the dimensionless hole

radius rh/R ∼ (t/tc)1/2 at very low bubble sizes (25–49.4 μm), where

tc ≙
√
ρR3/σ is the inertial-capillary time scale, R is the equivalent

spherical radius of the bubble, and t is the time. The same scaling
is also found for the neck expansion in coalescence of drops at later
stages when rh > μ2/(ρσ) so that viscous effects become unimpor-
tant.18,19,23 This scaling occurs when a steady balance of inertial and
surface tension forces, ρu2h ∼ σ/(r2h/R), occurs at the neck during
the later stages of neck expansion, assuming that the height of the
neck region scales as r2h/R, where uh = drh/dt is the velocity of hole
expansion.24 Keller,25 while extending the Taylor–Culick analysis to
a film of varying thickness, specifically for the case of two coalescing
bubbles, where the neck height scaled as r2h/R, suggested this scal-
ing earlier using a more realistic unsteady momentum balance at the
expanding neck. Recently, Soto et al.26 observed a scaling of the neck
radius expansion in bubble coalescence with a less than

√
t depen-

dence on time t. They showed that such a scaling could occur due to
the restraining effect of the surface tension force due to the curvature
of the expanding neck in the azimuthal direction, as first suggested
by Thoroddsen et al.27 for drop coalescence.

However, there are important differences between the hole
expansion from a bubble at the free surface and the neck expan-
sion in coalescence of drops or bubbles. The hole expansion in the
case of drop or bubble coalescence is essentially a retraction of a
bridge of varying thickness from an initial zero radius. In the case of
hole expansion in floating bubbles, the expansion proceeds through
two regions, initially through the spherical thin film cap of con-
stant thickness and then through the meniscus of varying thickness
[see Figs. 1 (Multimedia view) and 2]; the effect of the initial hole
expansion in the thin film cap on the retraction of the rim is not
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FIG. 2. (a) Schematic of the static bubble at the free surface;
(b) zoomed-in view of the region within the dotted circle in
(a), showing the retracted rim in the meniscus region with
a bulge at its tip, creating an expanding hole at the free
surface; and (c) movement of the swell.

clear. Furthermore, the retraction of the rim starts from a finite
radius, equal to the static rim radius Rr of the bubble, as shown in
Figs. 1(a) (Multimedia view) and 2(a). Such a dependence of the
hole expansion on its initial condition Rr , with Rr being a func-
tion of the size of the bubble, would mean that the hole expansion
in the case of floating bubbles would have additional gravitational

effects, not present in drop or bubble coalescence. In addition, for
the usual case of bubbles floating in low viscosity fluids, the retrac-
tion of the rim would lead to accumulation of fluid at the tip of the
rim [see Fig. 2(b)], resulting in the surface curvature at the rim tip
to be different from its usually assumed value of R/r2h. Even though
such an accumulation leading to a toroidal bulge at the rim tip was
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FIG. 3. Schematic of the experimental setup.

proposed earlier14,24,28 and has been observed in experiments23 and
simulations16 of drop and bubble coalescence21 in low viscosity flu-
ids, surprisingly, the effect of this bulge on the scaling of rh has not
been studied extensively.

These differences in the hole expansion from bubbles at a liq-
uid surface from those in the neck expansion of drop or bubble
coalescence imply that the proposed t1/2 scaling,17 drawing analogy
with drop and bubble coalescence, is likely to be incomplete. The
phenomenon has remained largely unexplored, in spite of its impor-
tance as a unique free surface singularity in fluid mechanics, along
with its numerous applications. The only available study, by San Lee
et al.,17 since done over a small range of very small sized bubbles,
could not explore the gravitational effects in the hole expansion. In
the present study, we study the hole expansion from bubbles of dif-
ferent sizes at the surfaces of different low viscosity fluids having dif-
ferent surface tensions, namely, ethanol, water, and 55% glycerine–
water solution, so that the bubble Ohnesorge number Oh ≙ μ/√σρR
varies over an order of magnitude 0.003 ≤Oh ≤ 0.05;Oh≪ 1 ensures
that viscous effects are negligible in the intermediate times when
the hole expands over the horizontal free surface. The equivalent
spherical bubble radii of the bubbles are varied over 0.175 mm ≤ R
≤ 2.32 mm, which along with the surface tension difference in water
and ethanol, enable us to investigate the hole expansion over two
orders of magnitude range of Bond numbers 0.0042 ≤ Bo ≤ 0.74,
where Bo = ρgR2/σ. This range of Bo is further extended by also
including the data from San Lee et al.17 at Bo = 2 × 10−4. This large
range of Bo helps us to clarify the gravitational effects in hole expan-
sion, which we show to come from the dependence of the initial
static rim radius Rr on Bo. Such a conclusion also implies that the
initial hole expansion in the spherical film cap, with a velocity UTC,
seems to have no influence on the long term evolution of the hole on
the horizontal free surface. The hole expansion in the present case
occurs over a range of Weber numbers Weo ≙ ρu2oR/σ, 1.5 < Weo
< 71, and a range of Reynolds numbers Reo = ρuoR/μ, 22 < Reo <
2834, so that the capillary number Cao = Weo/Reo ≪ 1, where ro
is the outer radius of the hole [see Fig. 2(b)] and uo = dro/dt is the

velocity of expansion of ro; hence, inertia and surface tension domi-
nate the hole expansion process with viscous effects being negligible.
In such a situation, in contrast to the proposal of Anthony et al.21

that only the prefactor is affected, we show that the accumulation of
the fluid at the tip of the retracting rim changes the scaling of the
outer hole radius with time to ro ∼ t4/7, different from the usually
encountered t1/2 scaling.

II. EXPERIMENTAL CONDITIONS

The experiments were conducted on air bubbles of equivalent
spherical radii 0.17 mm < R < 4.1 mm, produced by pumping air
into glass capillaries in a transparent tank, which was filled with the
working fluid up to its brim level to avoid meniscus formation. The
experimental arrangement is shown in Fig. 3. Two different tanks
made of acrylic and glass with cross-sectional areas, 3.5 × 5 cm2

and 5 × 5 cm2, respectively, were used. Distilled water, ethanol, and
glycerol–water mixtures of 48%, 55%, 72%, and 86.8% glycerine con-
centration (herein after referred to as GW48, GW55, GW72, and
GW86.8) were used as the working fluids; the properties of these
fluids are given in Table I. Air was pumped into the capillaries by
a syringe pump, which was operated at a constant discharge rate
within the periodic bubbling regime.29 Precaution to minimize the

TABLE I. Properties of the working fluids at 20 ○C.

σ kg s−2 ρ kg m−3 μmPa s

Water 0.072 1000 1.01
Ethanol 0.022 789 1.14
GW48 (30 ○C) 0.068 1115 3.9
GW55 0.067 1140 8
GW72 (30 ○C) 0.064 1181 16.6
GW86.8 0.062 1226 116.8
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FIG. 4. The interaction of a rising bubble of R = 2.2 mm (Bo = 0.9) with the free surface in GW72. (a) Approach to the free surface, [(b) and (c)] oscillation at the free surface,
and (d) the static configuration. For similar Bo, the bubble collapses 4 s after (d). Grid size is 1 mm.

contamination of the interface was taken by changing the liquid
after each experimental run. Alignment of the capillary was main-
tained the same throughout an experiment to avoid variations in
bubble size.30 The experiments were conducted at 20 ○C and 30 ○C
in a temperature controlled laboratory.

The equivalent spherical radius R was calculated from the mea-
sured volume of the ellipsoidal bubble, as shown in Fig. 4(a), rising
through the fluid after it detaches from the capillary tip. The bub-
ble oscillates for a short time at the free surface [Figs. 4(b) and
4(c)] before becoming stationary [Fig. 4(d)]. Drainage in the thin
film cap31–34 occurs after the bubble becomes stationary to nucleate
a hole in the thin film cap. The hole nucleation occurs from sta-
tionary conditions since the bubble stays at the free surface for a
short time, which varied from 91 ms at Bo = 4.2 × 10−3 to more
than 1 s for Bo > 0.1, by which time the oscillations are damped
out. The hole in the thin film cap leads to its rapid retraction and
fragmentation, leaving an open cavity at the free surface [Fig. 1(b)
(Multimedia view)]. The mouth of this unstable cavity expands in
the radial direction creating an expanding hole at the free sur-
face, bordered by a swell at its periphery [see Figs. 1(c) and 1(e)
(Multimedia view)].

The outer radius of this expanding hole at the free surface
ro [see Fig. 1(d) (Multimedia view)] was estimated by measuring
the distance between the outer edges of the swells on the left and
right sides of the cavity, as shown in Fig. 1 (Multimedia view),
and halving this distance. Such measurements of ro from succes-
sive images captured by a high speed camera (La Vision ProHS for
≤19 000 fps and Photron SA4 for ≤100 000 fps) using high inten-
sity LED back lighting gave ro(t) as a function of time t. The image
acquisition rates met the condition that the time between succes-
sive frames ti = 1/fps < 1/∣duo/dr∣. The spatial resolution was such
that the size of each pixel p < uote, where te is the exposure time.
The lowest and highest resolutions of the images were 27 μm/pix
and 3.4 μm/pix, while the smallest measured ro was about 100 μm
at a resolution of 6 μm/pix. The error in radius measurement was
about 2 p.

The velocity of expansion of the hole radius uo = dro/dt was
obtained by differentiating curve fits to the ro vs t data, similar to
that shown in Fig. 5. The error in velocity estimation, since a curve fit
was used to estimate the gradient of ro vs t, was 2p/tf , where tf is the
time period over which the curve fit was calculated. These estimated
errors are shown in the subsequent plots. The origin of time was

chosen as the instant when the thin film has disappeared and the
static rim is exposed. As shown in Appendix C, the error involved
in fixing this origin, due to the finite frame rate of the image
acquisition, does not affect the results in any significant way.

III. GRAVITY EFFECTS ON HOLE RADIUS

Figure 5 shows the variation with time t of the expanding outer
rim radius ro(t) for the Bo values investigated in the present experi-
ments (4.2 × 10−3 ≤ Bo ≤ 0.74), along with the data of San Lee et al.17
at Bo = 2 × 10−4. The increase in outer radii with time follows power
laws with exponents varying from 0.56 at the lowest Bo to 0.28 at
the highest Bo (see Table II). Figure 6 shows the variation of the
radial velocities of expansion of the outer radius uo = dro/dt with
time. The hole expansion begins with velocities around 3 m s−1, an
order smaller than UTC, and decreases over time. Unlike in the case
of Taylor–Culick velocities10,11 or velocities of cavity mouth opening

FIG. 5. Variation of the outer hole radius ro(t) with time t. For water: +, R = 0.175
mm, Bo = 4.2 × 10−3; ∗, R = 0.47 mm, Bo = 3 × 10−2; ◽, R = 1.47 mm, Bo =
2.9 × 10−1; and◯, R = 2.32 mm, Bo = 7.4 × 10−1. For other fluids: ◊, R = 0.7
mm, Bo = 8.3 × 10−2, GW55; ×, R = 1.16 mm, Bo = 4.7 × 10−1, ethanol;△, R
= 25 μm, Bo = 2 × 10−4, ethanol from San Lee et al.;17 - -, 0.026 t0.565; and –,

0.021t0.275. The inset shows the variation of r̃1 ≙ r1/R with Bo, where r1 is the
first data point at each Bo in the main figure; -.-, (1).
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TABLE II. Bubble sizes, the range of dimensionless numbers, and the variation of the outer hole radius with time in the

present experiments. Bo = ρgR2/σ, Oh ≙ μ/
√
σρR, Weo ≙ ρu2oR/σ, and Reo = ρuoR/μ.

R (m) Bo Oh Weo Reo Best fit ro (m)

Ethanol△ 25× 10−6 2× 10−4 0.055 1.5–9 22–55 0.024t0.558

Water + 0.175× 10−3 4.2× 10−3 0.009 4–36.8 224–677 0.029t0.506

Water ∗ 0.47× 10−3 3× 10−2 0.006 7.3–65.3 496–1480 0.04t0.495

GW55 ◊ 0.71× 10−3 8.3× 10−2 0.034 8–71 83–247 0.028t0.445

Water ◽ 1.47× 10−3 2.9× 10−1 0.003 7.6–49.4 892–2275 0.026t0.361

Ethanol × 1.16× 10−3 4.7× 10−1 0.008 13.8–51.5 465–898 0.015t0.313

Water ○ 2.32× 10−3 7.4× 10−1 0.003 6.6–48.5 1045–2834 0.021t0.275

due to drop impact,35 both of which occur at constant velocities with
time, the present velocities at different Bo decrease with a common
power law exponent of −3/7. This common slope in Fig. 6 is in con-
trast to the varying slopes with Bo that we observe for the variation
of ro with t in Fig. 5. The lower the bubble size, the larger the velocity
of hole expansion.

The most prominent feature in Fig. 5 is the vertical shift of ro vs
t with Bo, implying that the hole expansion for each Bo starts from
different outer radii r1, where r1 is the first data point at each Bo in
Fig. 5. This behavior is unlike that in the case of drop coalescence,24

film retraction,10 or drop impact,35 where the initial radius of the
bridge is always zero at all Bo. In contrast, in free surface bubbles,
the radii of the hole r1, from which the hole expansion proceeds
with power laws in Fig. 5, increase with Bo; r1 is, hence, a strong
increasing function of Bo. This dependence of r1 on Bo has to be
first quantified before we obtain a scaling for ro(t); we now proceed
to do so.

The inset in Fig. 5 shows the variation of r̃1 ≙ r1/Rwith Bo. This
figure also shows the theoretical variation of the dimensionless static

FIG. 6. Variation of the radial velocity of the outer hole uo(t) with time t. For water:
+, R = 0.175 mm, Bo = 4.2 × 10−3; ∗, R = 0.47 mm, Bo = 3 × 10−2; ◽, R = 1.47
mm, Bo = 2.9 × 10−1; and◯, R = 2.32 mm, Bo = 7.4 × 10−1. For other fluids: ◊,
R = 0.7 mm, Bo = 8.3 × 10−2, GW55; ×, R = 1.16 mm, Bo = 4.7 × 10−1, ethanol;
△, R = 25 μm, Bo = 2 × 10−4, ethanol from San Lee et al.;17 and - -, 0.016t−3/7.

rim radius R̃r ≙ Rr/R,
R̃r ≙
¿ÁÁÀ4

3
− 2( 1

Bo
+

1

Bo2
) +
√ −4

3Bo2
+

8

Bo3
+

4

Bo4
, (1)

given by Puthenveettil et al.36 The variation of r̃1 with Bo is the same
as that of R̃r with Bo, given by (1), the reasons for which are given
in Appendix A. Hence, even though the hole formation initiates in
the thin film cap above the bubble cavity, the long term expan-
sion of the hole on the free surface behaves as if it initiates at
the static rim. The film cap seems to have no effect on the sub-
sequent hole expansion process since the film cap, which has a
very low mass, disintegrates before the hole in the film cap reaches
the rim (see Appendix B). Since the initial radius of the hole r1 is
a function of Bo, with the same functionality as Rr given by (1),
the evolution of the outer radius ro(t) now becomes a function
of Bo.

To account for such Bo effects on ro through its dependency
on Rr , we now define the hole radius in excess of the static rim
radius as

re ≙ ro − Rr . (2)

Figure 7 shows the variation of re with time for all Bo. The data
at different Bo now have the same power law exponent, which is
approximately equal to 4/7, as shown by the dashed line in this
figure. Even though the power law exponent of 4/7 is close to the
exponent of 1/2 seen in bridge expansion during drop coalescence,24

the plot of re/t
1/2 vs t in the inset of Fig. 7 shows that the excess

hole radius re in bubble collapse at the free surface clearly does not
scale as t1/2. As shown in Appendix C, this 4/7 scaling is also not
an artifact of the uncertainty in the origin of time due to the finite
frame rate of imaging and, hence, the 4/7 scaling appears to originate
due to real physical reasons which we discuss below. The monotonic
increase in ro with an increase in Bo (shown in Fig. 5) is not shown
in Fig. 7. The curves in Fig. 7 are, however, still offset by differ-
ent prefactors, since the varying capillary effects during the course
of hole expansion are yet to be accounted for in Fig. 7. We now
present a scaling analysis to account for such varying capillary effects
with time in the hole expansion process, which then explains the 4/7
scaling of re and collapses all the data on to a single dimensionless
power law.
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FIG. 7. Variation of the excess outer radius re(t) (2) with time t. The inset shows the variation of re normalized with
√
t, the inertial-capillary coalescence scaling.24

For water: +, R = 0.175 mm, Bo = 4.2 × 10−3; ∗, R = 0.47 mm, Bo = 3 × 10−2; ◽, R = 1.47 mm, Bo = 2.9 × 10−1; and ◯, R = 2.32 mm, Bo = 7.4 × 10−1.

For other fluids: ◊, R = 0.7 mm, Bo = 8.3 × 10−2, GW55; ×, R = 1.16 mm, Bo = 4.7 × 10−1, ethanol; △, R = 25 μm, Bo = 2 × 10−4, ethanol from San Lee et al.;17

- -, re = 0.07 t4/7; and . . ., re = 0.053t1/2.

IV. SCALING ANALYSIS

Consider a static bubble at the free surface of a liquid whose
schematic is shown in Fig. 2(a), where the rim has an initial static
radius Rr . The static bubble undergoes thin film cap breakup and
then hole expansion so that the rim expands to have a radius rr(t)
at an intermediate stage of hole expansion, the schematic of which
is shown in Fig. 2(b). Accumulation of mass at the tip of the rim
results in an expanding radius of the bulge rb(t) at the tip of the rim,
which will be at a distance rT from the initial static location of the rim
tip [see Fig. 2(b)]; the corresponding no-bulge case is discussed in
Appendix D. The measured outer radius is ro = rr + rb. Some part of
the bulged tip travels along the horizontal free surface as a swell [see
Fig. 2(c)], whose radius we assume to evolve in the same way as rb.
We now consider an integral analysis of the retracting and growing
bulge to obtain the experimentally observed scaling law; the same
scaling law is also obtained by a modified Euler equation approach,
as shown in Appendix E.

We consider a control volume (CV) coinciding with the retract-
ing and expanding bulge of radius rb(t), as shown in Fig. 2(b). The

resulting CV is, hence, of the form of a torus having a radius rr and
a radius of cross section rb. Mass balance of the CV results in

∫ rT

0
2πriw(r)dr ≙ πr2b2πrr , (3)

implying that the fluid in the film that retracted from r = 0 to rT gets
accumulated in a torus of radius rr , whose radius of the cross section
is rb. Themomentum balance in the r direction of the expanding and
decelerating CV results in

ρ
d

dt ∫V vrdV ≙ ΣFr −mar − ∫
S
vrρvr ⋅ dS, (4)

where vr is the relative velocity in the r direction of the fluid inside
the CV with respect to the decelerating CV, V is the volume of the
CV, Fr is the force in the r direction,m is the mass of the fluid in the
CV, ar is the acceleration of the CV in the r direction, and S is the
surface area of the CV.
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Assuming that the fluid in the bulge moves with the same
velocity as the bulge

∫
V
vrdV ≙ 0. (5)

This assumption is justified at low Oh since velocity gradients inside
the bulge are negligible in such a case, as the simulations of Savva and
Bush16 show; the present case ofOh ∼ 10−3 (see Table II) satisfies this
condition.

The component of the surface tension force at the bulge along
r is Fσ = σ cos γ(2πrr + d1) + σ cos γ(2πrr + d2). This force balances
the force due to the pressure inside the bulge Fp = sσ/rb, where

s ≙ 4πrrrbθ (6)

is the surface area of the torus over the angle 2θ, as shown in
Fig. 2(b). Hence,

Fp ≙ 4πrrσθ ≙ Fσ . (7)

The component of the weight of the bulge in the r direc-
tion, Fg ≙ 4πr3bρg cosϕ/3, can be neglected since Fσ/Fg≙ R2rr3θ/(r3b cosϕBo) ≫ 1 because Bo < 1, R2rr/r3b ≫ 1, and ϕ is
close to π/2. The viscous resistance at the surface of the CV is negli-
gible due to the stress free condition at the bulge–air interface, and
the viscous resistance in the neck region of the bulge is negligible
since the gradients of velocity at the neck are negligible at low Oh.
Then, the net force in the r direction is ΣFr ≃ Fσ , and the surface
tension force in the r-direction is given by (7).

Using (3), the fictitious force due to the deceleration of the CV,

mar ≙ ρπr2b2πrr duT
dt

, (8)

where

uT ≙ drT

dt
(9)

is the retraction velocity along rT , with rT being the distance from
the initial static rim position to the center of the swell at the tip of
the retracting rim, as shown in Fig. 2(b). From the geometry shown
in Fig. 2(b),

sinϕ ≙ rr − Rr

rT
. (10)

Since sinϕ ≃ 1, for the case of retraction that we consider

rr ≃ rT + Rr . (11)

The bulge radius rb in (8) scales similar to that in the case of bridge
expansion in drop coalescence,

rb ≙ c1 r3/2T√
R
, (12)

as obtained by Eggers, Lister, and Stone,24 where c1 is a constant. As
shown in Appendix F, Eq. (12) can also be obtained by a mass bal-
ance of the retracting rim to give c1 ≙ 1/2√π from (F11). Replacing
rr and rb in (8) with (11) and (12), respectively, we obtain

mar ≙ 2(πc1)2 ρr4T
R
(1 + Rr

rT
)duT

dt
. (13)

Here, Rr/rT ≪ 1 in (13) for the intermediate regime of hole expan-
sion that we consider for Bo < 1. Hence, by dropping Rr/rT , rewriting
duT/dt as uTduT/drT and using the value of c1 from (F11), (13)
simplifies to

mar ≃ π

2

ρr4T
R

uT
duT

drT
. (14)

Assuming that the fluid in the film outside the bulge to be sta-
tionary, which results in vr = −uT over the surface s, whose expres-
sion is given by (6), the net efflux of momentum in (4) becomes

∫
S
vrρvr ⋅ dS ≙ ρu2T4πrrrbθ. (15)

Using (5), (7), (14), and (15) in (4) and simplifying, we obtain a
Bernoulli differential equation,

duT

drT
+ P1uT − Q1

uT
≙ 0, (16)

where

P1 ≙ 8rbrrRθ

r4T
and Q1 ≙ 8σrrRθ

ρr4T
. (17)

Using (11) in (17), we obtain

P1 ≃ 8rbRθ

r3T
(1 + Rr

rT
) and Q1 ≃ 8σRθ

ρr3T
(1 + Rr

rT
). (18)

Since Rr/rT ≪ 1, (18) reduces to

P1 ≃ 8rbRθ

r3T
and Q1 ≃ 8σRθ

ρr3T
. (19)

In (19), for small θ,

θ ≃ sin θ ≙ (w/2)∣rT+d
rb

≃ (w/2)∣rT+rb
rb

, (20)

when (w/2)∣rT+d/rb ≪ 1. Using (F6) in (20), we obtain

θ ≃ 1

2

(rT + rb)2
Rrb

. (21)

Substituting (21) in (19), we obtain

P1 ≃ 4

rT
(1 + rb

rT
)2 and Q1 ≃ 4σ

ρrTrb
(1 + rb

rT
)2. (22)

Since rb/rT ≪ 1 in our case, (22) reduces to

P1 ≃ 4

rT
and Q1 ≃ 4σ

ρrTrb
. (23)

Since rb in the expression for Q1 in (23) is given by (F10), Q1 can be
expressed as

Q1 ≙ 4

c1

σ

ρ

√
R

r5T
. (24)

Using the standard method of solving the Bernoulli differential
equation by transforming the equation into a linear ordinary dif-
ferential equation (see Boas37), the solution for (16), with P1 and Q1

given by (23) and (24), is

uT

uc
≙ c2( R

rT
)3/4, (25)
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after assuming the integration constant to be zero, where uc≙ √σ/ρR is the capillary velocity and c2 ≙ 4/√13c1 ≙ 2.1. Substitut-
ing (9) in (25), rearranging, and integrating, along with using rT → 0
as t → 0, we obtain the dimensionless distance of rim tip retraction,
r̃T ≙ rT/R, as

r̃T ≙ c3t∗4/7, (26)

where t∗ = t/tc with c3 ≙ (7/√13c1)4/7 ≙ 2.1.
A. Expansion of the hole radius

Equation (26) is strictly valid in the initial stages of hole open-
ing where the rimmoves in the direction of rT . In the later stages, the
swell moves horizontally; our measurements of the outer rim radius
ro are mostly in this regime. However, as shown in Fig. 2(b),

rT + rb ≃ ro − Rr

sinϕ
. (27)

Since the increase in rb during our measurement time of ro is small
because drb/dt ≪ dro/dt, as shown in Appendix G, rT + rb ∼ rT .
Furthermore, for the case when the ridge moves horizontally along
the free surface ϕ ≃ 90○ so that sinϕ ≃ 1. Using these scales in (27)
implies that

rT ≃ ro − Rr ≙ re, (28)

and the path traveled by the swell when it is moving horizontally
scales approximately as the excess rim radius re. Hence, we expect
(26) to be valid as a scaling law for re when the swell moves horizon-
tally along the free surface. In other words, from (26) and (28), the
dimensionless excess hole radius scales as

r̃e ≃ c3 t∗4/7, (29)

where r̃e ≙ re/R, with the excess hole radius re given by (2).
Dimensionally, this new scaling could be expressed as

re ≙ c3 ((uct)4R3)1/7, (30)

a function of two length scales uc t ≙ √σt2/ρR and R.
Figure 8 shows the variation of the dimensionless excess hole

radius r̃e with the dimensionless time t∗. The datasets for different
Bo collapse well on to the line

r̃e ≙ 2.7 t∗4/7 (31)

for the range of Bond numbers 1 × 10−4 < Bo < 1, in agreement with
(29); note that the experimental value of the prefactor c3 in (31) also
matches well with the theoretical value of 2.1 in (29). The collapse is
not perfect possibly because the difference between the actual curved
path of travel of the swell and the distance ŕT , which is a function of
Bo, is neglected in the present analysis. Furthermore, there could be
a small contribution to the measured ro due to the expansion of the
swell (see Appendix G), which is neglected in the present analysis.
Despite these approximations, (29) captures the scaling of the expan-
sion of the hole from bubble collapse at a free surface remarkably
well.

It needs to be noted that the present scaling (31) is different
from the conventional t1/2 inertial scaling proposed first by Keller25

for the case of neck expansion for coalescing bubbles. As shown in
Appendix H, the analysis by Keller,25 as well as that by Culick11 for

FIG. 8. Variation of the dimensionless excess outer radius of the rim r̃e ≙ re(t)/R
with the dimensionless time t∗ = t/tc . For water: +, R = 0.175 mm; ∗, R = 0.47 mm;
◯, R = 2.32 mm; and ◽, R = 1.47 mm. For other fluids: ◊, R = 0.7 mm, GW55;

×, R = 1.16 mm, ethanol; △, R = 25 μm, ethanol from San Lee et al.;17 and - -,

r̃e ≙ 2.7t∗4/7 (31).

films of constant thickness, implicitly assumes that there is no bulge
formation at the retracting rim tip. We show in Appendix D that
the present analysis retrieves the t1/2 scaling in the limiting case of
hole expansion without bulge formation at the retracting rim tip.
Although fundamentally different from the present problem, the
same 4/7 scaling exponent of the horizontal length scale with time
has been found in film rupture over solid substrates for power law
fluids when inertia dominates,38 for the length scale in the neighbor-
hood of an inertia driven microjet due to a collapsing cavity,39 and
in the inertial collapse of holes.40

B. Velocity of hole expansion

The scaling (29) implies that the dimensionless outer radius

r̃o ≃ c3 (t/tc)4/7 + R̃r . (32)

On the RHS of (32), the only term that has gravitational dependence,
through its dependence on Bo shown by (1), is the dimensionless
static rim radius R̃r . The gravitational dependence of r̃o is, hence,
due to the dependence of its initial condition, namely, R̃r on grav-
ity. R̃r , which is independent of time, also occurs as an addition to
the first, time dependent, capillary term in (32). Such a gravitational
dependence of r̃o, since it is of the form of an addition of an initial
condition that is constant with respect to time, will vanish when we
calculate the velocity of hole expansion uo = dro/dt, making uo inde-
pendent of gravity effects. This is also the reason why the same slopes
are observed for the variation of uo with t in Fig. 6.

Differentiating (29) with respect to time yields the Weber
number of hole expansionWeo ≙ ρu2oR/σ as

Weo ≃ c4 t∗−6/7, (33)

where c4 ≙ (4c3/7)2 ≙ 1.4. Figure 9 shows the variation ofWeo with
t∗; the data collapse fairly well to

Weo ≙ 2.5 t∗−6/7, (34)
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FIG. 9. Variation of the Weber number of expansion of the outer radius of the
hole Weo with the dimensionless time t∗ = t/tc . For water: +, R = 0.175 mm; ∗,
R = 0.47 mm; ◯, R = 2.32 mm; and ◽, R = 1.47 mm. For other fluids: ◊,
R = 0.7 mm, GW55; ×, R = 1.16 mm, ethanol; △, R = 25 μm, ethanol from

San Lee et al.;17 —, Weo ≙ 2.5t∗−6/7 (34); and - -, Wei = 64 (38).

in agreement with (33). The theoretical value of c4 in (33) is in
agreement with the value obtained from experiments in (34). The
dimensionless scaling (33) implies that

uo ≙ c5 (uc4(R/t)3)1/7, (35)

a function of two velocity scales uc and R/t, where c5 ≙ √c4 ≙ 1.2.
The dependence of Weo on the excess hole radius can be obtained
from (29) and (33) as

Weo ≙ c6 r̃e−3/2, (36)

where c6 ≙ (4/7)2c7/23 ≙ 4.4.
C. Initial velocity of hole expansion

The velocity scaling (35) implies that uo →∞ when the initia-
tion of hole expansion occurs at t → 0. However, the present scaling
is only valid from the time when a bulge of fluid has formed at the
tip of the retracting rim, which occurs after a small time from the
initiation of hole expansion. At the very beginning of hole expan-
sion, after the thin film cap has fragmented, when rT < Rμσ = μ2/σρ,
viscous effects will be prevalent and no bulge is expected to form at
the rim tip.14,16 In this viscous region, the hole expansion velocity is
expected to follow either uo ∼ uμσ = σ/μ, as in the case of drop coales-

cence,19 or uo ∼ √uμσR/t, as in the case of bubble coalescence.18,21,22

It is also possible that there is no direct transition between an ini-
tial viscous and a later inertial regime, as shown by Castrejón-Pita
et al.41 for the case of breakup of filaments. In any case, the length
scaleRμσ is of the order of nanometers in usual fluids, and this regime
is, hence, not observed in our measurements that have a maximum
resolution of 3.4 μm/pix.

Beyond this initial viscous region, before the temporal decay of
velocity predicted by (35) sets in with accumulation of fluid at the
rim tip, in a short region for rT > Rμσ , we expect the spatial acceler-
ation to be much larger than the temporal acceleration. This region,
being the first observable region, we denote as the initial region

with a subscript i. In this region, we measure uT i, the initial rim tip
retraction velocity in the direction of rT , as described in Appendix I.
Figure 10 shows the variation of the Capillary number based on uT i,
Cai ≙ μuT i/σ, with Oh, where the error bars show the error in Cai
due to the error in velocity measurement δuT i ≃ 2p/ti. This figure
shows that

Cai ≃ 8 Oh, (37)

implying that uT i ≃ 8 uc. In other words,

Wei ≃ 64, (38)

whereWei ≙ ρuT i2R/σ is the initial Weber number of rim tip retrac-
tion, showing the inertial dominance in the initial hole expansion.
This initial Weber number Wei is shown in Fig. 9; the Weber num-
bers of hole expansion decrease with time as per (33) starting from
Wei. These initial velocities, and the corresponding Weber numbers
Wei, seem to be independent of UTC since, as shown in Appendix B,
the thin film cap disintegrates before the hole in the thin film cap
reaches the static rim.

Figure 10 shows the variation with Oh of the estimated values
of the Capillary numbers of film retraction in the spherical thin film
cap, CaTC = μUTC/σ, for bubbles in water, calculated for the same
radii as our bubbles in experiments with water. CaTC are an order of
magnitude larger than Cai and have a different dependence on Oh
compared to (37). The velocities of hole expansion decrease from
UTC in the thin film cap to uT i at the beginning of hole expansion
from which point onward the hole expansion obeys (35). The varia-
tion of CaTC with Oh, shown in Fig. 10, could be obtained by using

UTC ≙ √2σ/ρh and h = R2/20 m for water7 in the expression for
CaTC to obtain

CaTC ≙
√

40

Rμσ
Oh

2
, (39)

FIG. 10. Variation of the dimensionless initial hole expansion velocity (41) with
Ohnesorge number.◁, R = 1.9 mm, water;▽, R = 4.08 mm, water;◂, R = 1.45
mm, GW48 (30 ○C);▲, R = 2.1 mm, GW48 (30 ○C); ∎, R = 1.66 mm, GW55; ⧫,
R = 1.85 mm, GW55; ▸, R = 2.11 mm, GW55; ⋆, R = 1.52 mm, GW55; and •,
R = 2.17 mm, GW72. The symbols◯, ◽, and + denote the same bubbles as in
Fig. 5. —, Cai = 8 Oh (37); −.−, the vertical line denoting Rei ≃ 1; and . . ., Cai

= 1.8. The blue colored symbols with inside dots represent the Capillary number
based on UTC and CaTC, calculated for the cases shown by the corresponding

hollow or solid symbols. – –, CaTC ≙ μUTC/σ ≙
√
40/Rμσ Oh

2 (39).
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where 40 is in meters; (39) is shown by the dashed line in Fig. 10.

Since (39) also implies that UTC ≙ √40/R uc, similar to the case of
initial velocity given by (38), the Weber numbers based on UTC will

be
√
40/R, independent of viscosity.

D. Viscous effects in hole expansion

The condition for viscous effects in hole expansion can now be
obtained as follows. Neglecting temporal acceleration in the initial
region discussed in Sec. IV C, we obtain

1

2
ρuT i

2 ∼ σ

rbi
, (40)

where rbi is the initial radius at the rim tip. From (40), we obtain

Cai ∼
√

2

r̃bi
Oh, (41)

where r̃bi ≙ rbi/R, the dimensionless initial radius of the rim tip. A
comparison of (41) and (37) gives

r̃bi ≃ 3 × 10−2. (42)

Using (37) and (42), we get the initial Reynolds number of retraction
of the rim tip Rei ≙ ρuT irbi/μ as

Rei ≃ 0.24

Oh
. (43)

Since the hole expansion Reynolds numbers Reo decrease with time
starting from these Rei, when Rei ∼ 1, viscous effects will be impor-
tant from the beginning of hole expansion. According to (43),
Rei ≃ 1 whenOh ≃ 0.24; Fig. 10 shows this viscous limit of the present
scaling laws by the vertical dashed–dotted line. For Oh > 0.24, one
would expect the initial retraction velocity to scale as uμσ , imply-
ing that Cai = constant, whose value is shown in Fig. 10 to be equal
to 2, and the temporal evolution of hole expansion velocity in this
viscous regime is then expected to obey the scaling laws proposed
by Savva and Bush16 and Munro et al.22 No sharp swell is seen in
this viscous regime, as could be seen comparing points A and B in
Fig. 11.

For Oh < 0.24, viscous effects will not be important from the
beginning of hole expansion, but will become important at some

FIG. 11. Comparison of the swell in a high viscosity fluid with that in water at
approximately 1.4 ms after the thin film rupture. (a) A smooth swell for R = 2.4 mm
(Oh = 0.27, R/Rμσ = 13.7) in GW86.8. Image width is 5.1 mm. (b) A sharp swell for

R = 2.32 mm (Oh = 0.0025, R/Rμσ = 16 × 104) in water. Image width is 4.63 mm.

time when Reo = ρuoR/μ ∼ 1. Replacing uo in Reo ∼ 1 with (35) and
rewriting the resulting expression in terms of Oh, the correspond-
ing dimensionless time beyond which viscous effects will become
important is

t
∗
ν ≙ t

∗∣Reo∼1 ≃ ( c5

Oh
)7/3. (44)

For 0.003 ≤ Oh ≤ 0.055, the range of Oh of the present study,
1.72 × 103 < t∗ν < 1.53 × 106. These times are a few orders larger
than our range of t∗ (see Figs. 8 and 9) so that viscous effects
could be neglected in our analysis. The corresponding dimension-
less excess radii at which the present scaling will have to be mod-
ified to include viscous effects could be calculated from (44) by
using (29) as

r̃eν ≙ r̃e∣Reo∼1 ≃ c3c
4/3
5

Oh4/3
. (45)

For the present range of Oh, 162 < r̃eν < 7853, is much larger than
the range of r̃e, as shown in Fig. 8. The present scaling is expected to
be valid up to a dimensionless excess radius given by (45).

V. DISCUSSION AND CONCLUSIONS

The primary contribution of the present paper is the find-
ing of a novel t4/7 dependence of the outer radius ro on time t
during the expansion of a hole at a liquid surface from bubble
collapse at that surface. The physical explanation for this scaling
is embodied in the scaling analysis presented in this paper. Such
a scaling, different from the usually observed t1/2 scaling of the
neck radius in drop/bubble coalescence18 as well as in the lin-
ear growth of hole in thin films of constant thickness10,11 and the
hole expansion in drop impact into a pool,35 is seen in millimeter-
sized bubbles at the surface of low viscosity fluids. In such bubbles,
the retraction of the static rim of the bubble, after the initial vis-
cous regime, results in the hole expansion at the free surface in
a regime of low Ohnesorge numbers (Oh), high Reynolds num-
bers (Reo), and low Capillary numbers (Cao); surface tension and
inertia dominate the dynamics in this intermediate regime of hole
expansion.

In such a regime, the surface tension force at the tip of the
rim, which retracts the rim, is a function of the rim tip radius rb,

which itself varies with time as rb ∼ r
3/2
T /√R due to the accumula-

tion of mass at the rim tip, where rT is the radial distance of travel
along the interface from the initial static rim position. We show
that when this surface tension force balances the unsteady iner-

tia at the tip, the t4/7 scaling occurs to yield rT ∼ ((uct)4R3)1/7
(26), a function of two length scales uct and R, where uc is the
capillary velocity. Since rT ≃ ro − Rr = re, the horizontal radius of
the dynamic rim in excess of the initial static rim radius Rr , the
variation of ro with time then also shows a strong gravity depen-
dence. The gravity dependence of ro is because Rr is a strong
function of Bond number (Bo), as given by Puthenveettil et al.36

(1). The dimensionless scaling of the excess dynamic rim radius is

then re/R ∼ t∗4/7 (29), where t∗ = t/tc, with tc being the inertial-
capillary time scale. Hence, the gravity effects in the radius evolution
come through the initial condition as an addition of the starting,
constant, radius of the static rim Rr . This strong dependency on
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initial conditions for the evolution of ro is a major feature of the
present problem, in contrast to the universality and initial condi-
tion independence proposed for other bridge/neck expansion or
neck pinching problems. Since Rr is independent of time, the scal-
ing of velocity, however, becomes independent of gravity effects to

give uo ∼ (u4c(R/t)3)1/7 (35), a function of two velocity scales uc
and R/t; the corresponding Weber number of hole expansion scales

asWeo ∼ t∗−6/7 (34).
These scalings of the hole radius and velocity of hole expansion

occur during an intermediate period of the whole process of hole
expansion from bubble collapse. The initial hole expansion occurs
in the thin film cap and occurs with the well-known Taylor–Culick

velocity UTC ≙ √2σ/ρh,7 with h being the film thickness. Since

h ≈ 50 nm for 1 mm water bubbles, UTC ≈ 38 m s−1, a high velocity
that is about an order of magnitude larger than the initial veloci-
ties of hole expansion in the present case; the film then disintegrates
before it reaches the static rim. This disintegration could be the rea-
son for our finding, implied in the above scaling law, that the static
rim retracts without showing any effect of the high UTC on the thin
film cap.

The present evolution of the hole radius from a free surface
bubble at intermediate times, since it occurs at low Oh and large
Reo, could be described by an inviscid dynamics. However, at the
very beginning of the retraction of the static rim, due to the very
thin rim thickness, a viscous regime could be present in the hole
expansion dynamics, as suggested in the case of drop coalescence
by Eggers, Lister, and Stone;24 the retraction would then occur
with a constant velocity of uμσ = σ/μ, neglecting logarithmic cor-
rections. This regime is, however, inaccessible to optical investi-
gations since the regime occurs within a viscous length scale Rμσ

= μ2/ρσ of nanometers. The regime considered in the present study
is expected to occur at intermediate times after the Taylor–Culick
regime in the thin film cap and the very short viscous regime in the
rim are over. The initial velocities of the present regime uT i would
then scale as the capillary velocity, with the corresponding Weber
number, Wei, being a constant (38). Starting from these capillary
velocities, the Weber numbers of hole expansion decay with a t−6/7

dependence.
Since the velocity of hole expansion decays with time, one

would expect the viscous effects to become important in the hole
expansion at large times, at which point the dynamics is expected
to deviate from the present scaling laws. This would occur when
Reo ∼ 1, the corresponding time would be tν ∼ tμσ/Oh16/3, where tμσ
= μ3/ρσ2 is the viscous-capillary time scale. Since tν is a few orders
larger than the present measurement times, the present dynamics
remain inviscid. However, with an increase in viscosity of the flu-
ids, and correspondingly Oh, tν would decrease sharply and, hence,
in highly viscous fluids, viscous effects would be significant even at
the intermediate times of the present scaling; the dynamics would
then deviate from that in the present regime even at intermediate
times. The dynamics would be viscous from the beginning of the
hole expansion itself when the Reynolds number in terms of the
initial velocity and the rim tip radius Rei is of order one. We esti-
mate that such a viscous regime would occur for Oh > 0.24 and the
images from the hole expansion in an experiment at Oh = 0.27 show
the absence of the swell that propagates. The scaling of hole expan-
sion in these viscous regimes is, however, unclear, but expected to be

similar to that in the viscous regimes investigated by Munro et al.22

for bubble coalescence.
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APPENDIX A: REASON FOR r̃1 TO FOLLOW (1)

If t1 is the time for the retraction to occur from the static rim
of radius Rr to r1, the dimensionless radius of the first point of our
measurement of the retracting rim is

r̃1 ≙ R̃r + r̃T ∣t≙t1 sinϕ. (A1)

Since sinϕ ≙ 1 − (R̃r/2)2 for small Bo (see Ref. 36) and r̃T≙ c3(t/tc)4/7 from (26), at time t1, (A1) becomes

r̃1 ≙ R̃r(1 − c3

4
(t1/tc)4/7R̃r) + c3(t/tc)4/7. (A2)

For the points shown in the inset of Fig. 5, t1/tc ≤ 4 × 10−2.
Hence, t1/tc ≪ 1, implying that r̃1 ≃ R̃r as per (A2); r̃1 then also
follows (1).

APPENDIX B: TIME SCALE OF THIN FILM
FRAGMENTATION

Considering only the inertial destabilization of Rayleigh–
Taylor type, the time for the growth of instability in the thin film
cap, as given by Lhuissier and Villermaux,7 is

τ ∼√Boc
⎛
⎝
√
h3/Rc

g

⎞
⎠
1/2

, (B1)

where Rc is the cap radius [see Fig. 2(b)] and Boc ≙ ρgR2
c/σ. The

distance from the top of the thin film cap to the rim is S = θcRc, where
θc is the angle that the rim makes with the vertical [see Fig. 2(a)];

θc ≃ sin θc ≙ Rr/Rc ≙√Bo/3 from Puthenveettil et al.36 Then, the
time for travel of the hole from the top of the cap to the rim is

tc ≙ S/UTC ∼ Boc
√

h

g
. (B2)

The thin film cap would have fully fragmented, if

τ/tc ∼ 1√
Boc
( h

Rc
)1/4 ≪ 1. (B3)

In our experiments, 1.5 nm < h < 0.26 μm, 0.35 mm < Rc < 3.2 mm,
and 0.02 < Boc < 1.4, resulting in 0.08 < τ/tc < 0.35; (B3) is hence
always satisfied in the present study. In addition to the Rayleigh
Taylor instability, the disintegration of the thin film is also aided
by other mechanisms such as Kelvin Helmholtz instability and cen-
trifugal instability due to travel over a curved path and fast escape of
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the gas inside the bubble. Hence, the estimate (B1) of the time taken
for the thin film cap to disintegrate is an overestimate, implying that
the thin film would definitely have disintegrated due to fragmenta-
tion by the time the hole grows to reach the static rim. In agreement
with the above estimate and with the observations of Lhuissier and
Villermaux7 and Krishnan, Hopfinger, and Puthenveettil,42 we also
observed that the thin film was fully aerosolized by the time the hole
growth reached the static rim.

APPENDIX C: UNCERTAINTY IN THE ORIGIN OF TIME

We fix the origin of time (t = 0) as the instant at which the
film has vanished and the static rim is exposed. Even though the fast
retraction of the rim is captured with a high frame rate (≤19 000 fps
and ≤100 000 fps), the images could still miss, in some cases, the
exact instant at which the static rim is exposed. In such cases, t = 0 is
taken as that instant corresponding to the next available image after
the film has vanished, which would, however, actually be at a time
interval δt after the actual instant at which the static rim is exposed.
Such an offset in the origin of time could result in a deviation of the
measured scaling relation of re vs t with the actual scaling relation.
Let R0 be the measured radius corresponding to the measured t = 0,
while the radius at the actual t = 0 is Rr . We calculate δt as the time
taken for the radius to expand from Rr to R0, using the rim expan-
sion velocity (38) and the value of Rr from (1). The deviation in the
scaling law of re due to the uncertainty in the origin of time could
be found by plotting re vs tn = t − δt along with the plot of re vs t.
Figure 12 shows such a plot, where the black circles show re vs t,
while the blue circles show re vs tn. A slight deviation in the scaling
of re vs tn is seen only in the initial part of the data, with the latter
part aligning with re vs t, which follows the 4/7 power law scaling.
Even in the initial part of the data, the deviation due to the uncer-
tainty in the origin of time takes the data farther away from the t1/2

scaling, with the re vs tn showing a much closer match with the t4/7

scaling than the t1/2 scaling.

FIG. 12. Effect of uncertainty in the origin of time on the variation of the excess
radius (re) for R = 2.32 mm in water. Black circles, re vs t, same as the data shown
in Fig. 7; blue circles, re vs tn, where tn = t − δt; – –, 0.07 t4/7; and . . ., 0.053 t1/2.

APPENDIX D: THE LIMITING NO-BULGE CASE

For the case of rim retraction without formation of a bulge at
the retracting rim tip, we expect the retraction geometry to be as
shown in Fig. 13. In such a situation, the RHS of (3) reduces to
πr2b2πrr/2, while the angle 2θ→ π. The surface area of the retracting
rim tip (6) then reduces to

s ≙ 2π2r2b (D1)

so that the force (7) becomes

ΣFr ≙ 2π2rbσ. (D2)

The fictitious force due to the deceleration of the CV (8) now
becomes

mar ≙ ρπ2r2brr duT
dt

, (D3)

while the efflux of momentum (15) reduces to

∫
S
vrρvr ⋅dS ≙ ρu2T2π2r2b . (D4)

Substituting (5), (D2), (D3), (D4), (11), and (F6) into (4) and using
Rr/rT ≪ 1, we obtain

P1 ≃ 2

rT
and Q1 ≃ 2σR

ρr3T
, (D5)

instead of (23) and (24). Solving (16) using (D5), we obtain

uT

uc
≙ c7 R

rT
, (D6)

where c7 ≙ √2. As earlier, using (9) and (D6), we obtain

r̃T ≙ c8 t∗1/2 , (D7)

the conventional inertial bubble coalescence scaling first proposed
by Keller,25 where c8 = 23/4. Such a scenario is likely to occur at the
beginning of hole expansion, especially for a low Oh case, since a
bulge would soon form at the retracting tip to result in the 4/7 scaling
given by (26).

FIG. 13. Schematic showing the retracted rim without a growing bulge at its tip.
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APPENDIX E: A MODIFIED EULER EQUATION
APPROACH

In this section, we show that the scaling (26) can be obtained
in a simpler way by applying a modified Eulers equation at a point
inside the retracting bulge at the rim tip. We then generalize this
approach to obtain all the well-known classical scaling laws in hole
expansion.

1. Obtaining (26)

The temporal acceleration of the rim expansion ∂uo/∂t ∼
uo/(2rb/uo) ≙ u2o/(2rb) because the swell of diameter 2rb trav-
els with a velocity uo. The spatial acceleration of hole expansion is
uo∂uo/∂r ∼ u2o/ro. The ratio of temporal to spatial acceleration of
hole expansion then scales as ro/rb ≫ 1 for the long term evolu-
tion of ro; the spatial acceleration terms could then be neglected.
For low Oh of the present study, the spatial gradients of velocity
inside the retracting bulge are negligible, as could be seen from Savva
and Bush;16 this again justifies neglecting the convective acceleration
term. As discussed in Sec. IV, viscous effects in the hole expansion
process could be neglected given that Reo ∼ 103 and that Oh ∼ 10−3
(see Table II). A similar approach has been used earlier to study
the rim retraction problems.43 Under such conditions, at any point
inside the bulge at the expanding hole edge, the reduced equation
that decides the hole expansion is then

∂uT

∂t
≙ 1

ρ

∂p

∂rT
, (E1)

where uT is given by (9).
In (E1), the pressure inside the bulge at the rim tip or the swell

traveling along the free surface is

p ≙ σ

rb
. (E2)

Using (E2) and (12) in (E1), simplifying, and then integrating, along
with the condition that uT → 0 as rT →∞, result in the dimensionless
rim tip retraction velocity,

uT

uc
≙ c9( R

rT
)3/4, (E3)

where c9 ≙ √2/c1 ≙ 2.67. Substituting (9) in (E3), rearranging, and
integrating, along with using rT → 0 as t → 0, we obtain

r̃T ≙ c10 t∗4/7, (E4)

where c10 ≙ (7c9/4)4/7 ≙ 2.4.
The evolution equation for rT , of which (E4) is a solution, could

be obtained by substituting (9), (E2), and (12) in (E1) as

d2rT

dt2
+

3

2c1

σ
√
R

ρ

1

r
5/2
T

≙ 0. (E5)

Equation (E5) shows that the non-linear evolution of rT seen in (E4)
occurs due to the second term in (E5), which represents the evolu-
tion of pressure at the retracting rim tip. This non-linear evolution of
pressure occurs owing to the evolution of the curvature at the tip of
the retracting rim (12), which again depends on how the mass accu-
mulates at the tip of the retracting rim. The accumulated mass and

the resulting radius of the bulge at the tip of the retracting rim rb, in
turn, depend on the static bubble geometry through a mass balance,
as shown in Appendix F.

2. Generalization

We now extend the above analysis to obtain a general scaling
relation for the dependence of the radius of the hole on time for arbi-
trary power law variations of the film thickness and the bulge radius;
the well-known hole expansion scaling laws such as Taylor–Culick
scaling law,10,11 Keller’s scaling,25 and the inertial coalescence scal-
ing22,24,25,28 can be obtained from this general scaling law for specific
assumptions about the film thickness h and the radius at the tip of
the retracting film rb.

Let the thickness of the film be

h ≙ a1rαT , (E6)

where a1 is a prefactor with dimension L1−α and α is a power law
exponent with real values. To obtain a generalized scaling for the
hole expansion, we assume a general geometry of the bulge at the tip
of the retracting film as follows. Let the bulge radius at the tip of the
retracting film scale as

rb ≙ a2rβTh1−β, (E7)

where a2 is a dimensionless prefactor and β is a power law exponent
with real values. The power law scaling of rb on rT and h has to be
of the form (E7) for dimensional consistency. Expressions (E7) and
(E6) imply that

rb ≙ a2a1−β1 r
ξ
T , (E8)

where ξ = β + α(1 − β). By replacing the pressure at the tip of the
retracting film in [(E1)] with p = σ/rb, with rb given by (E8) and
differentiating RHS with respect to rT , we obtain

∂uT

∂t
≙ d2rT

dt2
≙ − ξσ

ρa2a
1−β
1 rξ+1T

. (E9)

The differential equation (E9) is the evolution equation of rT for the
general power law variations of h and rb given by (E6) and (E7),
respectively.

Rewriting the LHS of (E9) as (duT/drT)uT and integrating,
along with the condition that limrT→∞ uT ≙ 0, gives

uT ≙ Γ

rζT

, (E10)

where

Γ ≙
¿ÁÁÀ 2σ

ρa2a
1−β
1

(E11)

and

ζ ≙ ξ

2
. (E12)

Integrating (E10) with respect to t along with the condition that
limt→0rT = 0, we obtain

rT ≙ ((ζ + 1)Γt)1/(ζ+1), (E13)

Phys. Fluids 32, 032108 (2020); doi: 10.1063/1.5139569 32, 032108-14

Published under license by AIP Publishing



Physics of Fluids ARTICLE scitation.org/journal/phf

where Γ is given by (E11) and ζ by (E12). Equations (E13) and (E10)
are the general expressions for the radius of the hole and its veloc-
ity of expansion for a film/rim, whose thickness varies as (E6) and
whose radius of the bulge at the tip of the retracting film/rim scales
as (E7). It needs to be noted that the general scaling laws (E10) and
(E13) are obtained from the momentum balance alone; the same is
the case for the scalings obtained by Culick11 and Keller25 where, in
addition, consideration of bulge formation is also not included, as
shown in Appendix H. The expressions (E10) and (E13) just tell us
that if the film thickness varies as (E6) and the bulge radius as (E7),
then the hole radius will scale as (E13). The value of rb that occurs in
a specific case of hole expansion has to be obtained by augmenting
the momentum balance implied in (E1) with a mass balance con-
dition capturing the balance of accumulation at the tip and a flow
along the film, as we obtain the present scaling in Appendix E 3 d.

3. Retrieving classical scaling laws from (E13)

We can now obtain the various well-known hole expansion
scalings from the general scaling laws (E10) and (E13), as shown
below.

a. Taylor–Culick scaling10,11

When α = 0, β = 0, and a2 = 1, the bulge radius (E7) becomes rb
= h and (E10) becomes the Taylor–Culick velocity for the retraction
of a thin film of uniform thickness h = a1,

uT ≙
√

2σ

ρh
. (E14)

b. Keller’s scaling25

By using β = 0 and a2 = (α + 4)/(2(α + 2)) in (E13), we obtain

rT(t) ≙ t2/(2+α)( σ(α + 2)3
ρa1(α + 4))

1/(2+α)

, (E15)

Keller’s scaling,25 a general scaling law for the hole radius of a
retracting film, whose thickness scales as (E6).

c. Inertial-capillary coalescence scaling

For the film thickness to vary as (F6), α = 2 and a1 = 1/R. Now,
if β = 0 and a2 = 1/2 in (E7), we obtain rb = h/2, implying that there is
no bulge formation at the retracting film tip. Using these values of α,
β, a1, and a2 in (E13), we obtain the conventional inertial coalescence
scaling for hole expansion in the case of two merging bubbles,

rT(t) ≙ 2(σR
ρ
)1/4√t. (E16)

d. The present scaling

The mass balance of the retracting rim, as described in
Appendix F, results that the bulge radius should be given by (12)
with c1 ≙ 1/2√π. Comparing (12) and (E7), as well as (F6) and (E6),
implies that α = 2, β = 1/2, a1 = 1/R, and a2 = c1 for the present case.
Substituting these values in (E13) results in

rT ≙ ( 49
8c1
)2/7(σ√R

ρ
)2/7t4/7, (E17)

the same as (E4). To apply Keller’s result (E15) in the present prob-
lem, for the present case of variation of the film/rim thickness given
by (F6), a comparison of (F6) and (E6) implies that α = 2 and
a1 = 1/R. However, substituting these values in (E15) results in the
conventional inertial coalescence scaling (E16), different from the
t4/7 scaling that we observe. Hence, for the expected variation of
film/rim thickness given by (F6), Keller’s scaling will be unable to
recover the observed rT ∼ t4/7 scaling in the present case since they
neglect the change in the force of retraction owing to the change in
the curvature of the retracting film tip due to the formation of a bulge
at the tip of the retracting rim.

APPENDIX F: MASS BALANCE
OF THE RETRACTING RIM

At any time t, the amount of liquid that was in the meniscus
between the static rim position and the position of the bulge gets
accumulated in the bulge of radius rb, implying

∫ rT

0
2πriw(r)dr ≙ πr2b2πrr . (F1)

From the geometry shown in Figs. 2(b) and 2(a),

sinϕ ≙ rr − Rr

rT
≃ Rc − hcap − R

R
, (F2)

implying that sinϕ ≃ R̃c − h̃cap − 1. For Bo < 1, h̃cap ≙ Bo/3, and for

small Bo, R̃c ≙ 236,44 so that
sinϕ ≃ 1 − Bo/3. (F3)

Using (F3) in the relation ri = r sinϕ + Rr , we obtain

ri ≃ r(1 − 1

3
Bo) + Rr . (F4)

As shown in Fig. 2(b),

w ≙ 2R(1 − cos θr). (F5)

Since for small θr , cos θr ≙ 1 − θr
2/2 and sin θr = rT/R ≃θr , (F5)

implies that

w(r) ≙ r2/R. (F6)

Substituting w from (F6), ri from (F4), and rb from (12) in (F1) and
integrating result in the bulge radius

rb ≃ rT
3/2√
3πR

χ, (F7)

where

χ ≙
√

3

4

¿ÁÁÀ4 + (3 − Bo)rT/Rr

3 + (3 − Bo)rT/Rr
. (F8)

Since rT/Rr ≫ 1, the term in the second square root in (F8) is of
order one, implying that

χ ≃
√
3

2
. (F9)
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Using (F9) in (F7) implies that

rb ≃ c1 rT3/2√
R
, (F10)

where

c1 ≙ 1

2
√
π
. (F11)

APPENDIX G: EXPANSION OF SWELL

In our analysis, the radius of the outer edge of the swell ro was
used as an estimate of the hole radius, since the inner radius of the
swell, which is the actual hole radius, is not visible in the side view
images. If the swell changes its size over the time of measurement
of ro, then using ro to estimate the hole radius would introduce an
error. We now estimate the condition for neglecting the expansion
of the swell, which satisfies our range of analysis. The rate of change
of the swell radius is

urb ≙ drb
dt
≙ drb
drT

drT

dt
. (G1)

Using (9) and (12) in (G1) yields

urb
uT
≙ 3

2
c1( rT

R
)1/2, (G2)

where c1 ≙ 1/2√π. Since rT ≃ ro − Rr = re in (G2), the condition for
neglecting the swell expansion in comparison to the hole expansion,
urb/uT < 1, results in

r̃e ≙ re

R
< 5.6. (G3)

Our range of analysis satisfies (G3), as could be seen in Fig. 8, so as
to neglect the swell expansion.

APPENDIX H: TAYLOR–CULICK AND KELLER’S
SCALING

The Taylor–Culick velocity11 UTC of hole expansion in a thin
film of uniform thickness h was obtained as follows. At any time, the
retracting mass m in a sector of angle κ of the film was estimated as
the mass of the undisturbed film that had occupied at previous times
in the sector over a radius equal to the hole radius rh, i.e.,

m ≙ ρhr2hκ/2. (H1)

The rate of change of momentum of this retracting fluid, retracting
with a constant velocity UTC at any time,

d(mUTC)
dt

≙ d(mUTC)
drh

UTC ≙ md(U2
TC/2)
drh

+U
2
TC

dm

drh
, (H2)

whereUTC = drh/dt and the first term is retained even thoughUTC is
assumed to be constant with t and rh. Using product rule, (H2) can
be written as

d(mUTC)
dt

≙ d(mU2
TC/2)

drh
+
U2

TC

2

dm

drh
. (H3)

Using (H1) in (H3), we obtain

d(mUTC)
dt

≙ ρrhhκU2
TC. (H4)

When (H4) is equated to the force due to surface tension

F ≙ 2σrhκ, (H5)

we obtain the well-known expression UTC ≙ √2σ/ρh.
It needs to be noted that even though most papers state that

Culick’s derivation assumes that the mass m accumulates at the
retracting tip, in the above derivation, there is no assumption about
what happens at time t to the mass that had occupied in the sector
of volume r2hκh/2 of the film at previous times. In other words, mass
balance at time t is not used in this derivation. Furthermore, F given
by (H5) is obtained when a horizontal force/length of σ acts on the
edge of a retracting film of length rhκ on the top and bottom of the
retracting film. Such a force acting on the retracting mass is possible
only when the retracting fluid does not form a bulge at the retract-
ing tip. In other words, for the retracting force to be that given by
(H5), the inherent assumption in the derivation is that there is no
bulge formation due to the accumulation of fluid at the retracting
tip. Such an inherent assumption would mean that there has to be a
flow along the film to satisfy the mass balance.

Similar is the case with Keller’s derivation of the rh ∼ t1/2 scaling
of the hole radius in coalescing bubbles. Keller uses the momentum
balance alone in the form

d

dt
(ρ∫ rh(t)

0
2πrw(r)dr drh

dt
) ≙ 4σπrh(t), (H6)

after neglecting 1/√1 + ( 1
2
∂w/∂r∣r≙rh)2, the curvature at the retract-

ing rim tip on the RHS of (H6). This implies that such an analysis is
valid only when

∂w

∂r
∣
r≙rh

≪ 2. (H7)

Using w(r) = r2/R, (H7) implies that Keller’s scaling, even in the
absence of any bulge formation, is valid only until rh ≪ R.

Now, in the presence of bulge formation at the retracting rim
tip due to the accumulation of retracting fluid, assuming the bulge
to be toroidal, ∂w/∂r∣r≙rh ≙ ∞, clearly violating the condition (H7)
for the validity of Keller’s analysis. Hence, since the RHS of (H6) is
the surface tension force in the absence of bulge formation, Keller’s
scaling is expected when the rim retracts with no bulge formation.
In such a case, except in the beginning of retraction, which we dis-
cuss in Appendix D to show that t1/2 is still possible, there has to be
a flow along the film to conserve the mass. Keller’s analysis does not
specify the state at time t of the mass that occupied the undisturbed
film from 0 to rh in previous times; the scaling has no mass conser-
vation in it. Due to these reasons, the scaling proposed by Keller will
deviate from the scaling of hole expansion in the presence of bulge
formation, which we discuss in Sec. IV.

APPENDIX I: MEASUREMENT OF INITIAL VELOCITY

The initial velocity uT i is measured as follows. The static rim
position is first observed from the images before the bubble bursts.
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The hole expansion in the thin film cap is then tracked. We observe
no bulge formation as long as ro < Rr , while in the first image for
which ro > Rr , we observe a bulge at the rim tip. The distance along
the travel path of the retraction between the last image for which
ro < Rr in which no bulge forms and the first image for
which ro > Rr in which a bulge forms is then measured. uT i
is calculated as this distance divided by the time between the
frames.

This measurement of uT i is, hence, an average velocity mea-
sured over a very short distance before the rim, where no bulge forms
in the retracting film and a very short distance after the rim, where
a bulge is seen forming in the retracting rim. This measurement of
uT i would give a reasonably accurate estimate of the initial velocity
of the rim if the time over which uT changes at the initial time t = ti,

δti ≙ uT i
duT/dt∣t≙ti ≪ Δt, (I1)

the time between frames. Estimating duT/dt∣t≙ti as (UTC − u1)/Δt,
where u1 is the first measured uo (corresponding to r1 in Fig. 5) is
satisfied when

uT i/(UTC − u1)≪ 1. (I2)

We find that the values of uT i/(UTC − u1) are of the order of 10−2
in our measurements, implying that the error in approximating the
average measured value of uT i as the initial velocity of retraction of
rim is small.
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