
Commun. Comput. Phys.
doi: 10.4208/cicp.171010.030311a

Vol. 11, No. 1, pp. 99-113
January 2012

Higher-Order Compact Scheme for the

Incompressible Navier-Stokes Equations

in Spherical Geometry

T. V. S. Sekhar1,∗, B. Hema Sundar Raju1 and Y. V. S. S. Sanyasiraju2

1 Department of Mathematics, Pondicherry Engineering College,
Puducherry-605 014, India.
2 Department of Mathematics, Indian Institute of Technology Madras,
Chennai-600 036, India.

Received 17 October 2010; Accepted (in revised version) 3 March 2011

Available online 5 September 2011

Abstract. A higher-order compact scheme on the nine point 2-D stencil is developed
for the steady stream-function vorticity form of the incompressible Navier-Stokes (N-
S) equations in spherical polar coordinates, which was used earlier only for the carte-
sian and cylindrical geometries. The steady, incompressible, viscous and axially sym-
metric flow past a sphere is used as a model problem. The non-linearity in the N-S
equations is handled in a comprehensive manner avoiding complications in calcula-
tions. The scheme is combined with the multigrid method to enhance the convergence
rate. The solutions are obtained over a non-uniform grid generated using the trans-
formation r = eξ while maintaining a uniform grid in the computational plane. The
superiority of the higher order compact scheme is clearly illustrated in comparison
with upwind scheme and defect correction technique at high Reynolds numbers by
taking a large domain. This is a pioneering effort, because for the first time, the fourth
order accurate solutions for the problem of viscous flow past a sphere are presented
here. The drag coefficient and surface pressures are calculated and compared with
available experimental and theoretical results. It is observed that these values simu-
lated over coarser grids using the present scheme are more accurate when compared to
other conventional schemes. It has also been observed that the flow separation initially
occurred at Re=21.
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1 Introduction

The complexity involved in solving N-S equations by numerical approximations differs
for various geometries such as cartesian, cylindrical and spherical polar coordinates, es-
pecially while handling non-linearity of the N-S equations. The present paper is con-
cerned with solving the steady two-dimensional Navier-Stokes equations in spherical
polar coordinates using higher order compact scheme (HOCS) on the nine point 2-D sten-
cil as shown in Fig. 1.

Figure 1: Nine point 2-D stencil.

The study of steady incompressible N-S equations using finite difference methods
vary considerably in terms of accuracy and efficiency. The central difference approx-
imations to all the derivatives of the N-S equations yields second order accuracy but
the resulting solutions may exhibit non-physical oscillations. The combination of central
differences to second order derivatives and first order upwind differences to nonlinear
terms (here after denoted as CDS-UPS) as described by Ghia et al. [1], Juncu and Mi-
hail [2] and Sekhar et al. [3] yields a stable scheme but is of first order accurate and the
resulting solutions exhibit the effects of artificial viscosity. Also, at high Re, approxima-
tion of convective terms using CDS-UPS scheme may not capture the flow phenomena
accurately due to the dominance of inertial forces. To capture the flow phenomena, at
least second order accuracy is required. The second order upwind differences to nonlin-
ear terms are no better than the first-order ones for large values of Re and also require
ghost points. The second order accuracy can be achieved by employing defect correction
technique (DC) for CDS-UPS scheme [1, 2]. The traditional higher order finite difference
methods [4] contains ghost points and requires special treatment near the boundaries. If
the domain is large, the above first and second order accurate methods may not converge
with coarser grids and grid independence can be achieved only with very high finer grids
which consumes more CPU time and memory [3]. An exception has been found in the
high order finite difference schemes of compact type, which are computationally stable,
efficient and yield highly accurate numerical solutions [5, 6]. Jiten et al. [7] developed
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fully HOCS for steady state natural convection in cartesian coordinate system. Spotz and
Carey [8] and Erturk and Gokcol [9] developed fourth order compact formulations for
steady 2-D incompressible N-S equations in cartesian form. HOCS are less applied to
flow problems in curvilinear coordinate systems like cylindrical and spherical polar co-
ordinates. Iyengar and Manohar [10], Jain [11] and Lai [12] developed compact fourth
order schemes to linear Poisson or quasi-linear Poisson equations in polar coordinates.
Sanyasiraju and Manjula [13, 14] developed higher order semi-compact scheme to incom-
pressible N-S equations in cylindrical coordinates in which compactness is relaxed for
a few terms. Recently, Jiten and Rajendra [15] and Rajendra and Jiten [16] developed a
transformation free HOCS for incompressible viscous flow past an impulsively started
circular cylinder and for non-uniform polar grids respectively.

To the best of our knowledge, no work has been reported until now on HOCS to N-
S equations in spherical polar coordinate system. In this work, a fourth order compact
scheme is developed for steady, incompressible N-S equations in spherical polar coordi-
nates. The steady, incompressible, viscous and axially symmetric flow past a sphere is
used as a model problem. The multigrid method is combined with HOCS to enhance the
convergence rate.

2 Basic equations

The flow of steady incompressible viscous flow past a sphere with uniform free-stream
velocity U∞ (from left to right) is considered for this study. The governing equations are
equation of continuity:

∇·q=0, (2.1)

momentum equation:

(q·∇)q=−∇p+
2

Re
∇2

q. (2.2)

Taking curl on both sides of Eq. (2.2), we obtain

∇×q×ω=
2

Re
(∇×∇×ω), (2.3)

where
ω=∇×q (2.4)

is the vorticity and Re is the Reynolds number defined as Re=2U∞a/ν, where a is radius
of the sphere and ν is kinematic coefficient of viscosity. The non-dimensional radial ve-
locity (qr) and transverse velocity (qθ) components (which are obtained by dividing the
corresponding dimensional components by the stream velocity U∞) are chosen in such a
way that the equation of continuity (2.1) is satisfied in spherical polar coordinates. They
are

qr =
1

r2sinθ

∂ψ

∂θ
, qθ =

−1

rsinθ

∂ψ

∂r
. (2.5)
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Expanding (2.3) and (2.4), using (2.5) with spherical polar coordinates (r,θ,φ) (axis-
symmetric), we get the Navier-Stokes equations in vorticity-stream function form as

∂2ψ

∂r2
+

1

r2

∂2ψ

∂θ2
−

cotθ

r2

∂ψ

∂θ
=−rωsinθ,

∂2ω

∂r2
+

2

r

∂ω

∂r
+

1

r2

∂2ω

∂θ2
+

cotθ

r2

∂ω

∂θ
−

ω

r2sin2 θ
=

Re

2

(

qr
∂ω

∂r
+ω

∂qr

∂r
+

qrω

r
+

qθ

r

∂ω

∂θ
+

ω

r

∂qθ

∂θ

)

.

Because, the stream function and vorticity are expected to vary most rapidly near the
surface of the sphere, we substitute r = eξ so that the above two equations become in
(ξ,θ) coordinates [23] as follows

∂2ψ

∂ξ2
−

∂ψ

∂ξ
+sinθ

∂

∂θ

( 1

sinθ

∂ψ

∂θ

)

+sinθe3ξω =0, (2.6a)

∂2ω

∂ξ2
+

∂ω

∂ξ
+cotθ

∂ω

∂θ
+

∂2ω

∂θ2
−

ω

sin2θ
=

Re

2
eξ

(

qr
∂ω

∂ξ
+qθ

∂ω

∂θ
−qrω−qθωcotθ

)

, (2.6b)

where ψ and ω are dimensionless stream function and vorticity respectively and

qr =
e−2ξ

sinθ

∂ψ

∂θ
, qθ =−

e−2ξ

sinθ

∂ψ

∂ξ
. (2.7)

The boundary conditions to be satisfied are

On the surface of the sphere (ξ =0) : ψ=
∂ψ

∂ξ
=0, ω =−

1

sinθ

∂2ψ

∂ξ2
.

At large distances from the sphere (ξ→∞) : ψ∼
1

2
e2ξ sin2θ, ω→0.

Along the axis of symmetry (θ =0 and θ =π) : ψ=0, ω =0.

3 Fourth order compact scheme with multigrid method

The standard fourth order central difference operators for the first and second order par-
tial derivatives are given by the following equations

∂φ

∂ξ
=δξφ−

h2

6

∂3φ

∂ξ3
+O(h4),

∂2φ

∂ξ2
=δ2

ξ φ−
h2

12

∂4φ

∂ξ4
+O(h4), (3.1a)

∂φ

∂θ
=δθφ−

k2

6

∂3φ

∂θ3
+O(k4),

∂2φ

∂θ2
=δ2

θ φ−
k2

12

∂4φ

∂θ4
+O(k4), (3.1b)

where δξφ, δ2
ξ φ, δθφ and δ2

θ φ are the standard second order central differences given by

δξφi,j =
φi+1,j−φi−1,j

2h
, δ2

ξ φi,j =
φi+1,j−2φi,j+φi−1,j

h2
,

δθφi,j =
φi,j+1−φi,j−1

2k
, δ2

θ φi,j =
φi,j+1−2φi,j+φi,j−1

k2
.
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Using (3.1a)-(3.1b) in Eq. (2.6a), we obtain

δ2
ξ ψi,j+δ2

θ ψi,j−δξψi,j−cotθδθψi,j−si,j−γi,j =0. (3.2)

The truncation error of Eq. (3.2) is

γi,j =
[

−2
( h2

12

∂3ψ

∂ξ3
+

k2

12

∂3ψ

∂θ3

)

+
( h2

12

∂4ψ

∂ξ4
+

k2

12

∂4ψ

∂θ4

)]

i,j
+O(h4,k4) (3.3)

and

si,j =−(sinθe3ξ ω)i,j,

where h and k are grid spacings (h 6= k) in the radial and angular directions, respectively.
Differentiating partially the stream-function Eq. (2.6a) with respect to ξ and θ, gives

∂3ψ

∂ξ3
=−

∂3ψ

∂ξ∂θ2
+

∂2ψ

∂ξ2
+cotθ

∂2ψ

∂ξ∂θ
+

∂s

∂ξ
, (3.4a)

∂4ψ

∂ξ4
=−

∂4ψ

∂ξ2∂θ2
−

∂3ψ

∂ξ∂θ2
+cotθ

∂3ψ

∂ξ2∂θ
+

∂2ψ

∂ξ2
+cotθ

∂2ψ

∂ξ∂θ
+

∂2s

∂ξ2
+

∂s

∂ξ
, (3.4b)

∂3ψ

∂θ3
=−

∂3ψ

∂ξ2∂θ
+

∂2ψ

∂ξ∂θ
−csc2 θ

∂ψ

∂θ
+cotθ

∂2ψ

∂θ2
+

∂s

∂θ
, (3.4c)

∂4ψ

∂θ4
=−

∂4ψ

∂ξ2∂θ2
+

∂3ψ

∂ξ∂θ2
−cotθ

∂3ψ

∂ξ2∂θ
+cotθ

∂2ψ

∂ξ∂θ
+

(

cot2 θ−2csc2 θ
)∂2ψ

∂θ2

+csc2 θcotθ
∂ψ

∂θ
+cotθ

∂s

∂θ
+

∂2s

∂θ2
. (3.4d)

Using (3.3)-(3.4d) in (3.2), we obtain

(

1+
h2

12

)

δ2
ξ ψi,j+

(

1+
k2

12

(

cot2 θ+2csc2 θ
)

)

δ2
θ ψi,j−δξψi,j−cotθ

(

1+
k2

4
csc2 θ

)

δθψi,j

+
( h2+k2

12

)

(

δ2
ξ δ2

θ ψi,j−cotθδ2
ξ δθψi,j−δξδ2

θ ψi,j+cotθδξδθψi,j

)

−si,j−
h2

12

(

δ2
ξ si,j−δξsi,j

)

−
k2

12

(

δ2
θ si,j−cotθδθsi,j

)

=0. (3.5)

The derivatives ∂s/∂ξ, ∂s/∂θ, ∂2s/∂ξ2 and ∂2s/∂θ2 are calculated analytically and used
in Eq. (3.5) in place of difference approximations. Eq. (3.5) is the fourth order compact
discretization of the governing equation (2.6a).

By combining the non-linear terms qr∂ω/∂ξ, qθ∂ω/∂θ and −qrω−qθωcotθ on the
right hand side of Eq. (2.6b) with the terms ∂ω/∂ξ , cotθ∂ω/∂θ and ωcsc2 θ respectively
on the left hand side, we obtain

−
∂2ω

∂ξ2
−

∂2ω

∂θ2
+c

∂ω

∂ξ
+d

∂ω

∂θ
+eω =0, (3.6)
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where

c=
Re

2
eξqr−1, d=

Re

2
eξ qθ−cotθ, e=csc2 θ−

Re

2
eξqr−

Re

2
eξqθ cotθ.

Once again using (3.1a)-(3.1b) in Eq. (3.6), we obtain

−δ2
ξ ωi,j−δ2

θ ωi,j+ci,jδξωi,j+di,jδθωi,j+ei,jωi,j−τi,j =0. (3.7)

The truncation error of Eq. (3.7) is

τi,j =
[

2
( h2

12
c

∂3ω

∂ξ3
+

k2

12
d

∂3ω

∂θ3

)

−
( h2

12

∂4ω

∂ξ4
+

k2

12

∂4ω

∂θ4

)]

i,j
+O(h4,k4). (3.8)

Differentiating partially the vorticity equation (3.6) respect to ξ and θ, we obtain

∂3ω

∂ξ3
=−

∂3ω

∂ξ∂θ2
+c

∂2ω

∂ξ2
+d

∂2ω

∂ξ∂θ
+

( ∂c

∂ξ
+e

) ∂ω

∂ξ
+

∂d

∂ξ

∂ω

∂θ
+

∂e

∂ξ
ω, (3.9a)

∂4ω

∂ξ4
=−

∂4ω

∂ξ2∂θ2
−c

∂3ω

∂ξ∂θ2
+d

∂3ω

∂ξ2∂θ
+

(

2
∂c

∂ξ
+e+c2

)∂2ω

∂ξ2
+

(

2
∂d

∂ξ
+cd

) ∂2ω

∂ξ∂θ

+
(

2
∂e

∂ξ
+

∂2c

∂ξ2
+c

∂c

∂ξ
+ce

)∂ω

∂ξ
+

(∂2d

∂ξ2
+c

∂d

∂ξ

)∂ω

∂θ
+

( ∂2e

∂ξ2
+c

∂e

∂ξ

)

ω, (3.9b)

∂3ω

∂θ3
=−

∂3ω

∂ξ2∂θ
+c

∂2ω

∂ξ∂θ
+d

∂2ω

∂θ2
+

( ∂d

∂θ
+e

) ∂ω

∂θ
+

∂c

∂θ

∂ω

∂ξ
+

∂e

∂θ
ω, (3.9c)

∂4ω

∂θ4
=−

∂4ω

∂ξ2∂θ2
+c

∂3ω

∂ξ∂θ2
−d

∂3ω

∂ξ2∂θ
+

(

2
∂d

∂θ
+e+d2

) ∂2ω

∂θ2
+

(

2
∂c

∂θ
+cd

) ∂2ω

∂ξ∂θ

+
( ∂2c

∂θ2
+d

∂c

∂θ

)∂ω

∂ξ
+

(

2
∂e

∂θ
+

∂2d

∂θ2
+d

∂d

∂θ
+de

)∂ω

∂θ
+

( ∂2e

∂θ2
+d

∂e

∂θ

)

ω. (3.9d)

Substituting Eqs. (3.8)-(3.9d) in Eq. (3.7) gives

−li,jδ
2
ξ ωi,j− fi,jδ

2
θ ωi,j+gi,jδξωi,j+oi,jδθωi,j+qi,jωi,j

−
(h2+k2

12

)

(

δ2
ξ δ2

θ ωi,j−ci,jδξδ2
θ ωi,j−di,jδ

2
ξ δθωi,j

)

+wi,jδξδθωi,j =0, (3.10)

where the coefficients li,j, fi,j, gi,j, oi,j, qi,j and wi,j are given by

li,j =1+
h2

12

(

c2
i,j−2δξci,j−ei,j

)

, fi,j =1+
k2

12

(

d2
i,j−2δθdi,j−ei,j

)

,

gi,j = ci,j+
h2

12

(

δ2
ξ ci,j−ci,jδξci,j+2δξei,j−ci,jei,j

)

+
k2

12

(

δ2
θ ci,j−di,jδθci,j

)

,

oi,j =di,j+
h2

12

(

δ2
ξ di,j−ci,jδξdi,j

)

+
k2

12

(

δ2
θ di,j−di,jδθdi,j +2δθei,j−di,jei,j

)

,

qi,j = ei,j+
h2

12

(

δ2
ξ ei,j−ci,jδξei,j

)

+
k2

12

(

δ2
θ ei,j−di,jδθei,j

)

,

wi,j =
h2

6
δξdi,j+

k2

6
δθci,j−

(h2+k2

12

)

ci,jdi,j.
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Eq. (3.10) is the fourth order compact discretization of Eq. (3.6). The fourth order compact
differences for the coefficients c, d, and e are given by

c=
Re

2

e−ξ

sinθ

(

δθψ−
k2

6

∂3ψ

∂θ3

)

−1, d=−
Re

2

e−ξ

sinθ

(

δξψ−
h2

6

∂3ψ

∂ξ3

)

−cotθ,

e=
Re

2

e−ξ

sinθ

(

cotθ
(

δξψ−
h2

6

∂3ψ

∂ξ3

)

−
(

δθψ−
k2

6

∂3ψ

∂θ3

))

+csc2θ,

where ∂3ψ/∂ξ3 and ∂3ψ/∂θ3 are given in Eqs. (3.4a) and (3.4c).

The two-dimensional cross derivative central difference operators on a uniform
anisotropic mesh (h 6= k) are given by

δξδθφi,j =
φi+1,j+1−φi+1,j−1−φi−1,j+1+φi−1,j−1

4hk
,

δ2
ξ δθφi,j =

φi+1,j+1−φi+1,j−1+φi−1,j+1−φi−1,j−1−2φi,j+1+2φi,j−1

2h2k
,

δξδ2
θ φi,j =

φi+1,j+1−φi−1,j+1+φi+1,j−1−φi−1,j−1+2φi−1,j−2φi+1,j

2hk2
,

δ2
ξ δ2

θ φi,j =
φi+1,j+1+φi+1,j−1+φi−1,j+1+φi−1,j−1−2φi,j+1−2φi,j−1−2φi+1,j−2φi−1,j+4φi,j

h2k2
,

where φ= either ψ or ω.

On the surface of the sphere, no-slip condition is applied. At far off distances (ξ →
∞) uniform flow is imposed. We now turn to the boundary condition for the vorticity,
focusing our discussion on the boundary where i =0. The vorticity boundary condition
at i=0 is derived using ψ=∂ψ/∂ξ =0 in Eq. (2.6a). Following Briley’s procedure [17] we
obtain the formula

ω0,j =
−

(

108ψ1,j−27ψ2,j +4ψ3,j

)

18h2 sinθ
.

The algebraic system obtained from the fourth order discretized stream-vorticity equa-
tions (3.5) and (3.10) is solved using line Gauss-Seidel method. The algebraic equations
for ψ and ω were solved simultaneously and the vorticity boundary condition for ω is
updated after every iteration. To enhance the convergence rate, multigrid technique has
been used [18] with a finest grid of 256×256. The multigrid method makes use of a hi-
erarchy of computational grids Dk with corresponding grid functions Uk, k=1,2,3,··· ,n.
The step size in Dk are hk and kk and hk+1 = 0.5hk, kk+1 = 0.5kk so that as k decreases
Dk becomes coarser. After 5 iterations on a fine mesh the solution switches to the next
coarser grid and again after 5 iterations, it switches to the next coarser grid till it reaches
the coarsest grid Dk. Let the converged solution on the grid Dk be denoted as uk. This is
prolongated to the next finer grid Dk+1 using prolongation operator Pk+1

k to provide an

estimate for uk+1 as

uk+1 = Pk+1
k uk.
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This estimate is used as an initial guess for the solution on the grid Dk+1. The restriction
and prolongation operators which are used in this study are as follows. The restriction
operator Rk−1

k transfers a fine grid function Uk to a coarse grid function Uk−1. On the

other hand the prolongation operator, denoted by Pk
k−1, transfers a coarse grid function

Uk−1 to a fine grid function Uk. For the restriction operator, the simplest one is injection
where by the values of a function in the coarse grid are taken to be exactly the values at
the corresponding points of the next fine grid i.e.,

(Rk−1
k uk)i+1,j+1 =uk

2i+1,2j+1.

We used the above injection operator throughout the study. For the prolongation opera-
tor the simplest form is derived using linear interpolation. Prolongation by linear inter-
polation introduces no ambiguity when the interpolated value is desired at the mid point
of the boundaries of a mesh cell. The following 9-point prolongation operator defined by
Wesseling [19] is used for the present study

(Pk
k−1uk−1)2i+1,2j+1 =uk−1

i+1,j+1,

(Pk
k−1uk−1)2i+2,2j+1 =

1

2

(

uk−1
i+1,j+1+uk−1

i+2,j+1

)

,

(Pk
k−1uk−1)2i+1,2j+2 =

1

2

(

uk−1
i+1,j+1+uk−1

i+1,j+2

)

,

(Pk
k−1uk−1)2i+2,2j+2 =

1

4

(

uk−1
i+1,j+1+uk−1

i+1,j+2+uk−1
i+2,j+1+uk−1

i+2,j+2

)

.

The iterations are continued until the norm of the dynamic residuals is less than 10−5.
Once convergence is achieved, k is incremented by unity. This is continued until k = n,
i.e., convergence on the desired finest grid is achieved, thus yielding the required final
solution.

4 Results and discussion

To enhance the convergence rate, five different grids namely 16×16, 32×32, 64×64, 128×
128 and 256×256 are chosen and the results are noted for each grid. The outer boundary is
chosen as 100 times the radius of the sphere for Re>1 and 134.2 for Re≤1. The simulations
are also made with different outer domains to show the effect of the far field on the
computations. The drag coefficient CD is defined by the equation

CD =
D

πρU2
∞

a2
,

where D is the total drag on the sphere, a is the radius of the sphere and ρ is the density of
the fluid. The drag coefficient is composed of two parts due to the viscous and pressure
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Table 1: Grid independence of fourth order accurate drag coefficient values.

Re 16×16 32×32 64×64 128×128 256×256
5 3.048 3.326 3.461 3.521 3.548
10 1.752 1.953 2.060 2.111 2.134
20 1.035 1.188 1.274 1.320 1.341
25 0.870 1.019 1.099 1.144 1.165
40 0.550 0.750 0.814 0.856 0.877
50 0.386 0.652 0.709 0.750 0.771

100 – 0.115 0.471 0.504 0.526
200 – – 0.302 0.346 0.365

Table 2: Grid independence of far field distance.

Re 40 100 110 134.2 148.4
5 3.555 3.548 3.548 3.547 3.547

10 2.137 2.134 2.134 2.134 2.134
20 1.343 1.341 1.341 1.341 1.341
40 0.878 0.877 0.877 0.877 0.877
50 0.772 0.771 0.770 0.770 0.771

100 0.527 0.526 0.526 0.525 0.525
200 0.367 0.365 0.365 0.364 0.364

drag, respectively. The viscous drag coefficient is given by

CV =−
4

Re

∫ π

0
ω(0,θ)sin2 θdθ

and the pressure drag coefficient is

CP =
2

Re

∫ π

0

(

ω+
∂ω

∂ξ

)

ξ=0
sin2θdθ.

The total drag coefficient CD = CV +CP. The drag coefficient values obtained using dif-
ferent grids are tabulated in Table 1 to show the grid independence. The drag coefficient
values with different outer domains are compared in Table 2.

Calculated drag coefficients for low Re from 0.1 to 1.0 are given in Table 3 along
with other literature values of Goldstein [20], Proudman and Pearson [21], Chester and
Breach [22], Dennis and Walker [23] and Chang and Maxey [24]. The obtained results
are in agreement with all the literature values including the recent values predicted by
Chang and Maxey [24]. Calculated drag coefficients for high Re from 5 to 200 are given
in Table 4 along with other literature values of Leclair et al. [25], Dennis and Walker [23],
Fornberg [26], Juncu and Mihail [2], Feng and Michaelides [27] and Atefi et al. [28]. Once
again the results concur with all the literature values including the recent values pre-
dicted by Feng and Michaelides [27] and Atefi et al. [28]. The drag coefficients for dif-
ferent Reynolds numbers are compared with the experimental results of Roos and Will-
marth [29] and Clift et al. [30] and analytical method by Liao [31] in Fig. 2(a) and (b). The
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Table 3: Comparison of drag coefficient values with other theoretical values for low Re.

Re Ref. [20] Ref. [21] Ref. [22] Ref. [23] Ref. [24] Present results
0.1 122.23 122.05 122.09 122.10 122.60 122.52
0.2 62.22 61.94 62.01 62.02 62.20 62.09
0.3 42.20 41.87 41.95 42.02 42.10 41.95
0.4 32.19 31.82 31.91 31.91 32.00 31.88
0.5 26.17 25.78 25.88 25.85 25.90 25.82
0.6 22.16 21.76 21.88 21.85 21.90 21.77
0.7 19.29 18.90 19.03 18.96 18.90 18.87
0.8 17.13 16.76 16.91 16.76 16.80 16.70
0.9 15.46 15.10 15.28 15.10 15.10 15.00
1.0 14.11 13.78 14.00 13.72 13.70 13.66

Table 4: Comparison of drag coefficient values with other theoretical values for high Re.

Re Ref. [25] Ref. [23] Ref. [27] Ref. [2] Ref. [26] Ref. [28] Present results
1 13.66 13.72 13.49 – – 13.66 13.66
5 3.51 3.60 3.52 – – – 3.55

10 2.14 2.21 – – – – 2.13
20 1.36 1.36 1.34 – – – 1.34
40 0.93 0.90 0.88 – – – 0.87
50 – – – 0.79 – 0.79 0.77
100 0.55 – 0.55 0.53 0.54 0.55 0.53
200 – – – – 0.38 – 0.36

Table 5: Comparison of HOCS drag coefficient values with CDS-UPS and DC technique.

Re CDS-UPS DC technique HOCS
322 642 1282 2562 322 642 1282 2562 322 642 1282 2562

100 NC NC 0.403 0.473 NC NC 0.430 0.488 0.115 0.471 0.504 0.526
200 NC NC NC 0.289 NC NC NC 0.308 NC 0.302 0.345 0.365

NC – no convergence

present results agree with the experimental data of Roos and Willmarth [29] and Clift et
al. [30]. Liao [31], used Homotopy analysis method to find drag coefficients and claimed
that his drag coefficient formula at the 10th order approximation agrees well with exper-
imental results when Re <30. The present results also agrees with Liao [31] in the range
Re<30. The drag coefficient components CV and CP and the total drag CD are presented
in Fig. 3 on log-log scale.

Although, 40 times radius of the sphere as far field is sufficient for Re = 100 and 200
(see Table 2), we simulated the flow with large domain, 110 times the radius of the sphere,
to compare with the CDS-UPS scheme and DC technique. The drag coefficients at Re=100
and Re=200 are compared with the CDS-UPS and DC technique in Table 5. It is observed
that the smallest possible grid for convergence of CDS-UPS and DC technique at Re=100
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Figure 2: (a) Comparison of drag coefficient values with other experimental and theoretical values for low Re
and (b) Comparison of drag coefficient values with experimental and theoretical values for high Re.
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Figure 3: Distribution of drag coefficients CV , CP and CD.

and Re=200 are 128×128 and 256×256, respectively, while for the 4th order HOCS, they
are 32×32 and 64×64. It evident from Table 5 that DC technique improves the accuracy
of the solution in comparison with CDS-UPS scheme and the solutions obtained by both
the schemes can be achieved by the computationally inexpensive 64×64 grid by HOCS.
This clearly illustrates the superiority of HOCS in comparison with CDS-UPS and DC
technique and can be concluded as follows. (i) HOCS can be used in large domains (ii)
HOCS gives convergence even in coarser grids (iii) Results obtained by CDS-UPS and
DC technique with finer grids can be achieved by HOCS with much coarser grids.

One of the main points of interest is to determine the Reynolds number at which a
separated wake first appears behind the sphere and to examine the subsequent develop-
ment of the wake with Reynolds number. Various authors, including Kawaguti [32], Lis-
ter [33], Dennis and Walker [34] and Hamielec et al. [35] have found that separation has
not started to occur before Re=20. Separated flow past a sphere has been studied experi-
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Figure 4: (a) Comparison of separation angle values with other experimental and theoretical values and (b)
Comparison of separation length values with other theoretical values.
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Figure 5: (a) Angular variation of the surface pressure for different Re and (b) Angular variation of the surface
vorticity for same Re.

mentally by Taneda [36]. He has found that separation starts somewhere between Re=22
and Re =25 and has estimated Re =24 as the start of separation. Zou et al. [37], studied
flow past a sphere using Domain Decomposition Method and flow separation is caught
at Re = 25. In this study, it is found that the first flow separation is occurred at Re = 21.
This prediction is slightly higher than the one predicted by Dennis and Walker [23] and
Leclair et al. [25] and Pruppacher et al. [38] who estimated flow separation at 20.5, 20 and
20 respectively. Separation angles measured from the rear stagnation point for different
Reynolds numbers are compared with the available data in Fig. 4(a). The present results
agree with the experimental data of Taneda [36] as well as with the compared numerical
results of Juncu and Mihail [2] and Chang and Maxey [24]. Separation lengths measured
from the sphere center to the end of the stationary, recirculating point are compared with
the available numerical results in Fig. 4(b). The present results are again in good agree-
ment with the results of Fornberg [26] and Chang and Maxey [24].
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Table 6: Comparison of surface pressure at front and rear points.

Re Ref. [23] Ref. [24] Present results
p(0) p(π) p(π) p(0) p(π)

0.1 -60.07 62.03 62.30 -60.31 62.28
0.2 -30.05 31.97 32.10 -30.11 32.04
0.3 – – 22.00 -20.06 21.95
0.4 – – 16.90 -15.03 16.90
0.5 -12.02 13.86 13.90 -12.02 13.86
0.6 – – 11.90 -10.01 11.83
0.7 – – 10.40 -8.57 10.37
0.8 -7.52 9.29 9.29 -7.50 9.27
0.9 – – 8.43 -6.66 8.42
1 -6.02 7.75 7.74 -5.99 7.73
5 -1.20 2.60 2.61 -1.18 2.59

10 -0.65 1.88 1.87 -0.60 1.86
20 -0.32 1.47 1.46 -0.32 1.46
40 -0.19 1.26 1.25 -0.20 1.25
50 – – – -0.18 1.20
100 – – – -0.15 1.10
200 – – – -0.11 1.05

The surface pressure is calculated using the relations

p(ξ =0,θ =π)=1+
8

Re

∫

∞

0

(∂ω

∂θ

)

θ=π
dξ

and

p(ξ =0,θ)=1+
8

Re

∫

∞

0

(∂ω

∂θ

)

θ=π
dξ+

4

Re

∫ θ

π

(

ω+
∂ω

∂ξ

)

ξ=0
dθ.

The surface pressure obtained by the above formula is presented in Fig. 5(a). The surface
vorticity is also presented in Fig. 5(b). The pattern of these graphs are in good agreement
with those presented by Dennis and Walker [23] and Lee [39]. The surface pressure at
front and rear stagnation points of the sphere are in line with the results of Dennis and
Walker [23] and Chang and Maxey [24] as shown in Table 6.

5 Conclusions

A fourth order compact scheme is developed for steady, incompressible N-S equations in
spherical polar coordinates something that was not hitherto attempted. The steady, in-
compressible, viscous and axially symmetric flow past a sphere is used as a model prob-
lem. The HOCS is combined with multigrid method to enhance the convergence rate.
The fourth order accurate solutions for the problem of viscous flow past a sphere are
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presented for the first time. These values simulated over coarser grids using the present
scheme are more accurate when compared to other conventional schemes. The results are
in good agreement with experimental and recent theoretical results. It is found that the
flow separation initially occurs at Re = 21. We could achieve the results with very large
domain like 110 times the radius of the sphere from coarser grids using HOCS, where as
CDS-UPS scheme and DC technique have failed to give the solution with coarser grids.
Also, the solution obtained by the CDS-UPS and DC technique over fine grids can be
achieved by computationally inexpensive coarser grids by HOCS. This shows the supe-
riority of the HOCS in comparison with CDS-UPS and DC technique at high Reynolds
numbers.
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