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Abstract

A framework for solving problems of dislocation-mediated plasticity coupled with
point-defect diffusion is presented. The dislocations are modeled as line singularities
embedded in a linear elastic medium while the point defects are represented by a
concentration field as in continuum diffusion theory. Plastic flow arises due to the
collective motion of a large number of dislocations. Both conservative (glide) and
nonconservative (diffusion-mediated climb) motions are accounted for. Time scale
separation is contingent upon the existence of quasi-equilibrium dislocation config-
urations. A variational principle is used to derive the coupled governing equations
for point-defect diffusion and dislocation climb. Superposition is used to obtain the
mechanical fields in terms of the infinite-medium discrete dislocation fields and an
image field that enforces the boundary conditions while the point-defect concen-
tration is obtained by solving the stress-dependent diffusion equations on the same
finite-element grid. Core-level boundary conditions for the concentration field are
avoided by invoking an approximate, yet robust kinetic law. Aspects of the formu-
lation are general but its implementation in a simple plane strain model enables the
modeling of high-temperature phenomena such as creep, recovery and relaxation in
crystalline materials. With emphasis laid on lattice vacancies, the creep response
of planar single crystals in simple tension emerges as a natural outcome in the sim-
ulations. A large number of boundary-value problem solutions are obtained which
depict transitions from diffusional to power-law creep, in keeping with long-standing
phenomenological theories of creep. In addition, some unique experimental aspects
of creep in small scale specimens are also reproduced in the simulations.
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1 Introduction

The objective of this work is to expand the range of application of current discrete disloca-
tion dynamics simulations of crystal plasticity to high homologous temperatures and thus
enable mesoscopic simulations of creep and other thermally activated phenomena. The
underlying fundamental processes are as relevant to metal plasticity (McDowell, 2008) as
they are in geophysics (Castelnau et al., 1996). Plastic deformation of crystalline matter
occurs across multiple length and time scales. A discrete dislocation framework based
on continuum elasticity theory, e.g. (Van der Giessen and Needleman, 1995; Zbib et al.,
1998; Ghoniem et al., 2000; Vattré et al., 2014), constitutes the hyphen between atomic-
scale descriptions (Bulatov et al., 1998; Shenoy et al., 1999; Shilkrot et al., 2004) and a
multitude of meso-scale (El-Azab, 2000; Ispánovity et al., 2014) or macroscopic descrip-
tions of plasticity (Asaro and Needleman, 1985; Fleck and Hutchinson, 1997; Acharya and
Bassani, 2000; Gurtin, 2002; Hochrainer et al., 2014). In the sought framework, the con-
tinuum theories of elasticity and stress-affected diffusion are used as a basis, and both glide
and climb motion of dislocations are accounted for. Climb-enabled dislocation plasticity
has known increasing interest in the past few years (Mordehai et al., 2008; Keralavarma
et al., 2012; Davoudi et al., 2012; Ayas et al., 2014; Po and Ghoniem, 2014; Geslin et al.,
2014); also see Raabe (1998); Gao et al. (2010); Arsenlis et al. (2012) and Geers et al.
(2014). This paper contains the theoretical foundations of the creep simulations reported
by Keralavarma (2011) and Keralavarma et al. (2012) and reports additional simulations.
The key departure from other works is the prescription to simulate creep deformation
as an emergent behavior. One major challenge is how to bridge the widely disparate
time scales for dislocation glide (∼ns or smaller) and climb (∼ms or larger). Hence,
any high-temperature discrete dislocation framework must delineate the conditions under
which time-scale separation is possible and implement a computational strategy enabling
large-scale simulations.

The microscopic mechanisms of inelastic deformation in crystalline materials depend
on the applied stress as well as temperature. Figure 1 illustrates a deformation mecha-
nism map typical of metals. Contours of constant strain rate γ̇ are plotted in a diagram
of shear stress τ (labeled σs in the figure) normalized by the shear modulus µ versus
the homologous temperature, with Tm denoting the melting point. Such maps are con-
structed by extensive tabulation of experimental creep data and using phenomenological
rate equations of the form

γ̇ ∝ τnd̄−p (1)

to interpolate between them (Ashby, 1972; Frost and Ashby, 1982). In (1) d̄ refers to the
average grain size. The exponents n and p and the temperature-dependent constant of
proportionality are determined by a combination of assumptions regarding the microscopic
mechanisms and fitting to experimental data. The diagram is divided into regions where
the different creep mechanisms predominate. The boundaries between the different regions
are determined approximately as the loci of points where competing modes of creep yield
equal strain rates according to (1). Plastic flow at low homologous temperatures (T/Tm ∼
0.1) essentially arises from the glide of dislocations, which requires stresses about the
yield point. In this regime, an increase in dislocation density is usually indicative of an
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Figure 1: Deformation mechanism map for polycrystalline Al adapted from Frost and
Ashby (1982).

increase in flow stress, for instance due to Taylor hardening. This region corresponds to
“plasticity” in Fig. 1. On the other hand, at sufficiently high temperatures, say T/Tm >
0.4, dislocations can bypass obstacles by several thermally activated mechanisms such
as cross-slip and climb. Dislocation climb, aided by the diffusion of vacancies into the
dislocation cores, is an important microscopic mechanism for creep and recovery and may
control the rate of deformation under some circumstances (Dorn, 1955; Weertman, 1957;
Caillard and Martin, 2003). In this regime, materials deform at loads well below their
yield stress and their deformation is sustained with no associated increase in stress or
dislocation density.

Creep is a thermally activated mode of inelastic deformation whose rate depends on
several competing microscopic deformation mechanisms. Part of the strain rate results
from mass transport through the diffusive flow of vacancies across a chemical poten-
tial gradient due to the imposed loads and interaction with dislocations. This mode of
deformation, known as Nabarro-Herring creep (Herring, 1950; Nabarro et al., 1964), is
dominant at very low stresses in single crystals or relatively large grain polycrystals and
is characterized by exponents 1 ≤ n < 2 and p = 2. Another mode of diffusional creep in
polycrystals, known as Coble creep (Coble, 1963), is due to the diffusion of vacancies along
grain boundaries. It dominates when lattice diffusion is negligible (0.4 < T/Tm < 0.8)
with characteristic exponents 1 ≤ n < 2 and p = 3. At higher stresses dislocations play
an increasingly important role in creep as they bypass obstacles by climbing normal to
their slip planes through absorption or emission of vacancies. This defines the regime of
so-called “power-law creep” (Fig. 1) with a stress exponent n ≥ 5. This regime has itself
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two parts. At high temperatures the bulk concentration of vacancies is sufficient to aid
dislocation climb while at lower temperatures the dislocation cores can act as conduits
for rapid diffusion of vacancies.

Thus, in terms of deformation mechanism maps, the objective of this work is to ex-
tend the range of current discrete dislocation frameworks from the “plasticity” domain
down to the “creep” domains in Fig. 1 laying emphasis on single crystals and leaving
out dislocation-core processes such as pipe diffusion. The significance of undertaking this
task is two-fold. First, it enables fundamental understanding of temperature-dependent
plastic/creep deformation as an emergent behavior. This entails obtaining constitutive re-
lations from initial/boundary-value problem solutions, including strain partitioning, evo-
lution of the dislocation structure and the elastic energy stored therein, as was done
for example for low-temperature deformation (Benzerga et al., 2004, 2005). Second, a
framework that captures the salient features of bulk plasticity provides a sound basis for
understanding creep in small-scale systems or ultra-fine grained and nanocrystalline ma-
terials for which deviations from bulk behavior begin to be documented (Ng and Ngan,
2007; Meyers et al., 2006).

Previous attempts at incorporating dislocation climb in dislocation dynamics (DD)
simulations began with glide-like viscous drag models (Xiang et al., 2004; Hartmaier
et al., 2005) which ignore the effects of vacancy diffusion on climb motion altogether.
Diffusion of vacancies and dislocation climb are coupled phenomena in the sense that
climb is a non-conservative motion that leads to the emission or absorption of point
defects. The diffusion of the latter under imposed pressure and concentration gradients
leads to an “osmotic” force on the dislocations normal to their slip planes. Thus, at high
temperatures and/or high vacancy supersaturations, dislocations may climb under the
effect of this osmotic force, even in the absence of a mechanical (Peach–Koehler) force.
Mordehai et al. (2008) developed an analytical climb kinetic model that takes explicit
account of the osmotic force contribution using equilibrium solutions for the climb rate
of dislocations in a prescribed uniform vacancy field. Their kinetic law was used in 3D
DD simulations of diffusion-controlled dislocation loop coarsening (Bakó et al., 2011) and
irradiation hardening in BCC iron (Arsenlis et al., 2012) as well as in 2D DD simulations
of thin films (Davoudi et al., 2012) and creep (Keralavarma et al., 2012). Gao et al. (2010)
included the effect of pipe diffusion in a 3D DD simulation, but neglecting bulk diffusion.
More recently, Geslin et al. (2014) formulated a phase-field model of dislocation climb
which accounts for both bulk diffusion and emission/absorption kinetics at the core level.
They also proposed an extension of the kinetic law of Mordehai et al. (2008) which allows
to account for pipe diffusion and jog density; also see Li et al. (2012) for an earlier attempt
using the phase field method. Only recently have discrete dislocation formulations that
include climb and account for relevant thermodynamic constraints been undertaken (Gao
and Cocks, 2009; Po and Ghoniem, 2014). Ayas et al. (2014) developed a methodology for
diffusion mediated dislocation climb where the diffusive flux of vacancies is computed using
a superposition scheme similar to that for the elastic fields. They looked at the effect of
enabling dislocation climb on plasticity under tensile and bending boundary conditions.
Unlike their approach, where an artificially large value for the diffusion coefficient was
used to promote dislocation climb under the simulated time scales, we adopt an adaptive,
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staggered time stepping approach in order to tackle creep problems over much longer time
scales.

The formulation is applicable in three dimensions. However, the complexity involved
makes large scale creep simulations out of reach. The detailed formulation of the coupled
boundary value problems of dislocation dynamics and vacancy diffusion is described in
Section 2. This extends the discrete dislocation plasticity framework of Van der Giessen
and Needleman (1995) to higher temperatures and the thermodynamic variational frame-
work of Gao and Cocks (2009) to coupled dislocation-glide and climb for amulti-dislocation

system in a finite body. Evolution equations are derived for the microstructural variables,
namely the positions of the discrete dislocations and the vacancy concentration field, and
constitutive rules are framed for the climb of dislocations as a result of interactions with
the vacancy cloud. Section 3 describes the solution methodology for the creep boundary
value problem and implements time scale separation. Simulation results are presented
therein and discussed in a broader context in the last section.

2 Formulation

Consider a body occupying domain V containing a set of N discrete edge dislocations
and a dilute concentration of diffusing species, as sketched in Fig. 2. The position of
dislocation i at time t is denoted xi(t). The core region of a dislocation i is denoted C i,
their union

C̃ =
N
⋃

i=1

C i,

and V̂ = V \ C̃ denotes the volume of the body excluding all dislocation cores. The body
is subjected to mixed traction/displacement boundary conditions, Fig. 2a. Let c(x, t)
denote the fractional concentration, with x denoting the position and t the time. It is
defined as the ratio of the number of diffusing species to the number of lattice sites in
an elementary volume. It is assumed that any species that enters the core region of a
dislocation is immediately absorbed by the dislocation so that c(x, t) ≡ 0 in C̃.

2.1 Time scale separation

Dislocation glide and climb are kinetic processes that occur over widely differing time
scales. Comparison of the glide and climb velocities using basic analytical estimates
(Hirth and Lothe, 1968) shows that dislocation glide velocities exceed the climb velocity
by several orders of magnitude except at temperatures very close to the melting point.
Therefore, discrete dislocation simulations of a slow process such as creep present a chal-
lenge in terms of resolving both glide and climb events within realistic computation times.
We address this issue by postulating the existence of ‘quasi-equilibrium’ states in a dy-
namical system consisting of a large number of glide dislocations. The postulate is based
on the observation from DD simulations that, at constant applied stresses below the nom-
inal yield stress and in the absence of climb, the average strain attains a constant value
in a relatively short span of time compared with the time scale of the climb process. Two
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Figure 2: Sequential solution of (a) the linear elasticity and (b) unsteady diffusion bound-
ary value problems with time steps tgl in (a) and tcl(T ) in (b) given that tcl ≫ tgl.

consequences follow. First, since the quasi-equilibrium states are characterized by reduced
glide activity, one can focus on climb activity freezing dislocation glide altogether. It is
emphasized that, microscopically, glide activity never completely ceases in such a system.
Second, because such states are attained ‘quickly’ dislocation climb may be effectively
neglected during the short, glide-dominated interval. Under such circumstances, individ-
ual dislocation climb motions are the ‘activation’ events that enable the entire system to
move from one quasi-equilibrium state to the next. The above postulate is consistent, as
are its consequences, with views of creep as a result of the thermally activated climb of
dislocations from local equilibrium positions (Hirth and Lothe, 1968; Caillard and Martin,
2003).

In practice, therefore, we model the overall deformation as a sequence of glide and
climb steps rather than a continuous process of simultaneously occurring glide and climb.
In this framework, the glide steps (Fig. 2a) are performed using the discrete dislocation
formulation of Van der Giessen and Needleman with minor changes to account for the
effect of temperature on some of the constitutive rules, described in section 2.5. The climb
steps (Fig. 2b) are computed using a coupled formulation involving point-defect diffusion
and dislocation climb described below.

The general formulation is applicable in 3D and to any diffusing species responsible
for dislocation climb. However, the physics of point-defect dislocation interactions may
vary. Below, we focus on lattice vacancies as the only diffusing species.
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2.2 Climb Problem Formulation

In this section, we focus on the unsteady diffusion boundary value problem (Fig. 2b)
during a climb time step tcl(T ) with no glide activity. We derive the governing equations
for coupled vacancy diffusion and dislocation climb. The body is subjected on its boundary
∂V to tractions t0, viewed as those obtained from the solution of the elastic boundary
value problem (Fig. 2a).

2.2.1 Thermodynamic potentials

The response of the body is fully determined by the specification of two thermodynamic
potentials: the Gibbs free energy, G, and the dissipation, Ψ. The former is written as

G = G(c(x, t),xi(t)) =

∫

V

g dV (2)

with g(x, t) = h−Ts the Gibbs free energy density in V and h and s are the enthalpy and
entropy per unit volume, respectively. Both h and s depend on the elastic and vacancy
fields and are given by

h =
1

2
σ : ǫ+

[

Ef

Ω
− p

Ωv

Ω

]

c− σ : (ǫ + ǫ
v) (3)

and

s = −
k

Ω
[c log c+ (1− c) log (1− c)] (4)

see, e.g. (Cottrell, 1953). Above, σ denotes the stress tensor, ǫ is the lattice strain, ǫv

is an inelastic strain due to the diffusion of vacancies, p = −tr(σ)/3 is the hydrostatic
pressure field, Ef is the formation energy of a single vacancy (energy required to break
the atomic bonds), Ω is the atomic volume, Ωv is the relaxation volume of a vacancy
and k is the Boltzmann constant. The relaxation volume Ωv is the reduction in crystal
volume as a result of the removal of an atom and is typically a fraction of the atomic
volume. Contributions to the lattice strain ǫ due to vacancies are excluded because they
are short-ranged and the associated strain energy is of second order in the concentration c
(Garikipati et al., 2006). On the other hand, the interaction energy between the external
field and the vacancy strain fields scales with c. For a homogeneous external field, this
energy is to first order the work done by the hydrostatic stress, −p, against the reduction
in crystal volume (Cottrell and Jaswon, 1949; Bullough and Newman, 1970), which is
the origin of the third term in (3). Inside the cores C̃, all the terms in g involving the
vacancy concentration c vanish identically due to the assumption that c ≡ 0 therein. The
expression for the total Gibbs free energy follows by substituting (3)–(4) in (2), which is
then decomposed into two terms:

G = G1(x
i(t)) +G2(c(x, t), p(x

i(t))). (5)

Here, G1 denotes the contribution from the elastic strain energy

G1 =

∫

V̂

1

2
σ : ǫ dV +

N
∑

i=1

∫

∂Ci

1

2
t · u dS −

∫

∂V

t0 · u dS (6)
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and G2 denotes the contribution from the thermally generated vacancies

G2 =

∫

V̂

{[

Ef

Ω
− p

Ωv

Ω

]

c+
kT

Ω
[c log c+ (1− c) log (1− c)]

}

dV −

∫

∂V

(t0 ·n)u
v dS (7)

where t is the traction, u the displacement due to elasticity alone, and uvn denotes
the motion of the boundary normal to itself due to the diffusive flux of mass though
it. The surface integrals over ∂C i and ∂V are obtained by application of the divergence
theorem, following the procedure of Van der Giessen and Needleman (1995), with due
consideration given to the singularity of the elastic strain energy in C̃. G1 is a purely
mechanical contribution to the free energy due to the elastic fields while G2 represents the
contribution from the vacancies and is coupled to the elastic fields through the hydrostatic
pressure p.

During the climb time steps, energy dissipation in the system is entirely due to the
diffusive flux of the vacancies, for which a quadratic form for the dissipation potential Ψ
is assumed following Gao and Cocks (2009)

Ψ =
1

2

∫

V̂

1

D̄
j · j dV (8)

where j is the volumetric flux (in m/s) and D̄ = DΩc(1 − c)/kT . The vacancy diffusion
coefficient D in solids depends strongly on temperature and weakly on pressure. Here,
we neglect the pressure dependence of D, so that a uniform value of D, independent of
the dislocation positions, is used. An Arrhenius type equation is used to express the
temperature dependence of D:

D = D0 exp

(

−
Em

kT

)

(9)

where Em is the vacancy migration energy and D0 is the asymptotic value of the vacancy
diffusion coefficient at very high temperatures; see (Hirth and Lothe, 1968).

2.2.2 Driving forces

The thermodynamic driving force for self-diffusion is the gradient of the chemical po-
tential of the vacancies. The latter depends on the dislocation positions, since climbing
dislocations can act as sources/sinks for vacancies and the hydrostatic component of the
dislocation stress field modifies the local chemical potential.

The rate of change of the Gibbs free energy is obtained from (5) as:

Ġ = −

N
∑

i=1

f i · vi +

∫

V̂

(

µv ċ−
Ωv

Ω
cṗ

)

dV +

∫

∂V

(t0 · n)(j · n) dS (10)

where f i denotes the Peach-Koehler force on dislocation i, vi its velocity, µv ≡ ∂g/∂c
denotes the chemical potential of the vacancies, and j as above. Mass conservation was
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used in the form u̇v = −j ·n on the external boundary ∂V . The expression for the Peach-
Koehler force f i in a body containing multiple dislocations has been derived by Van der
Giessen and Needleman (1995) and reads

f i = −
∂G1

∂xi
= ti ×

[(

σ̂ +
∑

j 6=i

σ
j

)

· bi

]

(11)

where ti is a unit vector tangent to the dislocation line and bi is the Burgers vector. Also,
σ

j is the infinite medium stress field of dislocation j and σ̂ is the image stress computed
by solving the boundary-value problem depicted in Fig. 2a. The chemical potential for
the vacancies µv is obtained constitutively from equations (3)-(4) as

µv =
∂g

∂c
=

kT

Ω

[

Ef

kT
−

pΩv

kT
+ log

c

(1− c)

]

(12)

Ignoring the elastic fields of the vacancies themselves, p is a function of the positions of
the dislocations xi(t). Since p = p(xi(t)), one may write

ṗ =
N
∑

i=1

∂p

∂xi
· vi (13)

Substituting (13) in (10) and regrouping yields

Ġ =

∫

V̂

µvċ dV +

∫

∂V

(t0 · n)(j · n) dS −

N
∑

i=1

(f id + f i) · vi, (14)

where

f id ≡

∫

V̂

c
Ωv

Ω

∂p

∂xi
dV

is a drag force arising from the interaction of the moving dislocations with the vacancy
field. This force appears because of the dependence of the chemical potential on the
pressure field p so that changes in the latter due to dislocation motion give rise to a
thermodynamic force acting on the dislocation.

Mass conservation dictates that the diffusion flux j and the rate of change of vacancy
concentration ċ are related by the continuity equation:

ċ = −∇ · j in V̂ (15)

Substituting back in (14) and using the divergence theorem, we get

Ġ =

∫

V̂

∇µv ·j dV −

∫

∂V

µvj·n dS−

N
∑

i=1

∫

∂Ci

µvj·n dS+

∫

∂V

(t0 ·n)(j·n) dS−

N
∑

i=1

(f id+f i)·vi

(16)
Further, since pure climb motion is assumed for the problem in Fig. 2b we have vi = vicn

i,
where ni denotes the normal to the slip plane of dislocation i. In such case, conservation
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of mass can also be invoked to relate the dislocation climb velocity vic to the flux of
vacancies into or away from the dislocation core, since climb must be accompanied by the
production/absorption of vacancies at the dislocation core. We obtain the climb velocity
from the mass conservation condition as

vic =
1

bi

∮

Γi

j · n ds=
1

biLi

∫

∂Ci

j · n dS (17)

where bi is the magnitude of the Burgers vector for dislocation i, Γi the transverse trace
of ∂C i, Li is the length of the dislocation loop and the unit normal n points into the
dislocation core. Note that the second equality in (17) yields the average climb velocity of
a dislocation loop as opposed to the local climb velocity given by (17)1. The above integral
must be independent of the size of the dislocation core C i by the continuity condition since
dislocations are the only sources or sinks of vacancies in the body. Substituting (17)2 in
(16) we finally get

Ġ =

∫

V̂

∇µv · j dV −

∫

∂V

(µv − t0 · n)j · n dS +
N
∑

i=1

1

bi
(f i

o + f i
dc + f i

c)

∫

∂Ci

j · n dS (18)

where f i
c and f i

dc denote the climb components of the Peach-Koehler force and the drag
force per unit length of the dislocation respectively, and f i

o ≡ µvb
i is the so called osmotic

force per unit length in the climb direction. Physically, (18) embodies the fact that in the
absence of glide, the rate of change of the Gibbs free energy is solely due to the diffusive
flux of vacancies, as driven by gradients in the chemical potential (first term), applied
tractions on the exterior boundary (second term) and three thermodynamic forces acting
on the discrete dislocations (last term). One of these forces, f i

c , is clearly configurational:
it is the climb component of the Peach–Koehler force. The osmotic force f i

o is purely
chemical and may be of the same order of magnitude as f i

c , as will be illustrated below.
Finally, the drag force f i

dc results from the interaction of the moving dislocations with the
vacancy field due to the pressure-dependence of the chemical potential.

2.2.3 Variational principle

Cocks and co-workers (Cocks, 1996; Gao and Cocks, 2009) have shown that the governing
equations for self-diffusion may be derived from the stationary value of the following
functional

Π = Ġ+Ψ (19)

Using (18) and (8) in (19) and taking the first variation of Π with respect to the vacancy
flux yields

δΠ =

∫

V̂

(

∇µv +
j

D̄

)

·δj dV +

∫

∂V

(t0 ·n−µv)(δj·n) dS−

N
∑

i=1

1

bi
(f i

o+f i
dc+f i

c)

∫

∂Ci

δj·n dS

(20)
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From a stationary Π with respect to j, one can write the local form of the governing
equations for vacancy diffusion as

j = −D̄∇µv in V̂ (21)

µv = t0 · n on ∂V (22)

µv = −
1

bi
(f i

dc + f i
c) on ∂C i (23)

Equation (21) is the constitutive law for vacancy diffusion, which reduces to Fick’s first
law in the absence of pressure gradients, i.e. j = −D∇c. Together with the continuity
equation (15) it defines the field equation governing j or c. Equations (22) and (23) are
natural boundary conditions that follow from the application of the variational princi-
ple. Condition (22) is computationally tractable and shows that the chemical potential,
hence the concentration field, on the outer boundary is set by specifying the tractions
resulting from solving the elasticity boundary value problem in Fig. 2a. On the other
hand, conditions (23) are not tractable since their implementation would require a spatial
discretization that (i) resolves dislocation cores and (ii) is adaptive. In addition, there
are as many conditions (23) as there are dislocations in the body. In what follows, we
seek approximations that render the coupled climb–diffusion problem computationally
tractable.

2.3 Kinetics of Climb

Dislocation climb is coupled to the flux of vacancies into the dislocation cores and hence
the dislocation climb velocities vic are determined using equation (17) in which the diffusion
flux is obtained by solving (21)–(23) along with (15). In this process, the dependence of
vic upon the Peach–Koehler and drag forces is implicit through boundary conditions (23)
on the dislocation cores. However, the solution of problem {(15), (21)-(23)} for a large
scale DD simulation presents a major difficulty due to the need to resolve the cores of
dislocations (O(∼ 1 nm)) in the numerical discretization. Moreover, since the dislocations
themselves are mobile, one would need to adaptively re-mesh the domain so as to track
the moving core regions. Both requirements make large scale simulations numerically
intractable.

In order to overcome this difficulty, we seek an approximate climb kinetic law, as an
alternative to implicit law (17). We first assume separation of scales whereby the macro-
scopic gradients of vacancy concentration have a characteristic length that is at least an
order of magnitude larger than the radius of the dislocation cores. By way of consequence,
the global vacancy diffusion problem can be tackled using a relatively coarse mesh (O(∼
100 nm)). This, however, amounts to ignoring boundary conditions (23). Therefore, a
new kinetic law that specifies the dependence of the climb velocity upon the driving forces
is needed. To this end, the climb velocities are determined using an approximate ana-
lytical expression derived by Mordehai et al. (2008), generalizing a previous result from
the literature (Hirth and Lothe, 1968). They derived an expression for the climb velocity
of an edge dislocation in a prescribed uniform remote vacancy field using the simplify-
ing assumptions of (i) steady state conditions and (ii) radial symmetry of the vacancy
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flux (i.e. neglecting the effect of local gradients in the hydrostatic stress field around the
dislocation core). Under these conditions a radially symmetric solution to the continuity
equation (15) can be derived, from which the dislocation climb velocity follows using (17)
as

vic = −η
D

bi

[

c0 exp

(

−
fcΩ

bikT

)

− c

]

(24)

where

c0 = exp

(

−
Ef

kT

)

is the equilibrium vacancy concentration at temperature T , and η is a constant of or-
der unity. The first term in the square brackets of (24) represents the concentration of
vacancies in equilibrium with the dislocation core while c denotes the remote concentra-
tion, which is obtained from the solution of the global diffusion boundary value problem
interpolated to the dislocation position. The mesoscopic kinetic law (24) has proven ro-
bust against atomistic simulations and seems necessary to extrapolate them in a range of
dislocation densities corresponding to experiments (Clouet, 2011).

Notice that the dislocation climb velocity vanishes when the remote vacancy concen-
tration field equals the equilibrium vacancy concentration around the dislocation core.
This condition corresponds to

−fc =
bkT

Ω
log

(

c∞
c0

)

≈ bµv = fo (25)

where the term involving the relaxation volume Ωv and second and higher order terms
in c in the expression for the chemical potential (12) are omitted. Thus, the stationary
condition for the climb velocity corresponds to the balance of thermodynamic forces on
the dislocation.

2.4 Updated Climb Problem Formulation

In the proposed framework, scale separation is assumed and equation (24) for dislocation
climb kinetics is employed. Dislocation cores are smeared out and the governing equations
for the coarse-grained vacancy concentration field C or the diffusion flux J are extended
to the entire body V instead of V̂ for their microscopic counterparts. Consequently, the
governing equations for the boundary value problem (15) and (21)–(23) are amended as

Ċ = −∇ · J+ Ċsrc in V (26)

J = −D̄∇µv in V (27)

µv = t0 · n on ∂V (28)

In (26) the term Ċsrc accounts for the production or consumption of vacancies due to
dislocation climb of any dislocation located within the elementary volume Vg used for
coarse-graining. This amendment to the continuity equation is required by mass conser-
vation when the processes of core-level absorption or emission are not actually modeled.
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Under such circumstances, the time rate of change of the source term is estimated from
the net climb velocity as (see Appendix):

Ċsrc = −
1

Vg

∑

i∈Vg

∮

Li

biev
i
c dl (29)

where bie denotes the edge component of dislocation i and Li the line length within Vg. In
particular, for a collection of parallel straight edge dislocations, one may write

Ċsrc Vg = −b2
∑

i∈Vg

vic (30)

As discussed in Appendix, heuristic equation (30) underestimates the source/sink term
for a jogged dislocation and alternative heuristics are possible. What is of importance
here is to note that the explicit inclusion of Vg in (29) entails a length scale lg (with
Vg ∼ l3g) associated with coarse graining. Consistent with the length scale separation
postulate, the length lg is much greater than the dislocation core size (in fact even greater
than the dislocation spacing) but sufficiently small compared with specimen dimensions.
The source term may thus be considered as a nonlocal term in the global problem. Apart
from this amendment to the continuity equation, (27) is the same as (21) but with V
replaced with V̂ and boundary condition (28) is exactly (22). Boundary conditions (23)
are supplanted by amending (26) with the source term Ċsrc specified through (29) and
the new kinetic law (24).

The modified governing equations for diffusion (26)–(28) do not involve boundary
conditions specified on the dislocation core boundaries and hence do not require an atom-
istically resolved mesh for its solution. Hence, the finite element method and a relatively
coarse mesh is used to solve equations (26)-(28). Combining the two equations (26) and
(27) and using equation (12) for the chemical potential, one obtains the following nonlinear
partial differential equation governing the vacancy concentration field:

Ċ = D∇2C −
DΩv

kT
∇ · [C(1− C)∇p] + Ċsrc (31)

The equation is non-linear in C due to the presence of the term C(1−C). However, since
typically C ≪ 1, (31) is linearized into

Ċ = D∇2C −
DΩv

kT
∇ · C∇p+ Ċsrc in V (32)

This equation is linear since p is a known field, determined from the solution of the elas-
ticity problem. The solution to (32) is obtained subject to Dirichlet boundary conditions
for C, which may be obtained from (28) combined with (12) to write

C = C0 exp

(

t0 · nΩ

kT

)

on ∂V (33)
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where C0 is the equilibrium vacancy concentration defined following equation (24), and t0

and n are the traction and unit normal vectors at the boundary respectively. The weak
form for equation (32) may be written as

∫

V

vĊ dV = −D

∫

V

∇v · ∇C dV +
DΩv

kT

∫

V

C∇v · ∇p dV +

∫

V

vĊsrc dV (34)

where v ∈ V is an arbitrary test function belonging to the function space

V = {w : V → R, w = 0 on ∂V } (35)

Bilinear quadrilateral elements are used in the finite element discretization of the above
problem and the resulting system of ordinary differential equations are integrated in time
using an implicit sparse solver from the ODEPACK open source library (Hindmarsh et al.,
1983).

2.5 Governing Equations for Dislocation Glide

The formulation of the dislocation glide problem (Fig. 2a) is essentially unchanged from
the original model of Van der Giessen and Needleman (1995), whose key elements are
briefly recalled here. Glide results from the component of the Peach-Koehler force (11)
along the slip direction, f i

g, given by

f i
g = ni ·

[

σ̂ +
∑

j 6=i

σ
j

]

· bi (36)

where ni is the slip plane normal and other quantities have been defined after (11).
The calculation of this force requires knowledge of the elastic fields in the body. The
superposition method of linear elasticity is invoked to write

σ = σ̃ + σ̂, ǫ = ǫ̃+ ǫ̂, u = ũ+ û (37)

where σ, ǫ and u denote the total stresses, strains and displacements, respectively. The
fields with overscript (~) denote the singular elastic fields of the dislocations in an infinite
medium and the (^) fields are smooth complementary fields that enforce the boundary
conditions for the problem. The (~) fields are known analytically for infinitely long straight
edge dislocations while the (^) fields are computed numerically.

A subtle issue that relates to the definition of the (~) fields in a combined glide/climb
formulation in two dimensions is the treatment of displacement discontinuities in the
specimen as the dislocation structure evolves. A dislocation dipole on a slip plane will
have a slip discontinuity equal in magnitude to the Burgers vector extending between
them. When one of the two dislocations climbs the earlier discontinuity still terminates
at the original position of the dislocation that climbed, while a new discontinuity extends
along the climb path as though there is interpenetration of matter over a width equal in
magnitude to the Burgers vector. The result is an incompatible displacement field corre-
sponding to the sum of the eigenstrains of two non-existent opposite signed dislocations
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Figure 3: (a) Sketch of a rectangular domain containing an edge dislocation dipole on a
horizontal slip plane, showing the slip discontinuity between the dislocations (solid line).
(b) Displacement discontinuities after the positive dislocation at (x2, y1) climbs to (x2, y2)
and then glides to (x3, y2). The solid lines are slip discontinuities while the hashed region
is interpenetration of matter over a distance b. (c) Our approximate method using pair
dislocations at infinity.

at either end of the climb path. Further, such displacement corrections need to be added
for every climb event in the simulation history in order to ensure correct termination of
the slip traces. This approach has been adopted in several recent publications (Davoudi
et al., 2012; Ayas et al., 2012) that consider combined glide and climb in 2D dislocation
dynamics. This method is illustrated in Fig. 3b where the expression for the correction
field for the climb step shown is

ũcorr
x = −

b

4
sign((x− x2)(y − y1)) +

b

4
sign((x− x2)(y − y2)), ũcorr

y = 0 (38)

While this approach is undoubtedly more accurate under general loading conditions,
we have adopted a rather simpler approach that eliminates the need to keep track of the
climb history by exploiting special features of the geometry we are simulating, described
in Section 3.1. We assume that every dislocation inside the simulation domain is paired
with an opposite signed dislocation at −∞, as measured along the slip plane coordinate,
and that a dislocation and its dipole pair climb together. In such case, the correction field
to be introduced when a dislocation climbs corresponds to the sum of the eigenstrains
of a pair of opposite signed dislocations at either end of the climb path at infinity (see
Fig. 3c). The corresponding correction term for the (~) displacement field is

ũcorr
x = −

b

4
sign(y − y1) +

b

4
sign(y − y2), ũcorr

y = 0 (39)

This approach eliminates the book keeping required to keep track of every climb event in
the history of the simulation, but introduces additional slip discontinuities that could lead
to spurious effects. However, it turns out that neither of the two approaches above have
any effect on the computed stress and strain fields, provided the simulation domain is
convex and none of the slip planes are allowed to intersect the boundary segments where
displacements are prescribed. It must be noted that this is no longer true for other types
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of boundary conditions such as periodic or no-slip boundary conditions used in some of
the above publications and it is necessary to account for the complete history dependent
(~) fields of the climbing dislocations.

For a domain subjected to mixed traction/displacement boundary conditions, as in
Fig. 2a, the governing equations for the (^) fields may be written as

∇ · σ̂ = 0, σ̂ = C : ǫ̂, ǫ̂ =
1

2

(

∇û+∇û
T
)

(40)

where C denotes the tensor of elasticity, and subjected to the boundary conditions

σ̂ · n = t0 − σ̃ · n on ∂Vt, û = u0 − ũ on ∂Vu (41)

where t0 and u0 are the prescribed tractions and displacements respectively on comple-
mentary regions ∂Vt and ∂Vu of the domain boundary ∂V . The above equations are solved
using the finite element method. In particular, the same finite element mesh consisting of
bilinear quadrilateral elements is used for the solution of both the diffusion and elasticity
boundary value problems.

The glide velocity of a dislocation, vig, is assumed to be proportional to the glide
component of the Peach-Koehler force, i.e.

vig = f i
g/Bg (42)

where the phonon drag coefficient Bg is usually a linearly increasing function of the
temperature. A theoretical estimate of the drag factor from Hirth and Lothe (1968)
gives

Bg =
3kT

b2cs
(43)

where cs is the speed of shear waves in the material. In the simulations, we use a linear
scaling for the drag factor of the form Bg(T ) = B0

gT/T0 where B0
g is an experimen-

tally determined value of the drag factor at a reference temperature, T0. Frank-Read
sources, idealized as point sources, are distributed randomly on every slip system. They
can nucleate dislocation dipoles when the glide Peach-Koehler force on them exceeds a
critical value τnucb

i over a critical nucleation time. Further, gliding dislocations can be
pinned by randomly distributed point obstacles and subsequently unpinned when the
glide Peach-Koehler force exceeds the pinning strength of the obstacles. However, at fi-
nite temperatures, there is a possibility for dislocations to bypass obstacles at stresses
below the athermal strength of the obstacles by some thermally activated mechanism
such as cross-slip. In our high temperature formulation we allow for the possibility of
thermally activated bypass of obstacles at sub-critical values of the Peach-Koehler force
using a probabilistic formulation proposed by Frost and Ashby (1982) in the context of
determining the drift velocity of a dislocation in a regular array of obstacles. Based on
their analysis, at the end of each glide increment we allow for a dislocation to bypass an
obstacle with a probability given by

pact = exp

[

−
∆F

kT

(

1−
|f i

g|

τobsbi

)]

(44)
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where f i
g is the glide component of the Peach-Koehler force on the pinned dislocation and

∆F is the activation energy required to overcome the obstacle. Values for the latter are
expected to range from 0.2µb3 − 2µb3 for weak to strong obstacles. The reader is referred
to the paper by Van der Giessen and Needleman (1995) for additional details about the
constitutive rules used in two-dimensional glide simulations.

3 Application to Creep

Creep in single crystals is an ideal application of the coupled discrete dislocation and
vacancy diffusion framework. Indeed, both time-scale and length-scale separations hold.
First, the applied overall stress is typically lower than the yield stress so that quasi-
equilibrium dislocation configurations are attained granted sufficient time. Second, signif-
icant variations in vacancy concentration occur between the bulk, where the temperature-
dependent equilibrium concentration C0(T ) prevails with local perturbations due to va-
cancy consumption/production from climbing dislocations, and the boundary where a
traction-dependent chemical potential prevails. Hence the gradients in C occur over a
length scale that is comparable with the specimen dimensions. In addition, the developed
framework is ideal to investigate creep deformation in small structures where classical
(visco)plasticity formulations may break down.

To set the stage, Fig. 4 depicts a typical creep curve under uniaxial loading. For an

I II III

ǫ̇ ∝ σn

ǫ

t

ǫ0

Figure 4: Sketch of a typical creep curve in crystalline materials.

imposed creep stress σ, the evolution of the strain ǫ with time t shows three distinct
stages. The initial offset strain ǫ0 is the instantaneous elastic strain due to the imposed
stress. Stage I, also known as primary creep, denotes the transient during which the creep
strain rate ǫ̇ decreases with time due to strain hardening. The design-limiting part of the
creep curve is the steady state stage II in which the strain rate remains approximately
constant as the result of a dynamic balance between strain hardening and thermal recovery
processes. The final stage of accelerated deformation (tertiary creep) is due to damage
processes such as cavitation and/or strain localization. The creep rates reported in the
literature (e.g. Fig. 1) are the steady state secondary creep rates which typically follow
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a power law of the form ǫ̇ ∝ σn. Values of the power law exponent from experiments on
bulk polycrystals fall in the range 3–8 with values larger than 5 being more typical (Frost
and Ashby, 1982).

3.1 Problem Definition and Simulation Approach

We examine the creep behavior of plane strain single crystalline specimens of the type
sketched in Fig. 5. The sample is loaded in tension along the x1 direction by applying

x1

x2

σσ

L

D

Figure 5: Schematic sketch of the plane strain tension specimen used in the creep com-
putations.

uniformly distributed tractions σ on the two end faces while the lateral boundaries of the
specimen are traction free. A symmetric double slip arrangement is assumed with the
two slip systems oriented at ±35.25◦ with respect to the tensile direction. The arrange-
ment considered may correspond to an FCC single crystal oriented such that the plane of
analysis coincides with the (110) crystallographic plane and loaded along the 〈001〉 direc-
tion. The two slip systems considered correspond to the 〈1̄12〉 and 〈11̄2〉 slip directions
with an included angle of approximately 109.5◦. Rectangular specimens are considered
with an aspect ratio L/D = 3 and sizes of the order of several microns. Initially, the
crystal contains a distribution of dislocations with an average density of 120µm−2, point
sources with a density of 150µm−2 and point obstacles with a density of 600µm−2. Some
simulations are also performed with an order of magnitude smaller values for the initial
densities in order to assess the sensitivity of the simulation results to initial conditions.
The dislocations, sources and obstacles are distributed at random on the two slip systems
considered. As in most previous discrete dislocation plasticity analyses, not all atomic-
level slip planes are represented within a slip system. Instead, potential slip planes are
included on each system with a uniform spacing of 20b between them. The random initial
dislocation structure is assigned in such a way that the net Burgers vector in the specimen
vanishes. The point sources represent Frank-Read sources whose nucleation strengths fol-
low a normal distribution with average strength τnuc and standard deviation τsd. The
vacancy concentration field C(x) is initialized such that it corresponds to the equilibrium
(steady state) vacancy field in the sample of Fig. 5 subjected to the tensile tractions σ at
x1 = ±L/2 and traction free conditions at x2 = ±D/2.

The dislocations in the sample can glide on their respective slip planes in accordance
with the Peach-Koehler force and the associated glide mobility law described in section 2.5.

18



The dislocations can also climb to a neighboring slip plane according to the climb mobility
law established in section 2.2, equation (24). Thus, unlike the glide process, dislocations
climb between the slip planes in discrete steps set by the slip plane spacing. The climb
distances of each dislocation, determined according to (24), are tracked at each time step.
When the climb distance of a dislocation exceeds the slip plane spacing, the dislocation
is moved from its original slip plane to the new slip plane. The production/consumption
of vacancies as a result of the climb motion are used to calculate the vacancy source/sink
term Csrc that enters equation (32) for the evolution of the vacancy field. A positive climb
step equal to the slip plane spacing of dslp requires the absorption of Nv vacancies into
the dislocation core given by

Nv =
dslpb

2

Ω
(45)

Negative climb, on the other hand, requires the nucleation of the same number of vacancies
with the associated atoms being absorbed into the dislocation core. Thus, negative climb
of a dislocation occurs only when the local stresses are high enough to nucleate vacancies
according to the energy criterion (Raabe, 1998)

σib3 = Ef (46)

where σi is the tensile stress along the Burgers vector direction (excluding the self stress)
at the location of dislocation i.

As remarked previously, time scale separation holds in this creep problem. Hence,
we use an adaptive time stepping scheme. Dislocation nucleation and glide processes are
modeled using a fixed time step tgl = 0.5 ns. On the other hand, the vacancy diffusion
and dislocation climb processes are simulated using a much larger time step tcl(T ) whose
value strongly depends on temperature. A conservative estimate of the climb time step is
made as tcl = 10−3test, where test is an estimated time taken for a dislocation to climb a
distance equal to the slip plane spacing. For the latter, an estimate of the climb velocity
is made using equation (24) assuming C = C0 and fc = 100σb to allow for local stress
concentrations within the sample. Creep simulations performed using different values of
tcl indicate the results are insensitive to the choice of the time step as long as tcl ≤ 10−2test.
The iterative strategy used to perform the creep simulations is detailed below.

(i) The time step, dt, is initialized as the glide time step tgl at the beginning of the
simulations.

(ii) The microstructure is initialized with randomly distributed dislocations, sources and
obstacles according to their specified densities. Subsequently, glide simulations at
zero stress are performed to relax the initial microstructure so that the dislocations
attain local equilibrium positions.

(iii) Uniform displacements ±U/2 are applied on the two faces at x1 = ±L/2 while the
lateral faces x2 = ±D/2 are taken to be traction free. The linear elastic boundary
value problem, described in section 2.5, is solved to obtain the stress and displace-
ment fields in the sample. The average tensile stress and strain for the specimen are
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calculated as

σ =
1

D

∫ D/2

−D/2

σ11(±L/2, x2) dx2, ǫ =
U

L
(47)

An iterative procedure is used to update the value of U until the computed value of
the average tensile stress equals the desired creep stress σ.

(iv) The Peach-Koehler forces on the dislocations are computed using equation (11).
The dislocation positions are updated using the glide components of the Peach-
Koehler force and the glide mobility law (42). The constitutive rules for short range
interactions between dislocations and obstacles described in section 2.5 are used
during the glide steps to determine the new positions of the dislocations.

(v) Steps (iii)–(iv) are repeated until the average axial strain ǫ attains a steady state
value. This may correspond to the dislocations in the sample reaching local equilib-
rium positions, such as stuck at obstacles, so that the glide activity in the system
ceases and the overall strain rate nominally vanishes. In practice, dislocation activ-
ity never completely stops in a large dynamical system and an alternative criterion is
needed to detect steady state conditions. In our simulations steady state conditions
are considered to be attained when the average strain rate remains zero (within a
specified tolerance) over a period of 100 glide increments.

(vi) When the steady state is reached, the dislocations are frozen at their current po-
sitions and the time step dt is switched to the climb time step tcl. The diffusion
boundary value problem, described in section 2.2, is solved using the finite element
method. At the beginning of the simulation, the vacancy field is initialized using
the equilibrium distribution consistent with the imposed boundary tractions and the
temperature. The initial conditions for any subsequent step correspond to the va-
cancy field at the end of the previous time step. The contribution to the total strain
as a result of the diffusive flux of vacancies through the boundaries is calculated as

ǫd = −

∫ t

0

dt

LD

∫ D/2

−D/2

J(x1 = ±L/2, x2) · n dx2 (48)

(vii) The climb distances of the dislocations at the end of each increment are evaluated
using equation (24). When the climb distance of any of the dislocations in the
sample reaches the slip plane spacing, the dislocation is moved from its original
slip plane to the new slip plane. Positive and negative climb are treated differently
according to the energy based criterion for vacancy nucleation, equation (46). The
production term in the governing equation for C is estimated on a per element basis
by identifying the elementary volume in equation (45) with the elements in the finite
element grid.

(viii) The time step dt is switched back to the glide time step after the first climb event
and the glide steps (iii)–(iv) are repeated until a new steady state value of the strain
ǫ is reached.
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Material properties for Aluminum are used in the simulations with Young’s modulus
E = 70 GPa, Poisson’s ratio ν = 0.33 and Burger’s vector modulus b = 0.25 nm. The
temperature dependence of the elastic moduli is ignored but the drag factor is taken
to scale linearly with T as B = 10−4T/300 Pa s, where B = 10−4 Pa s is the value
at T = 300 K. A constant value of τobs = 150 MPa is used for the athermal strength
of the point obstacles. However, thermally activated bypass of obstacles at sub-critical
values of the Peach-Koehler force is modeled using the probabilistic criterion (44). A
normal distribution of initial source strengths is assumed with average value and standard
deviation τnuc = 50 MPa and τsd = 10 MPa, respectively. As pointed out by Shishvan
and Van der Giessen (2010) a distribution of nucleation times following the model of
Benzerga (2008) is preferred, but here a constant value of tnuc = 10 ns is assigned to
all sources for simplicity. The material properties that enter the constitutive rules for
vacancy diffusion are tabulated based on data from the literature, Table. 1. Note that

Property Symbol Value
Melting Temperature Tm 933 K
aAtomic Volume Ω 16.3 Å

3

b,cVacancy Relaxation Volume Ωv ∼ 0 Å
3

dVacancy diffusion coefficient pre-exponential D0 1.51× 10−5 m2/s
dVacancy formation energy Ef 0.67 eV
dVacancy migration energy Em 0.61 eV

Table 1: Material properties for Al used in the creep simulations. From references a Hirth
and Lothe (1968), b Schilling (1978), c Harrison and Wilkes (1972), d Freund and Heinloth
(2002).

the formation volume for a vacancy in Al is very nearly equal to the atomic volume as
determined from experiments (Schilling, 1978) and atomistic calculations (Harrison and
Wilkes, 1972) so that the relaxation volume Ωv is nearly zero. Since Ωv is taken to vanish
in the calculations the hydrostatic pressure has no effect on the vacancy chemical potential
(12). Simulations investigating the effect of a non-zero relaxation volume will be reported
elsewhere. Also, the length scale entering the production term in (30) is taken to be
lg = 100nm A structured mesh is used with constant element size ∼ 100nm. The fact lg
is comparable with the finite element size is for mere convenience and the results are not
mesh-dependent.

3.2 Simulation Results

3.2.1 Nominal yield stress

We first examine the stress–strain response of a typical tensile specimen to determine the
yield strength and post-yield behavior of the material. This was obtained by carrying
out calculations at a constant imposed displacement rate of U̇/L = 104s−1. The rate-
sensitivity of the material is weak enough to consider the flow stress levels representative of
lower strain rate calculations as well. Fig. 6 shows a representative stress–strain response
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of a specimen of width D = 4 µm. The material exhibits an elastic-plastic behavior with a
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Figure 6: Evolution of the (a) flow stress σ and (b) dislocation density ρ for a computa-
tional specimen with D = 4µm subjected to a constant deformation rate ǫ̇ = 104s−1.

lower yield stress of approximately 80 MPa, and no strain hardening consistent with prior
simulations in the literature using the 2D discrete dislocation model. The upper yield
stress of a given specimen is set by the chosen values of the average nucleation strength
of the static Frank-Read sources. It is noted that there is minimal scatter in the value
of the flow stress for different realizations of the initial source and obstacle populations
due to the rather high values of the source and obstacle densities chosen. Examination
of similar results for different values of D within the range 2–8 µm shows that there is
no size dependence of the yield stress. The choice of high initial densities enables us to
reduce the scatter in the simulation results and to isolate collective emergent behavior in
a large dynamical system.

3.2.2 Dislocation Creep

Creep simulations were performed for single crystalline specimens of the type shown in
Fig. 5 at several values of the absolute temperature, in the range T = 400 − 800 K,
and different values of the creep stress σ below the yield stress of the specimen in ten-
sion. Assuming material properties of Aluminum, the chosen range of the temperature
corresponds to 0.43− 0.86Tm (Tm = 933K).

Fig. 7 shows the creep response of the same computational specimen for different
values of the creep stress σ in the range 10 − 60 MPa at temperature T = 400 K ≈
0.43Tm. Fig. 7(a) shows the evolution of the axial strain ǫ as a function of time and
Fig. 7(b) shows the evolution of the dislocation density with time. Note that, due to
the rapid oscillation of the dislocation density about a well defined mean, the curves
of ρ vs. time have been smoothed out using the plotting software so that the different
curves are clearly distinguishable in the figure. It can be seen from Fig. 7 that after
an initial transient region, the dislocation density does not vary significantly with strain
except at high values of the creep stress, unlike in the tensile simulation of Fig. 6. Steady
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Figure 7: Creep response of specimens with D = 4µm at T = 400 K for different values
of the creep stress σ below the macroscopic yield stress: (a) strain ǫ vs. time t and (b)
dislocation density ρ vs. t. The curves are labeled by the value of the creep stress σ.

state stage II creep (see Fig. 4) is characterized by more or less constant values of the
microstructural variables (Frost and Ashby, 1982), which in the case of our single crystal
simulations correspond to the dislocation density. Hence, we may consider the part of
the creep curves after the transient in Fig. 7 to correspond to the steady state creep
regime in Fig. 4. However, closer examination of the initial transient region in Fig. 7(a)
shows a serrated curve with alternating regions of rapid straining followed by large plateau
regions with no accumulation of strain unlike a smooth transient of the type shown in
Fig. 4. This is probably an artifact of the specific initial conditions chosen for the system.
For instance, sufficient time must elapse of the vacancy flow into the dislocation cores to
cause dislocation climb, which means that the mean time between climb events is large
initially, before a steady state is reached for the rate at which glide and climb events occur
in the system. Finally, we also note that the final stage of accelerated deformation (stage
III creep in Fig. 4) is a result of damage processes in the system such as cavitation, which
we do not attempt to model using the present small strain framework. Also, limitations
of computing time, especially at larger temperatures where it is necessary to use a much
smaller climb time step tcl, limits our simulation efforts to steady state creep.

Fig. 8 shows similar creep curves for the D = 4µm specimen at higher values of the
temperature T = 600 K and T = 800 K, i.e., 0.63Tm and 0.86Tm respectively. Notice
that the simulation results are shown for much shorter durations of time compared to the
simulations at T = 400 K. This is due to the fact that the climb time step tcl is a rapidly
decreasing function of the temperature, although even at T = 800 K, tcl is at least three
orders of magnitude larger than the glide time step tgl = 0.5 ns. Despite the different
ranges of the time axis, the creep curves at the different temperatures are qualitatively
similar with an extended steady state regime following a short transient stage. The creep
strain rates ǫ̇ are significantly higher at higher temperatures as expected. The evolution
of the dislocation density associated with the results in Fig. 8 (not shown) are very similar
to that in Fig. 7(b) with similar values for the steady state dislocation density. Also, the
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Figure 8: Creep curves for the D = 4µm specimen at (a) T = 600 K and (b) T = 800 K
and different values of the creep stress.The curves are labeled by the value of the creep
stress σ.

order of magnitude of the creep rates predicted by our simulations, estimated by a linear
least squares fit to the steady state creep curves, agrees well with the experimental creep
rates in Al summarized in Fig. 1. However, the two are not directly comparable due to
the fact that deformation mechanism map of Fig. 1 is based on data on polycrystals while
the simulations are done on single crystals.

A better approach to validate the model predictions is to consider plots for the pre-
dicted creep rate as a function of temperature. The functional dependence of the steady
state creep rates on temperature is expected to follow an Arrhenius equation of the form

ǫ̇ = ǫ̇0 exp

(

−
Q

kT

)

(49)

where ǫ̇0 is a reference creep rate and Q denotes the activation energy for creep. Fig. 9
shows the variation of the steady state creep rate as a function of the reciprocal temper-
ature for various values of the creep stress. The negative slope of the activation plot on
this semi-log scale yields the activation energy for creep predicted by the simulations. It
is remarkable that irrespective of the applied stress, a roughly constant slope is obtained
for the activation plot. What is of particular importance is that the predicted value of
the activation energy is around 120 kJ/mol (1.24 eV), which is approximately equal to
the activation energy for self-diffusion, Es = Ef +Em, where Ef and Em are the vacancy
formation and migration energies, respectively, as defined in previous sections (also see
Table. 1). This result shows that diffusion assisted dislocation climb is indeed the micro-
scale mechanism controlling the creep process and serves as an indirect validation of our
simulation approach.

3.2.3 Diffusional Creep

Apart from the strain ǫ = U/L shown in Figs. 7–8, which mainly results from dislocation
glide on the two slip systems, part of the total creep strain is due to the contribution from
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Figure 9: Plot of the creep strain rate as a function of the reciprocal temperature for
various values of the creep stress.

mass transport due to the flux of vacancies. In the case of the tensile sample of Fig. 5, the
boundaries at x1 = ±L/2 have a higher chemical potential for vacancies compared to the
free boundaries at x2 = ±D/2, and this leads to a continuous flux of vacancies from the
former to the latter. Since the diffusive flux of mass is opposite to the flux of vacancies,
this leads to inelastic extension of the bar in the direction of tension. The corresponding
strain ǫd is given by equation (48) and represents Nabarro-Herring creep. Fig. 10 shows
an example of the typical contours of vacancy concentration C(x) in the specimen. The
contours in Fig. 10 correspond to the instantaneous profile of vacancies at t = 0.05 s in the
D = 4µm specimen at T = 600 K and subjected to a creep stress σ = 40 MPa. One can
clearly see from Fig. 10 that the gradients in C and hence the flux of vacancies is directed
away from the tensile boundaries on the right and left and towards the free boundaries
at the top and bottom.

Fig. 11(a) and (b) show the evolution of the Nabarro-Herring creep strain ǫd, computed
using equation (48), as a function of time at T = 600 and 800 K corresponding to the
creep curves in Fig. 8. Notice that the magnitudes of ǫd are several orders of magnitude
smaller than the strain ǫ due to dislocation creep at all times. Thus the simulations show
that dislocation creep is the dominant mode of deformation for the considered ranges of
temperature and creep stresses. However, when the creep stresses are small enough so
that no dislocation activity is possible, the only remaining contribution to the total strain
rate is due to the diffusional creep shown in Fig. 11.

3.2.4 Stress Dependence of the Creep Rate

The creep strain rate is usually related to the stress through a power law relationship of
the form ǫ̇ ∝ σn, where n depends on the dominant mode of creep. Here, we examine the
scaling of the creep strain rate as a function of the stress obtained from the simulations.
Fig. 12 shows the variation of the creep strain rate as a function of the stress at T =
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Figure 10: Contours of vacancy concentration C normalized by the equilibrium vacancy
concentration C0 in the D = 4µm specimen at T = 600 K, t = 0.05 s and creep stress
σ = 40 MPa.

400K, plotted on a log-log scale. The resolved shear stress on the slip systems τ = fsσ,
normalized by the value of the shear modulus µ, are shown along the x-axis for ease
of comparison with deformation mechanism maps such as Fig. 1. The Schmid factor,
fs, is equal to 0.47 for both the slip systems in the case of the symmetric slip system
configuration considered. Average strain rates obtained from simulations on multiple
realizations of the microstructure are shown along with the associated scatter. A minimum
of three realizations have been considered for each case. Values of the strain rates ǫ̇ and ǫ̇d
are calculated using a linear least square fit in the steady state region of the creep curves.
Notice that the scatter is much lower for the diffusional creep rates ǫ̇d compared to the
dislocation creep rates ǫ̇, reflecting the fact that the latter rates are set by the collective
behavior of the discrete dislocations, which introduces some stochasticity. Fig. 12(a) also
shows results for the dislocation creep rates obtained using an order of magnitude smaller
values of the initial source and obstacle densities compared to the values of ∼ 1014 m−2

used in all other simulations. While the observed creep rates are smaller in the case of the
lower initial densities, the scaling behavior for the strain rate with stress is qualitatively
similar to the results at higher initial densities and exhibits the transition in the creep
exponent from low to high stresses. This indicates that the simulation trends are not
strongly dependent on initial conditions. Finally, we observe that the diffusional creep
rates in Fig. 12(b) are much smaller than the creep due to dislocation glide and the scaling
exponent for the stress is nearly equal to 1.

Figs. 13 shows similar results for higher values of the temperature T = 600 K (0.64Tm)
and T = 800 K (0.86Tm) respectively. Note that plots for ǫ̇d vs. time at these temperatures
were qualitatively similar to Fig. 12(b), with a value of the stress exponent equal to unity,
and are hence not shown here. The qualitative trends in Fig. 13 are similar as in the
results at T = 400 K with ǫ̇d ≪ ǫ̇ and the exponent n generally increasing to a large
value for stresses larger than ∼ 0.001µ. Also, the order of magnitude of the creep rates
are in agreement with experimental values in Fig. 1. A somewhat smaller value of n ≈ 5
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Figure 11: Diffusional creep strain ǫd as a function of time for the D = 4µm specimen at
(a) T = 600 K and (b) T = 800 K and different values of the creep stress, corresponding
to the creep curves of Fig. 8. The curves are labeled by the value of the creep stress σ.

is obtained at high stresses, compared to the value of ∼ 7 obtained at T = 400 K in
Fig. 12(a), while the low stress exponent n ranges from 1 − 2. In fact, a stress exponent
in the range 5 − 7 was also obtained in our simulations done at T = 500 and 700 K
(not shown), in excellent agreement with the experimentally reported range of the stress
exponents. Also, a clear transition to a much smaller value of the stress exponent ∼ 1
was observed towards lower creep stresses in all our simulations.

3.2.5 Aspects of creep in small-scale specimens

Unlike for bulk polycrystals, experimental data is not readily available for single crystal
creep at small scales. However, recently Ng and Ngan (2007) have performed creep ex-
periments on micron sized single crystalline Al columns manufactured using focussed ion
beam milling subjected to nominally homogeneous compression using a flat tip nanoin-
denter. Unlike other experiments that examined the effect of specimen size on the flow
strength at small scales (Uchic et al., 2004; Greer et al., 2005), their experiments were
performed under load control rather than displacement control and the investigation was
focused on the creep behavior of the pillars at room temperature. Their main finding was
that creep curves for these pillars at high stresses exhibited a staircase like aspect with
regimes of steady state creep interspersed with intermittent strain bursts. Such strain
bursts have not previously been observed in creep experiments in bulk polycrystals. A
similar behavior has also been observed in some of our DD simulations at high values
of the creep stress below the yield stress of the specimens. Fig. 14 shows a qualitative
comparison of the experimental creep data from Ng and Ngan (2007) with an example
creep curve from our simulations that exhibited a similar staircase aspect. The experi-
mental data in Fig. 14(a) correspond to cylindrical micropillars of diameter 6.3µm and
an aspect ratio of 4 oriented along the [31̄5] crystallographic direction and subjected to
creep loading at various values of the stress for a duration of 300 seconds. The simulation
data corresponds to a plane strain tension specimen with D = 4µm subjected to a creep
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Figure 12: Variation of the creep strain rate as a function of stress obtained from the DD
simulations at T = 400 K: (a) dislocation creep and (b) diffusion creep. The error bars
denote the scatter in the predicted creep rates obtained from at least three realizations of
the initial configurations of dislocations, sources and obstacles.

stress σ = 50 MPa. Based on microscopic examination of the deformed specimens, Ng
and Ngan (2007) have concluded that the strain bursts are not the result of discrete nu-
cleation events localized to a single slip plane and rather occur due to coordinated action
of dislocation sources on multiple slip planes. Figs. 15(a) and (b) show the contours of
total slip, Γ, in the computational specimen during two time intervals corresponding to
t = 2500− 3000 s and t = 3000− 3500 s respectively. Note that the latter time interval
encompasses the duration of the strain burst in Fig. 14(b). Total slip Γ for the time
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Figure 13: Variation of the creep strain rate as a function of stress obtained from the DD
simulations at (a) T = 600 K and (b) T = 800 K. The error bars denote the scatter in the
predicted creep rates obtained from at least three realizations of the initial configurations
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interval t1 − t2 is defined as Γ =
∫ t2
t1

Γ̇ dt, where Γ̇ is a measure of the point-wise slip rate

defined by Γ̇ =
∑

κ |γ̇
κ|, with γ̇κ = mκ

i ǫ̇
s
ijn

κ
j . Here, m and n denotes the slip direction

and slip plane normal respectively for slip system κ and ǫ̇
s is a smooth strain rate field

introduced in each finite element and computed by differentiating the total displacement
rate field u̇ in that element using the finite element shape functions. The slip contours
in Fig. 15 show significantly higher slip activity during the strain burst compared to a
similar time interval during the steady state creep regime. Further, it can be seen that
slip activity during the strain burst is distributed over a band of slip planes in one of the
two slip systems considered.

4 Concluding Remarks

A continuum physics based framework has been introduced for describing thermally acti-
vated, dislocation-mediated inelastic deformation processes. Both conservative glide and
nonconservative climb motions of a large number of discrete dislocations are accounted
for in the formulation. The latter involves (i) determining the long- and short-range
dislocation interactions by representing the dislocations as line singularities in a finite
elastic body; (ii) obtaining the stress-affected diffusion flux of point defects represented
by a concentration field; and (iii) accounting for the interaction of point defects with
dislocations, giving rise to a chemical osmotic force and a drag force on the dislocations,
in addition to the climb component of the mechanical Peach-Koehler force. The compu-
tational framework consists of solving two staggered initial/boundary value problems: a
linear elasticity problem and an unsteady diffusion problem. It enables a straightforward
extension of discrete dislocation plasticity (Van der Giessen and Needleman, 1995) to high
homologous temperatures.
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Figure 14: (a) Experimental data for creep of 6.3µm diameter Al single crystals, adapted
from Ng and Ngan (2007). (b) Strain burst observed during a DD simulation of creep in
a D = 4µm specimen subjected to tensile creep stress σ = 50 MPa.

Key to the feasibility of the staggered approach is time-scale separation. The chal-
lenge of the widely disparate time scales for dislocation glide and climb is overcome by
postulating the existence of quasi-equilibrium configurations for the problems of interest.
In practice, adaptive time stepping is implemented in the staggered approach with fixed
glide time steps (∼ns) and temperature dependent climb time steps (∼ms). The glide
steps are responsible for the rearrangement of dislocations between local equilibrium posi-
tions on their respective slip planes (stuck at obstacles, for instance) and consequently for
most of the macroscopically observed strain. The climb process, occurring over a much
longer time scale, sets the overall strain rate by determining the rate at which dislocations
are able to bypass obstacles through thermal activation.

The equations that govern the unsteady diffusion problem were derived from a vari-
ational principle. Without the requirement of length scale separation, the governing
equations are general and enable a direct determination of the climb velocity of each dis-
location, as affected by the chemical and drag forces. Solutions to the general equations
are useful, for example to investigate unit events or assess analytical solutions of specific
boundary-value problems. They are, however, intractable for large scale simulations in-
volving many dislocations. A computationally efficient variant of the unsteady diffusion
problem was presented which assumes length scale separation, i.e., that concentration
gradients are mainly determined at macroscopic scales, as would arise from boundary
tractions. Under such circumstances, a “coarse-grained” formulation of the climb velocity
is used whose robustness against atomistic calculations is documented (Clouet, 2011).

The salient features of the approach have been demonstrated for two-dimensional
plane strain problems. First, creep emerged as a natural outcome of simulations. Second,
some features of small-scale plasticity were discussed. Calculations have been reported
for single crystalline strips subjected to simple tension under multislip conditions and for
homologous temperatures in the range 0.4–0.85Tm. Consistent with the recently reported
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(a)

(b)

Figure 15: Contours of total slip Γ in the specimen corresponding to the creep simulation
of Fig. 14(b) in the time interval (a) t = 2500 − 3000 seconds and (b) t = 3000 − 3500
seconds.

findings of Keralavarma et al. (2012), the simulations exhibited a clear steady state regime
with strain rates in reasonably good agreement with experimental data for polycrystals
(Frost and Ashby, 1982). Examination of the deformation mechanism map in Fig. 1 shows
that at T = 400 K (0.43Tm) the experimental range of the creep strain rates is about 10−8–
10−5/s for normalized shear stresses in the range 2×10−4–10−3. The predicted creep rates
(Fig. 12) fall completely within this range. A noteworthy emergent behavior predicted by
the calculations is the transition from diffusional creep (Herring–Nabarro) to dislocation
creep (so-called power-law creep). The initial dislocation density was found to directly
affect the magnitude of the creep strain rates, but not the creep exponents or the critical
stress at which a crossover from diffusional to dislocation creep occurs (Fig. 12).

The simulations presented here contain idealizations in a number of respects. Any
comparison between simulation results and experiments is restricted to qualitative as-
pects although some quantitative agreements are noted. There are some important three-
dimensional aspects of dislocation climb that could affect their subsequent glide mobility
due to the inherent jogged character of the climbing dislocation. In the 2D simulations,

31



the entire infinite edge dislocation climbs at once. In actuality, vacancy diffusion is not
uniform along the dislocation line so that not all segments would climb at the same rate.
Also, the presented simulations employed a minimal set of constitutive rules for the short-
range dislocation–dislocation interactions. As a result, creep occurred in a non-hardening
material (Fig. 6a). While this simulation setup allowed a cleaner picture to be depicted
with a constant background flow stress, there is interest in investigating the effect of hard-
ening on creep evolution. A framework exists which will enable such interactions to be
investigated in the future (Benzerga et al., 2004). In addition, the simulations currently
ignore several aspects of the physics, such as pipe diffusion, which may play an impor-
tant role in determining the creep rates at T/Tm in the lower range of the creep regime.
Additional physics is also needed to model grain boundary mediated diffusion so that
a distinction can be made between the two types of diffusional creep, Herring-Nabarro
versus Coble creep. It is remarkable that despite the above idealizations, the proposed
simulation framework provides physically sound predictions in addition to being compu-
tationally efficient.

There is great interest in creep-related dimensional stability in a host of miniature
devices for electronic and medical applications as well as in nanostructured metals and
composites, and at crack tips, particularly when the driving forces include chemical or
thermal components. All such problems involve a size scale at which the combined glide–
climb motion of large numbers of discrete dislocations plays a key role. At present,
experimental data of thermally activated phenomena at such scales is scarce but certain
features of creep in microscale specimens were captured by the simulations (Fig. 14).
With further development of experimental nanomechanics at elevated temperatures the
framework presented here is expected to enable fundamental understanding of deformation
processes in small scale structures across a range of temperatures and competing multiple
physics.
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Appendix

Consider the continuity equation (15) in terms of the microscopic concentration field
c(x, t) subject to boundary conditions on both ∂V and ∂C i. Define Ċ as

Ċ = 〈ċ〉Vg
(50)
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where 〈·〉Vg
stands for the volume average over some representative elementary volume or

grain Vg. Using (15) one obtains

Ċ = −
1

Vg

∫

V̂g

∇ · j dV −
1

Vg

∑

i∈Vg

∫

∂Ci

j · n dS (51)

where V̂g refers to excluding all dislocations cores from Vg. The net divergence of the
macroscopic vacancy flux is then defined as

∇ · J =
1

Vg

∫

V̂g

∇ · j dV (52)

so that the second term on the right-hand side of (51), denoted Ċsrc, is clearly identified
with vacancy production/emission within Vg. Considering closed dislocation loops none
of which intersects the boundary of Vg, one gets

Ċsrc = −
1

Vg

∑

i∈Vg

∮

Li

∮

Γi

j · n dsdl (53)

Using (17) one finally gets equation (29), which expresses the source/sink term as the net
climb velocity of all the dislocations in Vg. A positive climb step of a dislocation requires
the absorption of a single vacancy into the dislocation core while a negative climb step
requires the emission of a single vacancy. Equation (30) is then obtained from (29) by
considering that each edge dislocation climbs at one atomic site only. This obviously leads
to a lower bound. On the other hand, an upper bound is obtained if one assumes that the
whole edge dislocation climbs (one vacancy emitted/absorbed per lattice site along the
dislocation line). The reality is somewhere in between depending on the lineal density of
jogs.

References

Acharya, A., Bassani, J. L., 2000. Lattice incompatibility and a gradient theory of crystal
plasticity. J. Mech. Phys. Solids 48, 1565–1595.

Arsenlis, A., Rhee, M., Hommes, G., Cook, R., Marian, J., 2012. A dislocation dynamics
study of the transition from homogeneous to heterogeneous deformation in irradiated
body-centered cubic iron. Acta Mater. 60, 3748–3757.

Asaro, R. J., Needleman, A., 1985. Overview no. 42 texture development and strain
hardening in rate dependent polycrystals. Acta Metall. 33, 923–953.

Ashby, M., 1972. A first report on deformation-mechanism maps. Acta Metall. 20, 887–
897.

Ayas, C., Deshpande, V. S., Geers, M. G. D., 2012. Tensile response of passivated films
with climb–assisted dislocation glide. Journal of the Mechanics and Physics of Solids
60, 1626–1643.

33



Ayas, C., Van Dommelen, J. A. W., Deshpande, V. S., 2014. Climb-enabled discrete
dislocation plasticity. J. Mech. Phys. Solids 62, 113–136.
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