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Abstract. A numerical iterative vortex lattice method is developed to study flow

past wing(s) at high angles of attack where the separated flow is modelled using NY

nascent vortex filaments. The wing itself is modelled using NX × NY bound vortex

rings, where NX and NY are the number of sections along the chord and span of the

wing respectively. The strength and position of the nascent vortex along the chord

corresponding to the local effective angle of attack are evaluated from the residuals in

viscous and potential flow, i.e. (Cl)visc − (Cl)pot and (Cm)visc − (Cm)pot. Hence, the

2D airfoil viscous Cl−α and Cm−α is required as input (from experiment, numerical

analysis or CFD). Aerodynamic characteristics and section distribution along span

are predicted for 3D wings at a high angle of attack. Effect of initial conditions and

existence of multiple solutions in the post-stall region is studied. Results are validated

with experiment.

1. Introduction

The interest in extending linear methods to include post-stall regimes of flow has existed

since Prandtl’s Lifting Line Theory. A vortex-lattice method algorithm based on a novel

decambering approach [1] uses an estimate of the reduction in camber at post-stall angles

of attack to account for the change in Cl and Cm from the inviscid case.

Sarpakaya [2] in his review paper, discusses shedding of discrete vortices from the

points of separation. He mentions that vortex methods are the weakest when used for

simulating separated flows. Various methods, using both variable and fixed positions

of the nascent vortex have been discussed while the strength of the circulation of the

discrete shed vortex at each time step is found out from the velocity at a certain point,

e.g. at the position of the nascent vortex.
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Katz [3] places the separated vortex at the half way point of the distance covered

in a given time step, by the panel LE in which the separation point lies. The separation

point in this case is previously known. The magnitude of circulation of Nascent Vortex

shed is calculated using velocities across the shear layer. Antonini et al [4] uses Cl
value of the airfoil to find the point of separation and the separated nascent vortex is

placed at a certain predetermined distance from the point of separation. Sarpakaya [5]

estimates the velocity which is used for calculating the strength of the shed vortex by

taking the average velocity of 4 previously shed vortices. The position of the nascent

vortex is selected in such a way that the kutta condition is satisfied. Chorin [6] has set a

different path, wherein nascent vortices are introduced throughout the surface. No-slip

condition is applied at the boundary in order to find the strength and the core radius

of the Nascent Vortices. The method has been used to predict the temporal loading on

a cylinder.

Separated flow, especially post stall is an unsteady phenomenon. The motivation

of the current work is to incorporate viscous effect into a 2D discrete vortex method

and a 3D vortex lattice method, while also being able to predict the position of and

strength of Nascent Vortex. This work can then be extended to unsteady cases.

2. Mathematical Model

In the present work, separated flow is assumed to be steady and is modelled by a single

nascent vortex in the separated region as shown in Fig. 1, whose strength and the

position along the chord are unknown.

(a) Separated Flow in an airfoil (b) Separated Flow model for a 3D wing

Figure 1: Separated Flow

The airfoil characteristics in the inviscid regime are predicted by a discrete vortex

element method (DVEM) as in Katz et al [8]. The inviscid model is extended to account

for post-stall flow using a single nascent vortex with a fixed finite core as shown in Fig 1a

in addition to DVEM.

The idea is that when viscous flow deviates from the inviscid flow Cl − α curve

due to flow separation from the lifting surface, it essentially causes a deficit in the lift-

creating vorticity around the airfoil. Therefore, if we can compensate for this loss in
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vorticity, we should be able to get back the missing lift. The present method proposes

to account for this missing vorticity by a nascent vortex of strength Γnv and position,

xnv along chord and znv perpendicular to the airfoil chord such that its effect on the

airfoil is able to recover the loss in the coefficients of lift and pitching moment.

However, we have three unknowns (Γnv, xnv, znv) and only two pieces of information

(∆Cl,∆Cm) to evaluate these unknowns. Hence, one of the values must be assumed

or found empirically so that a unique solution is obtained. In the present method, znv
is assumed. Therefore, the effect of the nascent vortex (Γnv, xnv) is expected to be

such that it accounts for the residuals: (Cl)visc − (Cl)pot and (Cm)visc − (Cm)pot. The

unknowns are then solved iteratively so that they satisfy Eqn. 1.

J · δx = −F (1)

where

F =

(
(Cl)pot − (Cl)visc

(Cm)pot − (Cm)visc

)
=

(
∆Cl
∆Cm

)

J =

 δ∆Cl

δΓnv

δ∆Cl

δxnv

δ∆Cm

δΓnv

δ∆Cm

δxnv

 ; δx =

(
∆Γnv
∆xnv

)
The Cl − α and Cm − α from the present methodology are plotted along with the

input experimental data from Abbott [10] in Fig. 2.

The core radius (cr) of the Nascent Vortex is an important parameter. The effect

of variation of the size of the core on the strength and position of the NV for NACA0009

is shown in Fig. 3. It is found that for cr = 0.025 and cr = 0.05, convergence does not

occur for some α, while for some α the nascent vortex is located beyond the trailing

edge, which is physically not possible.
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Figure 2: Aerodynamic Characteristics. Blue: NACA0009, Red: NACA2412, Black:

NACA4412.

With increase in cr, the NV moves closer to the leading edge and the predicted

circulation also increases. This trend is similar to the one observed when the znv is

increased. Hence, a core radius of at least 0.1 has to be used. For all of the current

calculations, a cr = 0.2 is used.
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Figure 3: Variation of Γnv & xnv with core radius (cr)

2.1. Implementation of Methodology for a 3D Wing

The inviscid solution of a 3D wing is obtained by using a Steady Vortex Lattice

Method(VLM) [8]. The nascent vortex concept illustrated for a 2D airfoil is incorporated

into the solution for a 3D wing, where the separated flow is modelled by horse-shoe

vortices as shown in Fig. 1b. For the 3D solution, Eqn. 1 transforms to Eqn. 2.

J(2NY×2NY ) · δx(2NY×1) = −F(2NY×1) (2)

The local effective angle of attack (αeff )i is computed using Eqn. 3.

(αeff )i = −sin−1

 K +Gi

NX ×
∣∣∣−→U ∞∣∣∣

 ; i = 1, NY (3)

Where,

Ki =
NX∑
k=1

NX∑
l=1

((−→
Vb

)
lk
· n̂k
)
i
; Gi =

NX∑
k=1

((−→
V nv

)
ik
· n̂k
)
i
;(−→

Vb

)
lk

is the velocity induced by the bound vortex of panel l on the collocation

point of panel k;
(−→
V nv

)
ik

is the velocity induced by the Nascent Vortex on section i

on collocation point of panel k; n̂k is unit normal vector to panel k and
−→
U ∞ is the free

stream velocity.

Solve Eqn. 2 for the entire wing and find ∆Γnvi & ∆xnvi δ∆Clj

δΓnvi

δ∆Clj

δxnvi
δ∆Cmj

δΓnvi

δ∆Cmj

δxnvi

( ∆Γnvi
∆xnvi

)
= −

(
∆Cli
∆Cmi

)
Where i = 1, NY ; j = 1, NX

3. Results

The present work is compared with the experimental work of Naik and Ostowari [11]

for a rectangular wing of aspect ratio 12 at Re = 0.5 × 106 & 0.75 × 106 as shown in
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Fig. 4. Airfoil data is required as input, which is also available from the above reference.

NACA4415 airfoil is used. No thickness correction is applied. NY = 16 is used.
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Figure 4: CL − α for a finite wing (section: NACA 4415, AR = 12).
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Figure 5: Variation along span of rectangular wing (section: NACA 4415, AR = 12,

α=20o).

It is seen from the 2D and 3D experimental plots in Fig. 4 that the airfoil and wing

stall at α ≈ 18o, which corresponds to a maximum Cl ≈ 1.4 while the present results

show that the wing is near-stall at α ≈ 20o for a similar maximum Cl. It is seen in Fig. 5

that in the root section of the wing, section α ≈ 18o, which corresponds to a maximum

Cl ≈ 1.4. This is confirmed by the section Cl distribution. The high section Cl causes

very high induced velocities near the root-section and hence there is an increase in the

negative Cm. Conversely, the sectional distribution of the strength and location along
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0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

Γ
nv

x
n
v

 

 

0 20 40 60 80
0

0.5

1

Number of Iterations

Γ
n
v

0 20 40 60 80
0

0.5

1

Number of Iterations

x
n
v

Tip Section − IV 1

Root Section − IV 1

Tip Section − IV 2

Root Section − IV 2

Figure 7: Effect of number of iterations and initial conditions on rectangular wing

(section: NACA 4415).

chord of the nascent vortex show that Γnv is stronger and xnv is nearly 0 near the root,

suggesting that the vortex moves closer to the leading edge. It is interesting to note

that even at the wing tips, Γnv is not close to zero. A particular case of the distribution

of Γnv along the wing span at α = 15o is shown in Fig. 6, where it clearly shows that

the strength of the nascent vortex is stronger near the root and weakest near the tips

for a rectangular wing.

The section Cl distribution is clearly devoid of any sawtooth and this result is

obtained without the use of any smoothing algorithm. This is definitely a clear advantage

over the post-stall predictive tool developed by Mukherjee et. al. [1].

The variation in Γnv & xnv at the root and tip sections as the iterations progress

is shown in Fig. 7 for a wing with NACA 4415 section, α = 20o, AR = 12 & NY = 16.

Effect of initial conditions on Γnv & xnv is studied at the tip and root sections for two

different initial values for a final converged result. The initial values used are as follows:

IV 1: Γnv=0.1 & xnv=0.1 and IV 2: Γnv=0.8 & xnv=0.8. For initial values of Γnv=0.9
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& xnv = 0.9 the solution did not converge. Hence, different initial values did not result

in multiple solutions for a post-stall angle of attack.

4. Conclusion

A multi-dimensional post-stall predictive tool is developed for wing(s) using VLM, which

uses a nascent vortex to account for flow separation. The tool is robust for wings with

cambered airfoil sections but some convergence issues exist for wings with symmetric

airfoil sections. For wings with cambered airfoil sections, section Cl distributions are

completely devoid of sawtooth. Different initial conditions do not result in multiple

solutions.
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