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Abstract: Optimal tracking of continuous-time non-linear systems has been extensively studied in literature. However, in several
applications, absence of knowledge about system dynamics poses a severe challenge in solving the optimal tracking problem.
This has found growing attention among researchers recently, and integral reinforcement learning based method augmented
with actor neural network (NN) have been deployed to this end. However, very few studies have been directed to model-free H∞

optimal tracking control that helps in attenuating the effect of disturbances on the system performance without any prior
knowledge about system dynamics. To this end, a recursive least square-based parameter update was recently proposed.
However, gradient descent-based parameter update scheme is more sensitive to real-time variation in plant dynamics.
Experience replay (ER) technique has been shown to improve the convergence of NN weights by utilising past observations
iteratively. Motivated by these, this study presents a novel parameter update law based on variable gain gradient descent and
ER technique for tuning the weights of critic, actor and disturbance NNs. The presented update law leads to improved model-
free tracking performance under ℒ2-bounded disturbance. Simulation results are presented to validate the presented update
law.

1 Introduction
Optimal control is one of the prominent control techniques that
aims to find control policies that minimises a cost function
subjected to plant dynamics as constraints. Traditional optimal
control techniques require full knowledge of plant dynamics and
corresponding parameters for their implementation. However, in
practice knowledge of the same might be partially available or
unavailable. In order to implement optimal control methods online
under such limitations, reinforcement learning (RL) [1, 2] and
adaptive dynamic programming (ADP) [3, 4] approaches were
proposed that solve optimal control problem forward in time.

Regulation problems and trajectory tracking problems are the
two broad classifications of the optimal control problem. The
prime objective of regulation problems [5–11] is to find a control
policy that brings the desired states to origin in finite amount of
time while minimising a cost function. On the other hand, optimal
tracking control problem (OTCP) [12–15] entails finding control
policies that will make the desired states (output of the system)
track a time varying reference trajectory. Traditionally, the OTCP
requires development of two different controllers: (i) transient
controller and (ii) steady-state control [4, 15]. Limitation of
traditional OTCP solving schemes lies in the requirement of (i)
knowledge of reference dynamics and (ii) invertibility condition on
control gain matrix. Modares et al. [16, 17] proposed augmented
system comprising of error and desired dynamics to by-pass this
limitation. Finding the control policy that stabilises the augmented
system while minimising the performance index was the prime
objective of their novel control algorithm. The control policy
generated by their algorithm also consisted of both transient and
steady-state controllers.

In the ADP schemes mentioned above, identifiers were used to
obviate the exact knowledge of nominal plant dynamics. However,
identifiers add to the computational complexity and also reduce the
accuracy of the computations [18]. In most cases, identifiers also
require the knowledge of structure of the plant dynamics. Hence,
efforts have been devoted to make RL schemes either partially
model-free or completely model-free. In order to develop

continuous-time optimal control policies under partial or no
knowledge of plant dynamics integral reinforcement learning (IRL)
algorithm was leveraged. While first few results in this direction
for regulation problem were presented in [19–22], Modares et al.
[16] developed algorithms for OTCP for partially-unknown
system. Thereafter, Zhu et al. [18] developed off-policy model-free
tracking control of continuous-time non-linear systems using IRL.
They leveraged experience replay (ER) technique to effectively
utilise past observations in order to update the NN weights.
Further, the uniform ultimate boundedness (UUB) stability of the
update law was also proved.

It may also be noted that most of the aforementioned RL
schemes, for both regulation and tracking problems, do not deal
with attenuation of the effects of disturbance. To this end, H∞

regulation problem has been studied using RL both offline [23, 24]
and online [25, 26]. Online IRL was also utilised in [27, 28] for H∞

regulation problem for partially-unknown system. Note that under
partial or no knowledge of the plant dynamics structure, IRL has
been leveraged in several literature for regulation problem, while
very few studies have dealt with IRL for OTCP problem with
disturbance rejection. To the best of the authors' knowledge, [29,
30] are the only few papers that have recently presented control
policies for model-free OTCP of continuous-time non-linear
system in H∞ framework. Modares et al. [29] updated the
parameters of critic, actor and disturbance NNs using least square
method, which could only be initiated after certain number of data
had been collected. This makes their algorithm less sensitive to
real-time variations in plant dynamics [18]. On the other hand,
Zhang et al. [30] utilised gradient descent driven parameter update
law for H∞ tracking control problem, and UUB stability of the
parameter update law was proven. However, their gradient descent
followed a constant learning rate.

While continuous-time update law driven by gradient descent is
more sensitive to real-time variations in plant dynamics, ER
technique has been shown to improve the learning speed
significantly by utilising past observations iteratively [18]. Also,
addition of ‘robust terms’ in update law was shown to shrink the
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residual set in [31]. Inspired by [18, 29], this paper presents a novel
off-policy IRL-based H∞ tracking control scheme for continuous-
time non-linear system, in which the parameter update laws for
tuning the weights of critic, actor and disturbance NNs are driven
by variable gain gradient descent and ER technique in addition to
robust terms. Instead of a constant learning rate in traditional
gradient descent-based schemes, the learning rate of gradient
descent developed in this paper is variable and a function of
Hamilton–Jacobi–Isaac (HJI) error. This results in an increased
learning rate when HJI error is large and the learning rate is
reduced as the HJI error becomes smaller. The variable gain
gradient descent technique is also shown to have the added
advantage of shrinking the size of the residual sets, which the NN
weights finally converge to. Term corresponding to ER technique
and robust term in the update law also contribute in further
shrinking the size of the residual set. Unlike [31], the update law
presented in this paper, not only leverages robust terms for present
instance but also past instances as well. After the completion of
learning phase, the final learnt policies leveraging variable gain
gradient descent are executed and they are shown to reduce the
oscillations in transient phase and steady-state errors, thus resulting
in improved tracking performance. Thus, the key innovation of this
paper can be summarised as the proposition and analysis of
continuous-time parameter update law, which is driven by variable
gain gradient descent and augmented with ER and robust term, to
tune NN weights to solve H∞ tracking control problem with
disturbance rejection for completely unknown continuous-time
non-linear system.

The rest of the paper is structured as follows. Preliminaries and
background of H∞ tracking controller and the tracking HJI
equation for augmented system have been presented in Section 2.
Next, in order to obviate the requirement of system dynamics in
policy evaluation step, model-free version of HJI equation to
formulate IRL, and neural networks (NNs) to approximate value
function, control and disturbance policies are presented in Section
3. Section 4 highlights the main contribution of this paper, i.e. the
continuous-time weight update law that is driven by variable gain
gradient descent and ER technique. The update law also
incorporates the robust terms and their past observations. UUB
stability analysis for the proposed mechanism is shown. Numerical
studies are presented in Section 5 to justify the effectiveness of the
presented algorithm. Finally, Section 6 provides concluding
remarks.

2 H∞ tracking problem and HJI equation
2.1 Problem formulation

It is desired to drive certain states of interest of the dynamical
system to follow predefined reference trajectories under ℒ2-
bounded disturbance in an optimal way. Let the dynamical system
be described by an affine-in-control differential equation

ẋ = f (x) + g(x)u + k(x)d (1)

where x ∈ ℝn, u ∈ ℝm, d ∈ ℝq1, f (x):ℝn → ℝn is the drift
dynamics, g(x):ℝn → ℝn × m represents the control coupling
dynamics and k(x):ℝn → ℝn × q1 is disturbance dynamics. In the
subsequent analysis in this paper, it is assumed that none of the
system dynamics, that is f (x), g(x) and k(x), are known. However,
Lipschitz continuity for the system dynamics as well as
controllability of the system over a compact set Ω ∈ ℝn are
assumed. A bounded reference trajectory is generated by a
command generator or a reference system whose dynamics is
described by

ẋd = η(xd) (2)

Thus, the error is given by

e = x − xd (3)

Therefore, the error dynamics is given as

ė = ( f (x) + g(x)u + k(x)d − η(xd)) (4)

In order to formulate corresponding HJI equation and assess the
effect of disturbance on the closed-loop system, a virtual
performance index ( X

2) is defined as [29]

X
2 = eTQe + uTRu (5)

where Q and R are positive definite matrices with only diagonal
entries. It is to be noted that all the vector or matrix norms used in
this paper are 2-norm or the Eucledian norm. In [29], the
disturbance attenuation condition was characterised as the ℒ2-gain
is smaller than or equal to α for all d ∈ L2[0, ∞), that is

∫t

∞
e−γ(τ − t) X

2
dτ

∫t

∞
e−γ(τ − t) d(τ) 2

dτ
≤ α

2 (6)

where 0 ≤ γ is the discount factor and α determines the degree of
attenuation from disturbance input to the virtual performance
measure. The value of α is selected based on trial and error. The
minimum value of α, for which (6) is satisfied provides optimal-
robust control solution [29]. Now, using (5) and (6)

∫
t

∞

e−γ(τ − t)(eTQe + uTRu)dτ ≤ α
2∫

t

∞

e−γ(τ − t) ∥ d(τ) ∥2 dτ (7)

Finding a control policy u dependent on tracking error and
reference trajectory such that the system dynamics (1) satisfies the
disturbance attenuation condition (7) and that the error dynamics
(4) is locally asymptotically stable for d = 0 forms H∞ tracking
control problem [29].

2.2 HJI equation: preliminaries

The first part of this section deals with the development of HJI
equation for solving the H∞ tracking problem stated above, while
the second part discusses about policy iteration steps. As discussed
in [29], the H∞ tracking problem can also be posed as a min–max
optimisation problem subjected to augmented system dynamics
comprising of error dynamics and desired states dynamics.
Subsequently, the solution to min–max optimisation problem is
obtained by imposing the stationarity condition on the
Hamiltonian. In order to formulate tracking HJI equation, an
augmented state vector is defined as

z = [eT, xd
T]T (8)

The augmented system dynamics is then given as

ż = F(z) + G(z)u + K(z)d (9)

Where

F(z) =
( f (x) − η(xd))

η(xd)
, G(z) =

g(x)
0

, K(z) =
k(x)

0
(10)

denote augmented drift, control coupling and disturbance
dynamics, respectively. In the subsequent analysis, F ≜ F(z),
G ≜ G(z) and K ≜ K(z). From the Lipschitz continuity of the
original system and the boundedness of the reference signal it can
be concluded that the augmented system is also Lipschitz
continuous in z ∈ Ω1 ⊂ ℝ2n, where Ω1 is a compact set. Using
augmented states, the attenuation condition (7) can be described as

∫
t

∞

e−γ(τ − t)(zTQ1z + uTRu)dτ ≤ α
2∫

t

∞

e−γ(τ − t)( ∥ d(τ) ∥2 )dτ (11)
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where, Q1 is given by

Q1 =
Qn × n 0n × n

0n × n 0n × n 2n × 2n

(12)

and R is penalty matrix on control that has positive diagonal
entries. Thus, a final performance index consisting of disturbance
input is defined as

J(u, d) = ∫
t

∞

e−γ(τ − t) z(τ)T
Q1z(τ) + u(τ)T

Ru(τ)

−α
2 ∥ d(τ) ∥2 dτ

(13)

Let the value function V be defined as V ≜ J(u, d). Based on the
definition of J in (13), the value function V also depends on
augmented states trajectory z for given control policy u and
disturbance d. The gradient of value function (∇zV) along the
augmented system trajectory z plays a key role in subsequent
discussion. Note, ∇V , Vz and ∇zV  are used equivalently in the
paper. The problem of finding control input u that satisfies (6) is
same as minimising (13) subjected to augmented dynamics. In
[32], a direct relationship between H∞ control problem and two-
player zero-sum differential game was established. It was shown
that solution of the H∞ control problem is equivalent to solution of
the following zero-sum game:

V
∗(z) = J(u∗, d

∗) = min
u

max
d

J(u, d) (14)

The term J is as defined in (13) and V∗ is optimal value function.
Existence of game theoretic saddle point was also shown to
guarantee the existence of solution of the two-player zero-sum
game control problem. This is encapsulated in following Nash
condition:

V
∗(z) = min

u
max

d
J(u, d) = max

d
min

u
J(u, d) (15)

Differentiating (13) along augmented system trajectories, the
following Bellman equation is obtained:

zTQ1z + uTRu − α
2
d

T
d − γV + ∇V

T(F + Gu + Kd) = 0 (16)

where ∇V  is the gradient of cost with respect to augmented states
(z). Let the Hamiltonian be defined as

ℋ(z, V , u, d) = zTQ1z + uTRu − α
2
d

T
d − γV

+∇V
T(F + Gu + Kd)

(17)

V
∗ being the optimal cost, satisfies the Bellman equation.

Applying stationarity condition on the Hamiltonian, both optimal
control input and disturbance input are obtained as follows:

∂ℋ(z, V
∗, u, d)

∂u
= 0 ⟹ u

∗ = − 1
2 R

−1
G

T∇V
∗

∂ℋ(z, V
∗, u, d)

∂d
= 0 ⟹ d

∗ = 1
2α

2 K
T∇V

∗
(18)

where ∇V
∗ is the gradient of the optimal cost with respect to

augmented states (z). The optimal control input and disturbance
input given above provide saddle point solution to the game [23].
Using (18) in (17) tracking HJI equation is

zTQ1z +Vz
∗ T

F − γV
∗ − 1

4∇V
∗ T

G
T
R

−1
G∇V

∗

+ 1
4α

2 ∇V
∗ T

KK
T∇V

∗ = ℋ(z, V
∗, u

∗, d
∗) = 0

(19)

Policy iteration framework is a computation approach to
iteratively solve the Bellman equation and improve the control
policies. It is generally started off with some known initial
stabilising policy u and then following two steps are iteratively
repeated till convergence is achieved.

(i) Policy evaluation: Given initial admissible control and
disturbance policies, this step entails solving the Bellman equation
as (where Vi, ui, di denote improved value function and policies at i
th iteration)

∇Vi
T(F + Gui + Kdi)

V̇ i ui, di

= γVi − zTQ1z − ui
TRui + α

2
di

T
di (20)

(ii) Policy improvement: This step produces improved control and
disturbance policies

ui + 1 = − 1
2 R

−1
G

T∇Vi; di + 1 = 1
2α

2 K
T∇Vi (21)

 
Theorem 1: For an admissible policy (ui, di), if Vi is the solution

of (20), satisfying the boundary condition Vi(0) = 0, then the
improved policies, i.e. ui + 1, di + 1 are also admissible. Additionally,
if Vi + 1 is unique positive definite function satisfying Bellman
equation (20) with Vi + 1(0) = 0, then V∗ ≤ Vi + 1 ≤ Vi.
 

Proof: The proof of this theorem is provided in the Appendix
(Section 8.2).□
 

Theorem 2: Given an initial admissible policy ui, di, then
according to Theorem 1, the improved policies (ui + 1, di + 1) are also
admissible, additionally, Vi + 1 → V

∗, ui + 1 → u
∗ and di + 1 → d

∗ on a
compact set Ω1 (where Ω1 is as defined after (10)).
 

Proof: The proof of the convergence of actor and disturbance
policies and the value function to their respective optima follows
using similar methodology as in the proofs of Theorem 1 of [6] or
Theorem 2 of [33]. □

3 Integral reinforcement learning and value
function approximation
3.1 Derivation of model-free HJI equation

Note that implementation of traditional policy iteration algorithms
[i.e. Equations (20) and (21)] requires complete knowledge of
system dynamics. Hence, in order to completely remove the
requirement of system dynamics from policy evaluation step (i.e.
(20)), IRL [34] will be leveraged in the following way. In the
subsequent analysis, u refers to the executed control policy and d
refers to the disturbance present in the system. It is assumed that an
initial admissible policy is known. Improved policies on the other
hand are denoted by ui, di. Then, adding and subtracting Gui and
Kdi to (9)

ż = F + Gui + Kdi + G(u − ui) + K(d − di) (22)

This is done to derive an alternate form of Bellman equation
containing both the executed and improved policies for off-policy
version of IRL similar to the one presented in [18]. Taking
derivative of Vi(z) along (22) a revised form of Bellman equation
[see (16)] is given by

∇Vi
T(F + Gui + Kdi) + ∇Vi

T(G(u − ui)) + ∇Vi
T(K(d − di))

V̇ i

−γVi = − zTQ1z − ui
TRui + α

2
di

T
di

(23)

Multiplying both sides of (23) by e−γt, left-hand side (LHS) of (23)
can be expressed as
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d(e−γtVi(z))
dt

= e−γt(∇Vi
T(F + Gui + Kdi) + ∇Vi

T(G(u − ui))

+∇Vi
T(K(d − di)) − γVi)

(24)

Using (20) and (21) in (24), d(e−γtVi)/dt can be rewritten as

d(e−γtVi(z))
dt

= e−γt( − zTQ1z − uiRui + α
2
di

T
di

+∇Vi
T
G(u − ui) + ∇Vi

T
K(d − di))

= e−γt( − zTQ1z − uiRui + α
2
di

T
di

−2ui + 1
T R(u − ui) + 2α

2
di + 1

T (d − di))

(25)

Integrating the above equation over [t − T , t] on both sides of
(25) and rearranging

Vi(t) − eγTVi(t − T) + ∫
t − T

t

e−γ(τ − t)(zTQ1z + ui
TRui

−α
2
di

T
di + 2ui + 1

T R(u − ui) − 2α
2
di + 1

T (d − di))dτ = 0

(26)

where Vi(t) ≜ Vi(z(t)) and Vi(t − T) ≜ Vi(z(t − T)). Note that (26)
resembles (23) or (20) in the limiting sense when T → 0. To
maintain this equivalence, the reinforcement interval T should be
selected as small as possible [34]. The primary advantage of (26)
compared to (23) or (20) is that it does not require the prior
information of drift dynamics. Since, (20) or (23) are equivalent to
the modified Bellman equation presented in (26), all the
convergence properties proved for (20) and (21) (see Theorems 1
and 2) hold true for (26) and (21) as shown in [29, 35].

Note that when improved policies obtained in last iteration are
executed to the system during learning, then (25) leads to on-policy
IRL form of Bellman equation [16, 22] instead of (26) above.

3.2 Approximation of value function, control policy and
disturbance policy

Similar to [18, 29], value function and improved policies are
represented by

Vi = Wc
T
σc + εc; ui + 1 = Wa

T
σa + εa; di + 1 = Wd

T
σd + εd (27)

where Wc ∈ ℝa1 is the weight for critic NN, σc ∈ ℝa1 is the
regressor vector for critic NN, Wa ∈ ℝa2 × m is the weight matrix for
actor NN, σa ∈ ℝa2 is the regressor vector for actor NN,
Wd ∈ ℝa3 × l is the weight matrix for disturbance NN and σd ∈ ℝa3

is the regressor vector for disturbance NN, εc ∈ ℝ, εa ∈ ℝm and
εd ∈ ℝq1 are approximation errors for critic, actor and disturbance
NN, respectively. Using (27) in (26), the HJI error becomes

εHJI = Wc
T[σc(t) − eγTσc(t − T)] + I1

+∫
t − T

t

e−γ(τ − t)(2σa
TWaR(u − ui) − 2α

2
σd

TWd(d − di))dτ
(28)

where

I1 ≜ ∫
t − T

t

e−γ(τ − t)(zTQ1z + ui
TRui − α

2
di

T
di)dτ (29)

Now, since ideal weights are not known, their estimates will be
utilised instead

V
^

i = W
^

c

T
σc; u^i + 1 = W

^

a

T
σa; d

^
i + 1 = W

^

d

T
σd (30)

Then, the instantaneous HJI error in terms of estimated weights can
be written as

e^1(t) = W
^

c

T
[σc(t) − eγTσc(t − T)] + I1

+v(W
^

a)
T∫

t − T

t

2e−γ(τ − t)(R(u − ui) ⊗ σa)dτ

−v(W
^

d)T∫
t − T

t

2e−γ(τ − t)(α2(d − di) ⊗ σd)dτ

(31)

Equation (31) can be written in compact form as

e^1(t) = W
^ T

ρ1 + I1(t) (32)

where I1 is the reinforcement integral given in (29).

W
^

=

W
^

c

v(W
^

a)

v(W
^

d)

; ρ1 =

Δσc

∫
t − T

t

2e−γ(τ − t)(R(u − ui) ⊗ σa(t))dτ

−∫
t − T

t

2e−γ(τ − t)(α2(d − di) ⊗ σd(t))dτ

(33)

where v( . ) represents vectorisation of matrix and ⊗ denotes the
kronecker product. Here, W

^
∈ ℝq is the composite NN weight

vector, and ρ1 ∈ ℝq is the composite regressor vector, where
q = a1 + ma2 + la3, in which m is the dimension of the control
vector and l is the dimension of the disturbance vector, and a1, a2, a3

are number of neurons in the hidden layer or the size of regressor
vector for critic, actor and disturbance, respectively.
Δσc = [σc(t) − eγTσc(t − T)]. In subsequent discussion, e^1(t), e^1(t j)
are denoted by e^1 and e^1 j, respectively, and ρ1 ≜ ρ1(t), ρ1 j ≜ ρ1(t j).
Similarly, I1 ≜ I1(t) and I1 j ≜ I1(t j).

3.3 Exisiting update laws in literature for off-policy IRL

In [29], a recursive least square (RLS)-based update law was
proposed to minimise the HJI approximation error to solve H∞-
tracking problem. Their update law was given by

W
^

= (ℵℵT)−1ℵY (34)

where ℵ = [ρ1(t1), ρ1(t2), ρ1(t3), …, ρ1(tN)] and
Y = [ − I1(t1), − I1(t2), − I1(t3), …, − I1(tN)]T. Equation (34) yields
Vi, ui + 1 and di + 1. However, this discontinuous-time update law
requires that N samples be collected, using a fixed control policy in
each phase of N time-steps before (34) could produce a new update
of W^  at the end of that respective phase. The number of samples N
that need to be collected is equal to or greater than the size of the
regressor vector, i.e. N ≥ size(ρ1). This procedure makes it less
sensitive to real-time variation in plant parameters as was indicated
in [18]

In order to remedy these issues, a continuous-time update law
was presented in [18] utilising constant learning gradient descent
and ER technique to train the actor and critic NN in off-policy IRL
to solve optimal tracking problem.

However, this control formulation did not incorporate any
disturbance rejection. Their update law was given as

W
^̇

= − η

N + 1
ρ2

ms
2 e^2 + ∑

j = 1

N
ρ2 j

ms j
2 e^2 j (35)

where ρ2 in (35) is made up of first two components of ρ1 in (33),
that is ρ2 does not contain the last component of ρ1 that corresponds
to disturbance term (d).

Recently, a continuous-time update law was presented in [30]
for H∞-tracking control incorporating terminal constraints, in
which the update law relied only on constant learning-based
gradient descent apart from a term dedicated for incorporating
terminal constraints.
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4 Variable gain gradient descent and ER
technique-based parameter update law
4.1 Novel update law

All the update laws mentioned in Section 3.3 either utilise RLS
method [29] or gradient descent with constant learning rate [30].
While the RLS-based update laws are usually found to be less
sensitive to real-time parameter variations in plant dynamics [18],
constant learning rate-based update law cannot scale the learning
rate based on the instantaneous value of the HJI error [36]. Also,
ER technique and inclusion of robust term in update laws were
found to beneficial [18, 31, 37]. Considering these, a novel
continuous-time update law is presented in this paper to tune the
critic, actor and disturbance NN weights online in order to solve
H∞-tracking problem. The novel update law utilising variable gain
gradient descent and ER technique is now presented as

W
^̇

= − η

N + 1
ρ1

ms
2 g2e

^
1 + ∑

j = 1

N
ρ1 j

ms j
2 g2 je

^
1 j

−K1g2

ρ1
T

ms
W

^
+ g2K2W

^
− K1 ∑

j = 1

N
g2 jρ1 j

T

ms j
W

^

(36)

where g2 = e^1
k1 + l and g2 j = e^1(t j)

k1 + l (l is a small positive
constant) and ms = 1 + ρ1

Tρ1 and ms j = 1 + ρ1 j
T ρ1 j and K1 ∈ ℝq

(where q = a1 + ma2 + la3 and m is the dimension of the control
vector and l is the dimension of the disturbance vector, and a1, a2, a3

are as defined after (25)) , K2 ∈ ℝq × q. Now, in order to implement
ER technique, past N time-step data {e^1(t j), ρ1(t j), I1(t j)} j = 1

N  is
stored in memory stack of size N where N ≥ q. In order to store
ρ1(t j), a matrix ϱ of size q × N is created and initialised with 0.
Similarly, in order to store e^1(t j) and I1(t j), two row vectors of size
N are initialised with 0. As the new data arrive at every iteration,
all the columns of ϱ are shifted one place to the right and the first
column is filled up by the new value of composite regressor vector
for that particular iteration. Similar procedure is applied to update
e^1(t j) and I1(t j). Unlike discontinuous-time update laws such as
[29], the update law presented in this paper does not need to wait
for prolonged period of time to collect N samples altogether in an
episode to generate the NN weight update. Further, it also does not
require fixed control policy to generate samples during the learning
phase.

It can be seen that the update law (36) utilises variable learning
rate (via the term e^1

k1) that is a function of instantaneous HJI error.
This has the advantage of scaling the learning rate and reducing the
size of the residual set for error in NN weights as will become clear
in the stability proof of Theorems 3 and 4. Additionally, the second
and fifth terms under summation correspond to the ER terms, these
terms can use past observations much more effectively. The
memory stack in ER can be updated with recent data as and when
they arrive. This leads to an efficient learning from past data.
Finally, inclusion of robust terms in the update law provides
robustness against variations in approximation errors and also
reduce the size of the residual set for error in NN weights.
 

Proposition 1: Let x ∈ ℝn and M ∈ ℝn × n be any square matrix,
then, λmin(

M + M
T

2 ) ∥ x ∥2 ≤ xTMx ≤ λmax(
M + M

T

2 ) ∥ x ∥2. Where,
λmin( . ) and λmax( . ) denote the minimum and maximum eigenvalues
of corresponding matrices, respectively.
 

Proof: The proof of this proposition is provided in the
Appendix (Section 8.1). □
 

Assumption 1: It is assumed that the control policy u is
admissible policy for the augmented system. This makes the
augmented system remain in the compact set Ω1 ⊂ ℝ2n. Such an
admissible policy is chosen for online training of critic, actor and
disturbance NNs.

 
Assumption 2: There exist bounds such that, ∥ W ∥ ≤ WM,

∥ ρ̄ ∥ ≤ ρ̄M, ms ≤ msM,
∥ Wc ∥ ≤ Wcm, ∥ Wa ∥ ≤ Wam, ∥ Wd ∥ ≤ Wdm, ∥ σc ∥ ≤ bc,
∥ σa ∥ ≤ ba, ∥ σd ∥ ≤ bd, ∥ εc ∥ ≤ bεc, ∥ εa ∥ ≤ bεa, ∥ εd ∥
≤ bεd

.

This is in line with Assumption 2 of [18]
 

Theorem 3: Let W^  be the estimated parameters for critic, actor
and disturbance. Under the Assumptions 1, 2, and that the
normalised regressor ρ̄1 ≜ ρ1/ 1 + ρ1

Tρ1 is persistently excited, the
update law mentioned in (36) ensures the error in NN weights W

~
 to

be UUB stable.
 

Proof: From (28) and (31), e^1 can be written in terms of
W
~

= W − W
^  as,

e^1 = εHJI − W
~ T

ρ1 (37)

From Assumption 2, it is clear that εHJI and ρ1 are bounded. Let the
Laypunov function candidate be, L = 1

2 W
~ T

η
−1

W
~

. Utilising (37) and
(36), derivative of Lyapunov function can be written as

L̇ = W
~ T

ε
ρ1g2

ms
2(N + 1)

+ ∑
j = 1

N
ρ1(t j)g2 j

ms
2(t j)(N + 1)

− W
~ T g2ρ̄1ρ̄1

T

(N + 1)

+ ∑
j = 1

N
g2 jρ̄1 jρ̄1 j

T

(N + 1) W
~

− 1
N + 1g2W

~ T
K1

T ρ1
T

ms
W +

g2

N + 1W
~ T

K1
T ρ1

T

ms
W
~

+
g2

N + 1W
~ T

K2W −
g2

N + 1W
~ T

K2W
~

− W
~ T

K1 ∑
j = 1

N
g2 jρ1(t j)

T

ms(N + 1)W

+W
~ T

K1 ∑
j = 1

N
g2 jρ1(t j)

T

ms(N + 1)W
~

(38)

where W
~̇

= − W
^̇ . Note that when K1 = 0, K2 = 0 in (38) then, in

order to ensure negative definiteness of L̇, the sum of outer product
matrices formed by present and past composite regressor vectors ρ1

and ρ1 j, respectively, should be positive definite, which happens
when at least q independent past composite regressor vectors (ρ1 j)
are present in the memory stack. This necessitate N ≥ q. This
condition is similar to persistence of excitation condition. Now, let

P(W
~

, ρ1) ≜ W
~ T

ρ̄1, W
~

, W
~ T ∑

j = 1

N

ρ̄1(t j)
T

M(g2) ≜

g2 −
g2K1

T

2 ∑g2 j

−
g2K1

2 g2K2 −K1

∑g2 j

2

∑g2 j −K1
T ∑g2 j

2 ∑g2 j

(39)

N(g2) ≜

g2ε − g2K1
T
W

g2K2W

ε ∑
j = 1

N

g2 j − K1 ∑
j = 1

N

g2 jW

(40)

In the subsequent analysis, P ≜ P(W
~

, ρ1), M ≜ M(g2) and
N ≜ N(g2). Now, ∥ W

~
∥ is assumed to be bounded as ∥ W

~
∥ ≤ B,

which follows from a similar assumption on the boundedness of
∥ W

~
∥ made in the proof of Theorem 3 of [18]. Using this

assumption along with Assumption 2 in the definition of e^1 in (37)
implies that g2 = e^1

k1 + l [defined after (36)] is also bounded.
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Now, using (39) and (40) and Proposition 1, (38) can be written
in compact form as

L̇ = 1
N + 1 −PT

MP + PN ≤
−λmin(M

′) ∥ P ∥2 + bN ∥ P ∥
N + 1

(41)

where M
′ ≜ M + M

T

2 , bN is the maximum value of norm of N, i.e.
∥ N ∥ ≤ bN = max ( ∥ N ∥ ). For Lyapunov derivative to be
negative definite, the following inequality should hold:

∥ P ∥ >
bN

λmin(M
′)

(42)

From the definition of P as mentioned in (39)

∥ P ∥ ≤ ∥ W
~

∥ 1 + ∥ ρ̄1M ∥2 + ∑
j = 1

N

ρ̄1M(t j)
2 (43)

where ρ1M is the maximum value of ρ1. The right hand side of (43)
will be represented as

S(ρ1M) ≜ 1 + ∥ ρ̄1M ∥2 + ∑
j = 1

N

ρ̄1M(t j)
2 (44)

Therefore, from (42) and (43)

∥ W
~

∥ >
bN

S(ρ1M)λmin(M
′)

(45)

This concludes the UUB stability proof for (36). □
 

Remark 1: From Theorem 3, it is clear that the residual set of
∥ W

~
∥ is controlled by the term λmin(M

′). The gains K1 and K2 in
(36) can be appropriately selected such that λmin(M

′) becomes a
large value hence shrinking the UUB bound of ∥ W

~
∥.

Now, assuming that ui and di are in sufficiently small
neighbourhood of the optimal policies, the HJI error can be
modified in the same way as mentioned in [18] (refer to Section 4.2
in [18]). It is assumed that there exist NNs that can approximate the
optimal value, action and disturbance policies as

V
∗ = Wc

T
σc + εc; u

∗ = Wa
T
σa + εa; d

∗ = Wd
T
σd + εd (46)

Under these assumptions, using (46) in (26), the HJI approximation
error is obtained as

εHJI = Wc
T[σc(t) − eγTσ(t − T)] + ∫

t − T

t

e−γ(τ − t)(zTQ1z

+2σa
TWaRu − σa

TWaRWa
T
σa + α

2
σd

TWdRWd
T
σd

−2α
2
σd

TWdd)dτ

(47)

In terms of approximation errors, the HJI error εHJI can
equivalently be given as

εHJI = εc(t) − eγTεc(t − T) − ∫
t − T

t

e−γ(τ − t) 2εa
TRu

−2εa
TRσa − εa

TRεa + α
2
εd

TRεd − 2α
2
εd

Td dτ

(48)

Now, since, ideal NN weights are not known, their estimates will
be utilised to express optimal value function and optimal policies

V
^ ∗

= W
^

cσc, u^
∗ = W

^

aσa, d
^∗

= W
^

dσd (49)

Based on these estimated weights, following (47) the approximate
HJI error can be re-stated as

e^ = W
^

c

T
[σc(t) − eγTσ(t − T)] + ∫

t − T

t

e−γ(τ − t)(zTQ1z

+2σa
TW

^

aRu − σa
TW

^

aRW
^

a

T
σa + α

2
σd

TW
^

dRW
^

d

T
σd

−2α
2
σd

TW
^

dd)dτ

(50)

The approximate HJI error, thus, can be expressed in a compact
form as

e^(t) = W
^ T

ρ + v(W
^

a)
TA2v(W

^

a) − v(W
^

d)Tℬ2v(W
^

d) + I2 (51)

where

Δσc ≜ σc(t) − eγTσ(t − T); A1 ≜ ∫
t − T

t

e−γ(τ − t)(Ru ⊗ σa)dτ

A2 ≜ ∫
t − T

t

e−γ(τ − t)(R ⊗ σaσa
T)dτ; ℬ1 ≜ ∫

t − T

t

e−γ(τ − t)(α2
d ⊗ σd)dτ

ℬ2 ≜ ∫
t − T

t

e−γ(τ − t)(α2 ⊗ σdσd
T)dτ; I2 ≜ ∫

t − T

t

e−γ(τ − t)(zTQ1z)dτ

(52)

W
^

≜

W
^

c

v(W
^

a)

v(W
^

d)

, ρ ≜

Δσc

2A1 − 2A2v(W
^

a)

−2ℬ1 + 2ℬ2v(W
^

d)

(53)

Similar to (36), continuous-time update law for this case can be
written as

W
^̇

= − η

N + 1
ρ

ms
2 g1e

^ + ∑
j = 1

N
ρj

ms j
2 g1 je

^
j − K1g1

ρT

ms
W

^

+g1K2W
^

− K1 ∑
j = 1

N
g1 jρ

T(t j)
ms j

W
^

(54)

where

g1 = e^
k1 + l, g1 j = e^ j

k1 + l, ( j = 1, 2, …, N) (55)

and l is a small positive constant. It could be observed that certain
terms appearing in (54) are defined differently from (36). For
instance, (e^ and ρ) appearing in (54) are given by (51) and (53),
respectively.

Note that the update law presented above (54) is different from
least square-based update law mentioned in [29] and continuous-
time gradient descent-based update laws mentioned in [18, 30].
The update law presented in this paper consists of five terms. The
first term is directly responsible for reducing the HJI error, while
the second term is a representation of its past observations over the
memory stack. Also, unlike the constant learning rate in [18, 30], in
this paper the learning rate in (54) is time varying and considered
as a function of the HJI error such that it can accelerate the learning
when the HJI error is large and reduce the learning speed when the
HJI error becomes small. The next three terms are responsible for
providing robustness in achieving small residual set. Moreover, the
second and fifth terms correspond to the ER of the first and third
terms, respectively. Significance of each term in the update law
(54) in improving the performance of the tracking controller would
be evident in the proof of Theorem 4 and its subsequent discussion.

4.2 Stability proof of the update law

 
Theorem 4: Let W^  be the estimated parameters for critic, actor

and disturbance. Under the Assumptions 1, 2, and that the
normalised regressor ρ̄ ≜ ρ/ 1 + ρTρ is persistently excited, the
update law mentioned in (54) ensures the error in NN weights W

~
 to

be UUB stable.
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Proof: Let the Lyapunov function candidate be:

L = (1/2)W
~ T

η
−1

W
~

. In order to prove stability of the update law, the
HJI error needs to be expressed as a function of W

~
. In order to

accomplish this, using (47) and (51)

e^ = εHJI − W
~ T

ρ − v(W
~

a)
TA2v(W

~
a) + v(W

~
d)Tℬ2v(W

~
d) (56)

In subsequent discussion, ε would be equivalently used in place
of εHJI. Differentiating the Lyapunov function

L̇ = W
~ T

η
−1

W
~̇

=
g1

(N + 1)ms
2 (W

~ T
ρε − W

~ T
ρW

~ T
ρ

−W
~ T

ρv(W
~

a)
TA2v(W

~
a) + W

~ T
ρv(W

~
d)Tℬ2v(W

~
d))

+ 1
N + 1 W

~
ε ∑

j = 1

N
ρ(t j)g1 j

ms
2(t j)

− W
~ T ∑

j = 1

N
ρ(t j)ρ(t j)

T
g1 j

ms
2(t j)

W
~

−W
~ T ∑

j = 1

N
g1 jρ(t j)

T

ms
2(t j)

v(W
~

a)
TA2(t j)v(W

~
a)

+W
~ T ∑

j = 1

N
ρ(t j)g1 j

ms
2(t j)

(v(W
~

d)Tℬ2(t j)v(W
~

d))

− 1
N + 1g1W

~ T
K1

T ρT

ms
W +

g1

N + 1W
~ T

K1
T ρT

ms
W
~

+
g1

N + 1W
~ T

K2W −
g1

N + 1W
~ T

K2W
~

−W
~ T

K1 ∑
j = 1

N
g1 jρ(t j)

T

ms(N + 1)W + W
~ T

K1 ∑
j = 1

N
g1 jρ(t j)

T

ms(N + 1)W
~

(57)

Now, in order to find a bound over L̇, it is required to find
bound over terms containing A2 and ℬ2 [refer to (52)]. Recall from
Assumption 2 that ∥ σa ∥ ≤ ba and ∥ σd ∥ ≤ bd. Utilising
properties of matrices (maximum and minimum eigenvalue) and
persistent excitation (PE) condition (λ1I ≤ ∫t − T

t
ρρTdτ ≤ λ2I, where

λ1, λ2 are positive constants) on regressor, the bounds over terms
containing A2 and ℬ2 can be derived as,

v(W
~

a)
T(R ⊗ σaσa

T)v(W
~

a) ≤ q1 ∥ v(W
~

a) ∥2 ≤ q1 ∥ W
~

∥2

v(W
~

d)T(α2 ⊗ σdσd
T)v(W

~
d) ≤ q2 ∥ v(W

~
d) ∥2 ≤ q2 ∥ W

~
∥2

(58)

where q1 and q2 are the maximum eigenvalues of the matrices given
by (R ⊗ σaσa

T) and (α2 ⊗ σdσd
T), respectively. Further, the bound

over terms, v(W
~

a)
TA2v(W

~
a) and v(W

~
d)Tℬ2v(W

~
d) can be derived

from (52), (53) and (58) as

v(W
~

a)
T A2v(W

~
a) ≤ q1∫

t − T

t

e−γ(τ − t) ∥ W
~

∥2 dτ

≤
q1

γβ1
(eγT − 1) ∥ W

~ T
ρ̄ ∥2 =

q1

γβ1
(eγT − 1)W

~ T
ρ̄ρ̄TW

~
(59)

v(W
~

d)T ℬ2v(W
~

d) ≤ q2∫
t − T

t

e−γ(τ − t) ∥ W
~

∥2 dτ

≤
q2

γβ1
(eγT − 1) ∥ W

~ T
ρ̄ ∥̄

2
=

q2

γβ1
(eγT − 1)W

~ T
ρ̄ρ̄TW

~
(60)

where β1 = ∥ ρ ∥2. Using the same PE condition on A2, ℬ2 in ρ,
from (53) there exists a constant L1 such that

W
~ T ρ

ms
2 ≤ L1 ∥ W

~
∥ (61)

Combining (59), (60) and (61)

W
~ T ρ

ms
2 v(W

~
a)

TA2v(W
~

a) ≤ L1

q1

γβ1
(eγT − 1) ∥ W

~
∥ W

~ T
ρ̄ρ̄TW

~

W
~ T ρ

ms
2 v(W

~
d)Tℬ2v(W

~
d) ≤ L1

q2

γβ1
(eγT − 1) ∥ W

~
∥ W

~ T
ρ̄ρ̄TW

~
(62)

where ρ̄ = ρ/ms and the reinforcement interval T can be selected
such that

L1

q1

γβ1
(eγT − 1) ∥ W

~
∥ ≤ εTa; L1

q2

γβ2
(eγT − 1) ∥ W

~
∥ ≤ εTd (63)

where, εTa and εTd are two small positive scalar constants.
Therefore, using (63) in (62)

W
~ T ρ

ms
2 v(W

~
a)

TA2v(W
~

a) ≤ εTaW
~ T

ρ̄ρ̄TW
~

W
~ T ρ

ms
2 v(W

~
d)Tℬ2v(W

~
d) ≤ εTdW

~ T
ρ̄ρ̄TW

~
(64)

Similarly, their ER versions can be represented as

W
~ T ∑

j = 1

N
g1 jρ(t j)
ms

2(t j)
v(W

~
a)

TA2(t j)v(W
~

a) ≤ εTsaW
~ T ∑

j = 1

N

ρ̄ jρ̄ j
TW

~

W
~ T ∑

j = 1

N
g1 jρ(t j)
ms

2(t j)
v(W

~
a)

Tℬ2(t j)v(W
~

a) ≤ εTsdW
~ T ∑

j = 1

N

ρ̄ jρ̄ j
TW

~
(65)

Now, using (64) and (65), (57) can be rewritten as

L̇ ≤ W
~ T

ε
ρg1

ms
2(N + 1)

+ ∑
j = 1

N
ρ(t j)g1(t j)

ms
2(t j)(N + 1)

−W
~ T g1ρ̄ρ̄T

(N + 1) + ∑
j = 1

N
g1 jρ̄ jρ̄ j

T

(N + 1) W
~

+W
~ T 1

N + 1εTaρ̄ρ̄T + 1
N + 1εTsa ∑

j = 1

N

ρ̄ jρ̄ j
T W

~

+W
~ T 1

N + 1εTdρ̄ρ̄T + 1
N + 1εTsd ∑

j = 1

N

ρ̄ jρ̄ j
T W

~

− 1
N + 1g1W

~ T
K1

T ρT

ms
W +

g1

N + 1W
~ T

K1
T ρT

ms
W
~

+
g1

N + 1W
~ T

K2W −
g1

N + 1W
~ T

K2W
~

−W
~ T

K1 ∑
j = 1

N
g1 jρ(t j)

T

ms(N + 1)W + W
~ T

K1 ∑
j = 1

N
g1 jρ(t j)

T

ms(N + 1)W
~

(66)

After further simplification, (66) can be rendered into the
following inequality:

L̇ ≤
−PT

MP + PTN − PT
MεTa

P + PT
MεTd

P
N + 1

(67)

where P in (67) is P(W
~

, ρ) instead of P(W
~

, ρ1), M is M(g1) and N
is N(g1) defined in Theorem 3 and

MεTa
≜

εTa G1
T −c1

−G1 0q × q L1

c1 −L1
T

εTsa

; MεTd
≜

εTd −G2
T

c2

G2 0q × q −L2

−c2 L2
T

εTsd

(68)

where K1 ∈ ℝq and K2 ∈ ℝq × q and q being the dimension of the
composite regressor vector ρ (see (53)). Also, G1, G2 ∈ ℝq,
c1, c2 ∈ ℝ, L1, L2 ∈ ℝq are constants used in (68).

Using Proposition 1, (67) can be simplified into
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L̇ ≤ ( − λmin(M
′) ∥ P ∥2 + bN ∥ P ∥ − λmin(MεTa

′ ) ∥ P ∥2

+λmax(MεTd

′ ) ∥ P ∥2 )/(N + 1)
(69)

Note that in (69), following substitutions were made:

MεTa

′ ≜
MεTa

+ MεTa

T

2 , MεTd

′ ≜
MεTd

+ MεTd

T

2
(70)

From (69), in order to ensure negative definiteness of L̇, the
following inequality should hold:

∥ P ∥ >
bN

λmin(M
′) + λmin(MεTa

′ ) − λmax(MεTd

′ )

⟹ L̇ < 0

(71)

From (71), (43) and (44) the UUB set for error in NN weights is
obtained as,

∥ W
~

∥ >
bN

S(ρM)(λmin(M
′) + λmin(MεTa

′ ) − λmax(MεTd

′ )) (72)

where ρM being the maximum value of ρ and S ≜ S(ρM). Thus,
from (71), (43) and (72), under the NN parameter update law (54),
the error in NN weights are guaranteed to decrease outside the
residual ball given as

ΩW
~ = W

~
: ∥ W

~
∥ ≤

bN

S(λmin(M
′) + λmin(MεTa

′ ) − λmax(MεTd

′ )) (73)

This concludes the stability proof of the continuous-time update
mechanism.□

4.3 Discussion on the presented update law

 
Remark 2: Note that the update law presented in (54) is

different from the gradient descent-based update laws of [18, 30]
and least square-based one presented in [29] in several ways. First
of all, being a continuous-time update law based on gradient
descent, it is more sensitive to variations in plant dynamics than
least square-based update mechanism in [29]. Secondly, unlike
[18], it utilises H∞ framework for disturbance rejection as well.
While [30] utilised H∞ framework for their tracking controller,
their gradient descent had only constant learning rate and lacked
ER and robust terms to further shrink the size of the residual set.
The prime novelties of the update law (54) are the use of variable
gain gradient descent and incorporation of robust terms, i.e. the last
three terms in (54). These help in improving the performance of the
final learnt control policies to track a given reference trajectory.
 

Remark 3: From Theorem 4 it is evident that ∥ W
~

∥ decreases
in the stable region, i.e. where L̇ is negative definite. This results in
estimated NN weights, i.e. W^  getting closer to ideal NN weights W,
which in turn implies that the HJI error (55) is decreasing in the
stable region. Now, note that the numerator in the right-hand side
(RHS) of (73)), i.e. bN is a function of g1 = e^

k1 and g1 j = e^(t j)
k1

[see definition of bN after (41)], which implies that the size of the
ball (73) shrinks due to decreasing g1 and g1 j. Thus, bN encapsulates
the effect of variable gain gradient descent in off-policy parameter
update law. Further, the variable gain in gradient descent, i.e. e^

k1

and e^ j
k1 , j = 1, 2, …, N scale the learning rate based on

instantaneous and past values of HJI error, respectively, where the
constant k1 ≥ 0 governs the amount of scaling in the learning of
gradient descent. These terms increase the learning rate when the
HJI error is large and slow it down as the HJI error becomes
smaller in magnitude. So, the actual learning rate becomes,
l = η e^

k1. Note that if the e^ ≤ 1, then l ≤ η for all k1 ≥ 0.

However, if e^ ≥ 1, then l ≥ η for all k1 ≥ 0. Furthermore, the
gains K1 and K2 in the robust term of the adaptation law (54) can be
selected, so as to have a large λmin((M + M

T)/2) [refer to (39)],
which in turn leads to a smaller ball [refer to (73)] and hence a
tighter residual set for W

~
. With these novel modifications, the

variable gain gradient descent-based off-policy update law
presented in this paper yields a much tighter residual set for W

~
 and

hence improved tracking performance.

5 Simulation results
The entire control scheme can be represented as shown in Fig. 1. 
There are two distinct phases in off-policy IRL control scheme, i.e.
(i) exploration phase and (ii) execution phase. All the signals
involved in exploration phase are marked with bold lines in Fig. 1
(except the reference signal, which is required in both exploration
and execution phase), whereas the dotted lines indicate the
execution of the learnt policies. At first, an exploratory control
policy is fired into the system, and the system is allowed to explore
the state space. During the exploration process, the improved
policies are not executed to the system, and hence, there is a
decoupling between control and disturbance policy block and
system block in Fig. 1. The update law tries to minimise the
instantaneous HJI error which is dependent on actor, critic and
disturbance NNs and reinforcement integral (I1 and I2 from (29)
and (52), respectively). The regressor vector for actor, critic and
disturbance NNs needs the information of augmented state vector z
as can be seen in Fig. 1. When critic, actor and disturbance NN
weights converge, the exploration is stopped, and learnt policies
(u^(z) = Wa

∗
σa and d

^
(z) = Wd

∗
σd) are executed to the system as

shown in Fig. 1 (where Wa
∗ and Wd

∗ denote the final converged
weights for actor and disturbance NNs, while σa and σd represent
regressor vectors for actor and disturbance NNs, respectively).
Therefore, the dynamics of the closed loop system when final
learnt policies are executed is given by,
ẋ = f (x) + g(x)u^ + k(x)(d + d

^
).

In order to evaluate the performance of update law proposed in
this paper, two applications are considered for simulation studies in
this section.

• Non-linear system [18] in Section 5.1
• Linearised F16 Model [29] in Section 5.2

5.1 Non-linear system

Dynamics of a non-linear system is considered from [18] and is
described as

ẋ1 = − sinx1 + x2

ẋ2 = − x1
3 + u + d

y = x1

(74)

where, disturbance affecting the system is given as d = .1e−.1tsin.1t.
The reference system is considered as [18]

ẋd =
0 0.3

−0.3 0
0.1sin(0.3t)
0.1sin(0.3t)

(75)

Fig. 1  Block diagram of the control system
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The penalty on states as appearing in (13), i.e. Q1 is chosen to be

Q1 =
diag(217, 0) 0

0 0
(76)

Here, xd1 is the desired trajectory for the output y = x1. The inital
state of the system is (.5; .5). The regressor vectors for critic, actor
and disturbance NNs are chosen as

σc = z1
2, z2

2, z3
2, z4

2, z1z2, z1z3, z1z4, z2z3, z2z4, z3z4

σa = z1, z2, z3, z4, z1z2
2

σd = z1
2, z2

2, z1z3, z1z4, z1z2

(77)

where z = (eT, xd
T)T ∈ ℝ4 and zi is individual component of z. The

exploratory control signal considered has the form,
u(t) = 2e−0.009t sin(11.9t)2cos(19.5t) + sin(2.2t)2cos(5.8t) + sin
(1.2t)2cos(9.5t) + sin(2.4t)5

similar to the one mentioned in [22]. The constant part of the

learning rate for both the cases is selected to be, η = 2998, the size
of memory stack, i.e. N for ER technique is chosen to be 20. The
level of attenuation α is choosen to be 0.01. The value of
reinforcement interval should be selected as small as possible in
order to preserve the relationship between Bellman equation and
IRL equation (refer to Section 3.1). Here, the reinforcement
interval T is selected as 0.001 s. All the NN weights are initialised
to 0. Also, note that in order to yield tighter residual set, λmin(M′) in
the denominator of RHS of (73) needs to be large, which could be
made possible by selecting the gains in robust terms K1 and K2 with
high norms. However, it should also be noted that since norms of
both K1 and K2 appear in numerator of RHS of (73) too. Hence,
gains K1 and K2 cannot be selected with very high norms. For ease
in the simulation study, K1 and K2 are both selected as 0q and (0q × q)
(for both the cases), where q is the dimension of composite
regressor vector ρ [refer to (53)], i.e. q = 19.

5.1.1 Validation of continuous-time update law presented in
[18] with disturbance terms: It could be noted that the update law
presented in this paper [see (36) or (54)] without the variable gain
terms (i.e. k1 = 0) and robust terms (i.e. K1 = 0, K2 = 0) is similar
to the one presented in [18] (except the presence of disturbance
terms via the composite regressor vector ρ or ρ1). Simulation
results for the update law (54) without variable gain gradient
descent and robust terms on the non-linear system considered
above (74) are shown in Figs. 2 and 3. The NN weights
corresponding to critic, actor and disturbance are shown to
converge in finite amount of time in Figs. 2a–c, respectively. Fig.
2d shows the HJI error during the learning phase when constant
learning-based update law was used. The final learnt control policy
due to the converged weights of critic, actor and disturbance NNs
is depicted in Fig. 3b. The stopping condition for the NN weights
for all the cases was set as ∥ Wk + 1 − Wk ∥ ≤ 10−5. The final learnt
policy is able to make the output of the system track the desired
reference trajectory as can be seen in Fig. 3a. However, It can be
observed that there still exists a lot of transient oscillations and
small steady-state error in tracking performance (see Fig. 3a).

5.1.2 Validation of off-policy IRL algorithm presented in this
paper: Variable gain gradient descent-based update law (54) is
validated on the non-linear system (74) in Figs. 4 and 5. Here, the
exponent in variable gain term, i.e. (k1) is chosen to be 0.145. All
other parameters are kept same. NN weights of critic, actor and
disturbance NNs converge very close to their ideal values in a

Fig. 2  Online training of NN weights and HJI error
(a) Critic NN weights, (b) Actor NN weight, (c) Disturbance NN weights, (d) HJI
error during the learning phase

 

Fig. 3  State and control profile with constant learning-based gradient
descent for non-linear system
(a) State profile, (b) Control profile
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finite amount of time as can be seen in Figs. 4a–c, respectively.
The HJI error profile during the learning phase is depicted in Fig.
4d and it can be seen that e^ ≤ 1 during the learning phase. The
learnt control policy arising out of the converged NN weight is
depicted in Fig. 5b. It is able to track the reference trajectory with
high accuracy in finite amount of time as evident from Fig. 5a.

Note that the oscillations in learnt control policies (see Fig. 3b)
are more and persist for longer duration in the case when constant
learning rate was used as compared to the case when variable gain
gradient descent (Fig. 5b) is utilised. This in turn leads to an
oscillatory tracking performance (Fig. 3a) in the transient phase
with steady-state error for the case with constant learning speed.
On the other hand, the final learnt policies arising out of variable
gain gradient descent-based update law leads to very less
oscillations and almost no steady-state error (Fig. 5a). All this is
possible because, the variable gain gradient descent-based update
law leads to a much tighter residual set for W

~
. This implies that the

control policies resulting out of variable gain gradient descent-

based update law are closer to the ideal optimal controller than the
policies due to just the constant learning rate gradient descent-
based update laws. It could also be noted from Figs. 2d and 4d that
the HJI error is within the [ − 1, 1], and since variable gain gradient
descent uses a learning rate that is function of instantaneous HJI
error, for our problem set, the presence of term g1 = e^

k1 actually
reduces the learning rate (refer to the discussion in Section 4.3).
This is also the reason why in this case, the convergence time of
Fig. 4a is slightly longer than Fig. 2a. However, when HJB or HJI
error is large ( e^ > 1), the variable gain gradient descent-based
update law leads to faster convergence of NN weights as can be
observed in [36].

5.2 Linearised F16 model

The linearised F16 model is considered from [29] with dynamics as
follows:

ẋ = Ax + Bu + Dd (78)

where

A =
−1.01887 .90506 −.00215

.82225 −1.07741 −.17555
0 0 −1

, B =
0
0
5

, D =
1
0
0
(79)

The state vector x = [α, q, δe]
T, where α is angle of attack (AoA), q

is the pitch rate and δe is the elevator deflection. The control input
is the voltage signal to the elevators and disturbance is caused by
the wind gust to the AoA. It is required to track constant reference
AoA which is given by

αd = 2 ∀t < 30
3 ∀t ≥ 30 (80)

For this, the augmented dynamics of z = [eT, xd
T]T is given as

ż = A1z + B1u + D1d (81)

where

A1 =
A A

03 × 3 03 × 3

, B1 =
B

03 × 1

, D1 =
D

03 × 1
(82)

Fig. 4  Online training of NN weights and HJI error under variable gain-
based gradient descent for non-linear system
(a) Critic NN weights, (b) Actor NN weight, (c) Disturbance NN weights, (d) HJI
error during the learning phase

 

Fig. 5  State and control profile with variable gain-based gradient descent
for non-linear system
(a) State profile, (b) Control profile
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Note that since in this example the control system is required to
track constant AoA (set-point tracking), we have ẋd = 0. The
problem set-up in this section is considered in line with that in [29],
where the same problem was considered using least-square-based
update law. The disturbance is assumed to have the form,
d = .1e−.1tsin(.1t). Now, a comparison in performance between H∞-
tracking controller developed using off-policy IRL algorithm
presented in this paper and that of [29] will be made in Section
5.2.1. Subsequently, the off-policy IRL algorithm presented in this
paper will be compared against the traditional GARE approach in
Section 5.2.2.

5.2.1 Comparison with RLS-based update law of [29]: In this
section, model-free off-policy IRL-based controller will be
validated on F-16 model. The parameters required for IRL are,
reinforcement interval T = .001 s and
R = 1, Q1 = diag([10, 0, 0, 0, 0, 0]). Discount factor γ = 0.33 was
chosen for simulation. In the simulation, the desired value of
output was αd = 2 for first 30 s and then was subsequently changed
to αd = 3 thereafter. The constant part of the learning rate is
selected as η = 209.1 with variable gain exponent k1 in e^

k1 as
k1 = 0.2. The regressor vectors for critic, actor and disturbance
NNs were chosen to be

σc =
z1z2, z1z3, z1z4, z1z5, z1z6, z2z3, z2z4, z2z5, z2z6, . . .

z3z4, z3z5, z3z6, z4z5, z4z6, z5z6

T

σa = z1, z2, z3, z4, z5, z6
T

σd = z1, z2, z3, z4, z5, z6, z1z2, z1z3, z1z4, z1z5, z1z6
T

(83)

The exploratory control policy used during the learning phase is
given by
u(t) = 2e( − .009t)(sin(t)2cos(t) + sin(3t)4cos(1.5t) + sin(9t)2cos(8.4t)
+ sin(3.9t)cos(2.9t)sin(19t) + sin(11.9t)cos(5.3t)2 + sin(12t)cos
(2.5t)4 + sin(15t)cos(1.62t)2)

.

Note from Figs. 6a–c that the NN weights converge close to their
ideal values in finite amount of time. The disturbance attenuation
factor was chosen to be α = 10, i.e.. same as in [29]. Unlike [29],
the continuous-time update law presented in this paper can produce
updates for NN weights instantly in each sampling interval without
having to wait for collecting N different samples in each phase. The
final learnt control policy developed using off-policy IRL
algorithm presented in this paper is marked VNN in Fig. 7a and the
AoA profile resulting out of this learnt policy is marked αNN in Fig.
7b. Observing αNN in Fig. 7b and Fig. 4 in [29], one can conclude
that there are no peak overshoots in αNN. Finally, all the states of
linearised F-16 aircraft pitch dynamics model under presented
control scheme are plotted in Fig. 8a and the approximated cost
function is shown in Fig. 8b. 

5.2.2 Comparison with game algebraic riccati equation
(GARE): It could be noted that HJI equation for linear time
invariant systems can be represented as GARE with optimal
policies for control and disturbance as

u
∗ = − R

−1
B1

T
Pz; d

∗ = 1
α

2 D1
T
Pz (84)

where P is a symmetric matrix that satisfies the GARE, i.e.

Q2
T + A2

T
P + PA2 − γP − PB1R

−1
B1

T
P + 1

α
2 PD1D1

T
P = 0 (85)

where C = [1, 0, 0, 0, 0, 0]T and matrix A2 = [A, A; 03 × 6] ∈ ℝ6 × 6,
Q2 = 20CC

T. Discount and attenuation are chosen as γ = 0.33 and
α = 10, respectively. It can be converted into algebraic Riccati
equation (ARE) as [29]

Q2
T +(A2 − 1

2γI)T
P + P(A2 − 1

2γI)

−P(B1R
−1

B1
T − 1

α
2 D1D1

T)P = 0
(86)

Fig. 6  Online training of NN weights for F16 model
(a) Critic NN weights, (b) Actor NN weight, (c) Disturbance NN weights

 

Fig. 7  Optimal control profile and AoA profile of linearised F-16 aircraft
pitch dynamics model under presented off-policy IRL algorithm and GARE
(a) Optimal control policy for F16 model, (b) AoA profile for F16 model
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The ARE in (86) is solved using Matlab's ‘care’ routine and the
final gain P is given by

P =

8.998 3.594 −0.283 −5.030 3.594 −0.283
3.594 2.197 −0.215 −3.289 2.197 −0.215

−0.283 −0.215 0.026 0.359 −0.215 0.026
−5.030 −3.289 0.359 5.529 −3.289 0.359
3.594 2.197 −0.215 −3.289 2.197 −0.215

−0.283 −0.215 0.026 0.359 −0.215 0.026
(87)

Unlike the algorithm presented in this paper, solving GARE
requires knowledge of system dynamics. The plots marked VNN

and Vric in Fig. 7a show the voltage profile under model-free off-

policy IRL developed in this paper and GARE solution,
respectively. The tracking performance of the control effort from
both these algorithms is depicted in Fig. 7b, in which αdes, αNN and
αric are desired AoA, AoA under presented off-policy IRL and
AoA under GARE solution, respectively. All the states of
linearised F-16 aircraft pitch dynamics model under GARE are
shown in Fig. 9a and the corresponding cost function is plotted in
Fig. 9b. A small overshoot can be seen in AoA tracking under
GARE solution, when compared against algorithm presented in this
paper. A similar overshoot could also be observed in tracking
performance presented in [29] (refer to Fig. 4 of [29]) for the same
problem set-up. Compared to these results, the AoA tracking under
off-policy IRL presented in this paper is devoid of any significant
peak overshoot. In addition, the approximated cost in the case of
presented update law (as shown in Fig. 8b) converges to a value of
0.9 which is very close to the value (= 0.886) the GARE solution
cost converges to in Fig. 9b.

It could be noted that the variable gain gradient descent-based
continuous-time update law presented in this paper yields better
tracking performance on non-linear system when compared against
[18] in Section 5.1. As compared to the RLS-based update law of
[29], the update law presented in this paper is more sensitive to
parametric variations during learning phase and does not produce
any peak overshoots when final learnt policies are executed as
observed in Section 5.2.1. Finally, it is also observed that in the
case of linear system, the tracking performance of presented
control scheme is very close to that of the GARE control solution
in steady state.

6 Conclusion
A continuous-time NN parameter update law driven by variable
gain gradient descent, ER technique and robust terms for model-
free H∞ OTCP of continuous-time non-linear system has been
presented in this paper. IRL has been leveraged in policy iteration
framework in this paper. Incorporation of IRL obviates the
requirement of drift dynamics in policy evaluation stage, while
usage of actor and disturbance NNs to approximate control and
disturbance policies obviates the requirement of control coupling
dynamics and disturbance dynamics in policy improvement stage.
Variable gain gradient descent increases the learning rate when HJI
error is large and it dampens the learning rate when HJI error
becomes smaller. It also results in smaller residual set over which
the errors in NN weights converge to. Besides this, the ER term
and robust terms in the update law help in further shrinking the size
of the residual set on which the error in NN weights finally
converge to. This results in an improved learnt control policy,
sufficiently close to the ideal optimal controller, leading to highly
accurate tracking performance.
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8 Appendix

8.1 Proof of Proposition 1

 
Proof:

xTMx = xT M + M
T

2 + M − M
T

2 x (88)

RHS of above equation can be rewritten as

xTMx = xT M + M
T

2 x + .5xTMx − .5xTM
T
x

= xT M + M
T

2 x + .5xTMx − .5(xTMx)T
(89)

Therefore

xTMx = xT M + M
T

2 x (90)

Using (90)

λmin
M + M

T

2 ∥ x ∥2 ≤ xTMx ≤ λmax
M + M

T

2 ∥ x ∥2 (91)

□

8.2 Proof of Theorem 1

 
Proof: In first part of the proof, the admissibility of the

improved policies will be proved, thereafter it will be shown that
Vi ≥ Vi + 1 ≥ V

∗. Observe that Vi ≥ 0 (due to the definition of V )
and Vi(z(t)) = 0 iff, z(t) = 0. Further, ∇V(z(t)) z = 0 = 0, this leads
to ui + 1 = 0 and di + 1 = 0 when z = 0. Now, rate of variation of Vi

along the trajectory generated by improved policies (ui + 1, di + 1) is

V̇ i(z, ui + 1, di + 1) = ∇Vi
T(F + Gui + 1 + Kdi + 1) (92)

Since, Vi, ui and di satisfy (20), ∇Vi
T
F can be written as

∇Vi
T
F = − ∇Vi

T(Gui + Kdi) + γVi − zTQ1z − ui
TRui + α

2
di

T
di(93)

Using (93) in (92), with Q̄(z) ≜ zTQ1z = eTQe.

V̇ i(z, ui + 1, di + 1) = −∇Vi
T(Gui + Kdi) + γVi − zTQ1z − ui

TRui

+α
2
di

T
di + ∇Vi

T(Gui + 1 + Kdi + 1)

= γVi − Q̄(z) − [ui
TRui + 2ui + 1

T R(ui + 1 − ui)]
≜ a1

+[α2
di

T
di + 2α

2
di + 1

T (di + 1 − di)]
≜ a2

(94)

Shifting γVi to the LHS of (94) and multiplying both sides by e−γt

and using (21)

de−γtVi

dt
= e−γt −Q̄(z) − ∑

k = 1

m

Rk ui + 1, k − ui, k
2 + ∑

k = 1

m

Rkui + 1, k
2

a1

+e−γtα
2 ∑

k = 1

m

di + 1, k − di, k
2 + ∑

k = 1

m

di + 1, k
2

a2

(95)

where (i,k) and (i + 1, k) represent kth component of ith and i + 1th
policies. Now, if γ = 0 and α = 0, then V̇ i(z, ui + 1, di + 1) < 0 along
the augmented system trajectories generated by improved policies
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(ui + 1 and di + 1). This proves that, improved policies lead to
asymptotic stability of e when γ = 0, α = 0 and hence are
admissible. However, when γ ≠ 0 and α ≠ 0, then from (94),
V̇ i(z, ui + 1, di + 1) < 0 can be analysed in two cases, Case (i): When
γVi ≤ a1 − a2. In this case, V̇ i(z, ui + 1, di + 1) < 0 for all the values of e
and hence e is said to be asymptotically stable. Case (ii): When
γVi ≥ a1 − a2. In this case, V̇ i(z, ui + 1, di + 1) < 0 if
∥ e ∥ > (γVi − a1 + a2)/λmin(Q). This inequality is the UUB set for
state error. For the second part of the proof, derivative of Vi and
Vi + 1 needs to be taken along the augmented system trajectory
produced by ui + 1, di + 1, i.e.

Vi + 1 − Vi = − ∫
t

∞ d(Vi + 1 − Vi)
dx

T

(F + Gui + 1 + Kdi + 1)dτ (96)

Using (20) for ∇Vi + 1
T
F and ∇Vi

T
F along with (21) in (96),

Vi + 1 − Vi =

−∫
t

∞

2ui + 1
T R(ui + 1 − ui) + ui

TRui − ui + 1
T Rui + 1 +

2α
2
di + 1

T (di − di + 1) + α
2
di + 1

T
di + 1 − α

2
di

T
di − γ(Vi − Vi + 1) dτ

(97)

It can be further simplified as

Vi + 1 − Vi = −∫
t

∞

∑
k = 1

m

Rk(ui + 1, k − ui, k)
2

≜ a3

− α
2(di + 1, k − di, k)

2

≜ a4

≜ b1

−γ(Vi − Vi + 1) dτ

(98)

Now, let ℱ(t) ≜ Vi + 1(z(t)) − Vi(z(t)), therefore above equation can
be written as

ℱ(t) = − γ∫
t

∞

ℱ(τ)dτ − ∫
t

∞

b1dτ (99)

Differentiating (99) using Leibniz rule, one obtains
ℱ̇(t) − γℱ(t) = b1, now supposing b1 > 0 and multiplying both
sides of this equation with e−γt

de−γtℱ(t)
dt

= e−γtb1 ⇒ de−γtℱ(t)
dt

> 0 (100)

Integrating both sides of the final inequality of (100) over [t, ∞],
we obtain, ℱ(t)e−γt < 0 or ℱ(t) < 0, or, Vi + 1 < Vi. Therefore,
Vi + 1 < Vi only if b1 > 0, which happens if a3 > a4 in (98). This can
be ensured by suitable selection of diagonal matrix R and
disturbance attenuation factor α. Also, as ui approaches u

∗ and di

approaches d
∗ in (98), b1 approaches zero, which implies from

(100) that Vi approaches V
∞. Thus, by monotone convergence

theorem, Vi converges point-wise to V∞ = V
∗, the unique minima

of V over the compact set Ω1. Therefore,
V1 > V2 > V3 > ⋯ > Vi + 1 > ⋯ ≥ V

∞ = V
∗. □
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