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Abstract Strain gradient plasticity theories are beingwidely
used for fracture assessment, as they provide a richer
description of crack tip fields by incorporating the influ-
ence of geometrically necessary dislocations. Characterizing
the behavior at the small scales involved in crack tip defor-
mation requires, however, the use of a very refined mesh
within microns to the crack. In this work a novel and
efficient gradient-enhanced numerical framework is devel-
oped by means of the extended finite element method
(X-FEM). A mechanism-based gradient plasticity model
is employed and the approximation of the displacement
field is enriched with the stress singularity of the gradient-
dominated solution. Results reveal that the proposed numer-
ical methodology largely outperforms the standard finite
element approach. The present work could have impor-
tant implications on the use of microstructurally-motivated
models in large scale applications. The non-linear X-FEM
code developed in MATLAB can be downloaded from
www.empaneda.com/codes.
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1 Introduction

Experiments have consistently shown that metallic materials
display strong size effects at the micron scale, with smaller
being harder. As a result, a significant body of research
has been devoted to model this size dependent plastic phe-
nomenon (see, e.g., [1–3] and references therein). At the
continuum level, phenomenological strain gradient plasticity
(SGP) formulations have been developed to extend plastic-
ity theory to small scales. Grounded on the physical notion
of geometrically necessary dislocations (GNDs, associated
with non-uniform plastic deformation), SGP theories relate
the plastic work to both strains and strain gradients, intro-
ducing a length scale in the constitutive equations. Isotropic
SGP formulations can be classified according to different cri-
teria, one distinguishing between phenomenological theories
[4,5] and microstructurally or mechanism-based ones [6,7].
All these models aim at predicting the strengthening effects
associated with dislocation interactions in an average sense,
as opposed to the more refined characterization of explicit
multiscale approaches [8–12].

While growing interest in micro-technology motivated
the development of SGP models at first, the influence of
GNDs extends beyond micron-scale applications, as strains
vary over microns in a wide range of engineering designs.
Particularly, gradient-enhanced modeling of fracture and
damage appears imperative—independently of the size of
the specimen—as the plastic zone adjacent to the crack
tip is physically small and contains strong spatial gradients
of deformation. The experimental observation of cleavage
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fracture in the presence of significant plastic flow [13] has
fostered significant interest in the role of the plastic strain
gradient in fracture and damage assessment. Studies con-
ducted in the framework of phenomenological [14–16] and
mechanism-based theories [17–19] have shown that GNDs
near the crack tip promote local strain hardening and lead to a
much higher stress level as compared with classic plasticity
predictions. Very recently, Martínez-Pañeda et al. [20,21]
have identified and quantified the relation between mate-
rial parameters and the physical length over which gradient
effects prominently enhance crack tip stresses. Their results
have revealed the important influence of strain gradients
on a wide range of fracture problems, being particularly
relevant in hydrogen assisted cracking modeling due to
the central role that the stress field close to the crack tip
plays on both hydrogen diffusion and interface decohesion
[22,23].

However, a comprehensive embrace of SGP theories has
been hindered by the complexities associated with their
numerical implementation. An appropriate characterization
of gradient effects ahead of a crack requires the use of
extremely refined meshes, with a characteristic element
length of a few nanometers in the vicinity of the crack.
The vast majority of fracture and damage studies under SGP
theories (see, e.g., [14–17,20,21]) have been conducted in
the framework of the finite element method (FEM). Pan
and Yuan [18,19] used the element-free Galerkin method
with the aim of avoiding the lack of convergence associ-
ated with finite element schemes (especially as the element
distortion becomes large or elements lose bearing capac-
ity) at the expense of increasing the computational cost.
In this work a novel numerical framework is proposed for
crack tip assessment within strain gradient plasticity. The
mechanism-based strain gradient (MSG) plasticity theory
is adopted as a material model, being this choice moti-
vated by the work by Shi et al. [24], who characterized—by
means of combined analytical and numerical (Runge–Kutta)
procedure—the stress-dominated asymptotic field around
a crack tip within the aforementioned constitutive frame-
work. The extended finite element method (X-FEM) can
be therefore employed to enrich the solution significantly
alleviating the degree of mesh refinement. In the present
work, a novel non-linear X-FEM scheme is presented, which
includes (i) gradient-enhanced asymptotic functions, (ii)
linear and quadratic elements, (iii) a linear weighting func-
tion for the blending elements, (iv) an iterative solver for
nonlinear systems and (v) an appropriate triangular inte-
gration scheme. Several numerical examples are addressed
to illustrate the performance of the present numerical
approach.

2 Mechanism-based strain gradient (MSG)
plasticity

The theory of mechanism-based strain gradient plasticity
[6,7] is based on the Taylor dislocation model and there-
fore the shear flow stress τ is formulated in terms of the
dislocation density ρ as

τ = αμb
√

ρ (1)

Here, μ is the shear modulus, b is the magnitude of the
Burgers vector and α is an empirical coefficient which takes
values between 0.3 and 0.5. The dislocation density is com-
posed of the sum of the density ρS for statistically stored
dislocations (SSDs) and the density ρG for geometrically
necessary dislocations (GNDs) as

ρ = ρS + ρG (2)

The GND density ρG is related to the effective plastic
strain gradient ηp by:

ρG = r
ηp

b
(3)

where r is the Nye-factor which is assumed to be 1.90 for
face-centered-cubic (fcc) polycrystals. The tensile flow stress
σ f low is related to the shear flow stress τ by:

σ f low = Mτ (4)

withM being theTaylor factor, taken to be3.06 for fccmetals.
Rearranging Eqs. (1–4) yields

σ f low = Mαμb

√
ρS + r

ηp

b
(5)

The SSD density ρS can be determined from (5) knowing
the relation in uniaxial tension between the flow stress and
the material stress-strain curve as follows

ρS = [σre f f (ε p)/(Mαμb)]2 (6)

Here σre f is a reference stress and f is a nondimensional
function of the plastic strain ε p determined from the uniaxial
stress-strain curve. Substituting back into (5), σ f low yields:

σ f low = σre f

√
f 2(ε p) + lηp (7)

where l is the intrinsic material length based on parameters
of elasticity (μ), plasticity (σre f ) and atomic spacing (b):
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l = M2rα2
(

μ

σre f

)2

b = 18α2
(

μ

σre f

)2

b (8)

Gao et al. [6] used three quadratic invariants of the plastic
strain gradient tensor to represent the effective plastic strain
gradient ηp as

ηp =
√
c1η

p
iikη

p
j jk + c2η

p
i jkη

p
i jk + c3η

p
i jkη

p
k ji (9)

The coefficients were determined to be equal to c1 = 0,
c2 = 1/4 and c3 = 0 from three dislocation models for
bending, torsion and void growth, leading to

ηp =
√
1

4
η
p
i jkη

p
i jk (10)

where the components of the strain gradient tensor are
obtained by η

p
i jk = ε

p
ik, j + ε

p
jk,i − ε

p
i j,k .

As it is based on the Taylor dislocation model, which
represents an average of dislocation activities, theMSG plas-
ticity theory is only applicable at a scale much larger than the
average dislocation spacing. For common values of disloca-
tion density in metals, the lower limit of physical validity
of the SGP theories based on Taylors dislocation model is
approximately 100nm.

Shi et al. [24] characterized the stress-dominated asymp-
totic field around a mode I crack tip in MSG plasticity by
solving iteratively through Runge–Kutta a fifth order Ordi-
nary Differential Equation (ODE). The numerical shooting
method was employed to enforce two crack-face stress-
traction free conditions and subsequently obtain the power
of the stress singularity, roughly r−2/3. A similar result was
obtained through finite element (FE) analysis by Jiang et al.
[17]. The power of the stress singularity in MSG plasticity
is therefore independent of the strain hardening exponent n.
This is due to the fact that the strain gradient becomes more
singular than the strain near the crack tip and dominates
the contribution to the flow stress in (7). From a physical
viewpoint, this indicates that the density of GNDs ρG in the
vicinity of the crack tip is significantly larger than the density
of SSDs ρS .

Consequently, crack tip fields can be divided in several
domains, as depicted in Fig. 1. Far away from the crack tip
deformation is elastic and the asymptotic stress field is gov-
erned by the linear elastic singularity. When the effective
stress overcomes the initial yield stress σY , plastic defor-
mations occur and the stress field is characterized by the
Hutchinson, Rice and Rosengren (HRR) [25,26] solution.
As the distance to the crack tip decreases to the order of a
few microns, large gradients of plastic strain promote dis-
location hardening and the stress field is described by the
asymptotic stress singularity of MSG plasticity.

3 Numerical framework

3.1 Finite element method

As a function of their order, two different classes of SGP
theories can be identified. One involves higher order stresses
and therefore requires extra boundary conditions; the other
does not involve higher order terms, and gradient effects
come into play via the incremental plastic moduli. With
the aim of employing mechanism-based SGP formulations
within a lower order setup, Huang et al. [7] developed what
is referred to as the Conventional Mechanism-based Strain
Gradient (CMSG) plasticity theory. It is also based on Tay-
lor’s dislocation model (i.e., MSG plasticity), but it does not
involve higher order terms and therefore falls into the SGP
framework that preserves the structure of classic plasticity.
Consequently, the plastic strain gradient appears only in the
constitutivemodel, and the equilibriumequations and bound-
ary conditions are the same as in conventional continuum
theories. This lower order scheme is adopted in the present
work to characterize gradient effects from a mechanism-
based approach, as it does not suffer convergence problems
when addressing numerically demanding problems, such as
crack tip deformation, unlike its higher order counterpart
(see [20,27]). While higher order formulations are neces-
sarily needed to model constraints on dislocation movement
(see [28]), in MSG plasticity the differences between the
higher order and the lower order versions are restricted to a
very thin boundary layer (≈10nm) [24,29]. Consequently,
higher order boundary conditions essentially have no effect
on the stress distribution at a distance of more than 10nm
away from the crack tip—well below its lower limit of phys-
ical validity—andCMSGplasticity predicts exactly the same
results as its higher order counterpart in the region of interest.

To avoid the use of higher order stresses, Huang et al. [7]
used a viscoplastic formulation where the plastic strain rate
ε̇ p is given in terms of the effective stress σe rather than its
rate σ̇e. The strain rate and time dependence is suppressed
by adopting a viscoplastic power-law of the form,

ε̇ p = ε̇

[
σe

σre f
√

f 2(ε p) + lηp

]m

(11)

where the visco-plastic exponent is taken to fairly large val-
ues (m ≥ 20) in order to suppress rate effects. Taking into
account that the volumetric and deviatoric strain rates are
related to the stress rate in the same way as in conventional
plasticity, the constitutive equation yields:

σ̇i j = K ε̇kkδi j + 2μ

{
ε̇′
i j − 3ε̇

2σe

[
σe

σ f low

]m
σ̇ ′
i j

}
(12)
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Fig. 1 Schematic diagram of
the different domains
surrounding the crack tip. Three
regions are identified as a
function of asymptotic stress
fields: the linear elastic solution,
the HRR solution and the MSG
plasticity solution

Since higher-order terms are not involved, the govern-
ing equations of CMSG plasticity are essentially the same
as those in conventional plasticity and the FE implementa-
tion is relatively straightforward. The plastic strain gradient
is obtained by numerical differentiation within the element
through the shape functions. In order to do so, a surface is
first created by linearly interpolating the incremental values
of the plastic strains	ε

p
i j at theGauss integrationpoints in the

entiremodel. Subsequently, the values of	ε
p
i j are sampled at

the nodal locations. An almost identical procedure could be
employed to map history-dependent variables in crack prop-
agation studies and other cases where element subdivision
takes place.

In order to validate the finite element implementation,
crack tip fields are evaluated by means of a boundary layer
formulation, where the crack region is contained by a circu-
lar zone and a Mode I load is applied at the remote circular
boundary through a prescribed displacement:

u(r, θ) = KI
1 + ν

E

√
r

2π
cos

(
θ

2

)
(3 − 4ν − cosθ) (13)

v(r, θ) = KI
1 + ν

E

√
r

2π
sin

(
θ

2

)
(3 − 4ν − cosθ) (14)

Here, u and v are the horizontal and vertical components
of the displacement boundary condition, r and θ the radial
and angular coordinates in a polar coordinate system cen-
tered at the crack tip, E is Young’s modulus, ν is the Poisson
ratio of the material and KI is the applied stress intensity fac-
tor, which quantifies the remote load. Plane strain conditions
are assumed and only the upper half of the circular domain is
modeled due to symmetry. A sufficiently large outer radius
R is defined and the entire specimen is discretized by means
of eight-noded quadrilateral elements with reduced integra-
tion.Differentmeshdensitieswere used to study convergence
behavior, with the typical number of elements being around
4000. With the aim of accurately characterizing the influ-
ence of the strain gradient a very refined mesh is used near
the crack tip, where the size of the elements is on the order of
very few nanometers. The following set of non-dimensional

material parameters is considered:

n = 5,
σY

E
= 0.2%, ν = 0.3 (15)

An isotropic power law material is adopted according to

σ = σY

(
1 + Eε p

σY

)(
1
n

)
(16)

The reference stress of (6) will correspond to σre f =
σY ( E

σY
)(

1
n ) and f (ε p) = (ε p + σY

E )(
1
n ). Figure2 shows,

in a double logarithm diagram, the normalized effective
stress σe/σY versus the normalized distance r/ l ahead of
the crack tip (θ = 1.014◦) for an external applied load
of KI = 20σY

√
l. As it can be seen in the figure, a very

good agreement is obtained between the stress distributions
obtained by means of the CMSG theory and MSG plasticity
(taken from [17]); proving the suitability of CMSG plasticity
in the present study, since higher order boundary conditions
do not influence crack tip fields within its physical domain
of validity.

As it can be seen in the figure, SGP predictions agree with
classic plasticity away from the crack tip but become much
larger within tens of microns from it. In agreement with the
work by Shi et al. [24], the stress field in MSG plasticity is
more singular than both the HRR field and the linear elastic
K field. This GND-enhanced singularity can be incorporated
within an X-FEM framework to avoid the use of extremely
refined meshes and the numerical problems associated.

3.2 Extended finite element method

The approximation power of the FEM can be further
enhanced by augmenting suitable functions to the finite ele-
ment space; these functions represent the local nature of the
solution. This can be achieved by means of the X-FEM, a
numerical enrichment strategy within the framework of the
Partition of UnityMethod (PUM). The displacement approx-
imation can be thus decomposed into a standard part and an
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Fig. 2 Effective stress distribution ahead of the crack tip. Comparison
betweenMSG plasticity predictions (symbols, taken from [17]), CMSG
plasticity (solid line) and conventional J2 plasticity (dashed line). The
figure is in a double logarithm scale and σe and r are normalized by σy

and l respectively.An external applied loadof KI = 20σY
√
l is assumed

and the following material properties are adopted: σY = 0.2%E , ν =
0.3, N = 0.2 and l = 3.53 µm

enriched part,

uhi =
∑

I∈N fem

N I
i u

I
i

︸ ︷︷ ︸
Standard

+
∑
J∈N c

N J
i H(φ)aJ

i +
∑
K∈N f

NK
i

n∑
α=1

Fα(r, θ)bKα
i

︸ ︷︷ ︸
Enriched

(17)

where N fem is the set of all nodes in the FE mesh, N c is
the set of nodes whose shape function support is cut by the
crack interior and N f is the set of nodes whose shape func-
tion support is cut by the crack tip. H(φ) and Fα(r, θ) are
the enrichment functions chosen to respectively capture the
displacement jump across the crack surface and the singular-
ity at the crack tip, with aJ

i and bKα
i being their associated

degrees of freedom. Hence, to represent a crack, two sets of
additional functions are employed:

• Heaviside jump function to capture the discontinuity
in the displacement. The jump enrichment function is
defined as:

H(φ) =
{
1 for φ(xi ) > 0
−1 for φ(xi ) < 0

(18)

whereφ(xi ) is the signeddistance function from the crack
surface defined as:

φ(xi ) = min
xi∈�c

||xi − xi ||sign(ni · (xi − xi )) (19)

with ni being the unit outward normal and sign() the sign
function.

• Functions with singular derivative near the crack that
spans the near tip stress field. For example, in the case of
linear elastic fracture mechanics, the following asymp-
totic displacement field is used:

Fα(r, θ) = r1/2
{
sin

θ

2
, cos

θ

2
, sin

θ

2
sin θ, cos

θ

2
sin θ

}

(20)

where r is the distance from the crack tip and θ repre-
sents the angular distribution. The linear elastic solution
breaks down in the presence of plasticity, with the known
HRR fields describing the nature of the dominant sin-
gularity instead. Elguedj et al. [30] enriched the shape
function basis with the HRR plastic singularity, achiev-
ing accurate estimations of standard fracture parameters.
Such approach is further extended in thiswork to incorpo-
rate the role of relevant microstructural features (namely,
GNDs) in crack tipfields throughMSGplasticity.Anovel
enrichment basis is therefore proposed, where the power
of the stress singularity equals r−2/3 (see Sect. 2). As the
angular functions play a negligible role in the overall rep-
resentation of the asymptotic fields [31], the linear elastic
fracture mechanics functions are employed.

A direct consequence of the enrichment strategy adopted
is the possibility of employing simpler meshes that do not
need to conform to the crack geometry. The crack can be
represented through level sets [32] or hybrid explicit implicit
representation [33,34]. In the present study, a level set repre-
sentation is used and the enrichment functions at any point of
interest are computed using the finite element approximation
of the level set functions.

Figure3 shows a typical X-FEM mesh with an arbitrary
crack. The enrichment zone is restricted to the vicinity of
the crack tip. Elements can be classified into four cate-
gories: (a) standard elements; (b) tip enriched elements, (c)
split enriched elements and (d) blending elements. The lat-
ter are elements at the interface of the standard and enriched
elementswhere the partition of unity is not satisfied and oscil-
lations in the results are observed. This pathological behavior
has attracted a considerable research effort and some of
the proposed techniques include assumed strain blending
elements [35], corrected or weighted XFEM [36,37], hybrid-
crack elements [38], semi-analytical approaches [39,40] and
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Fig. 3 Typical X-FEM mesh with an arbitrary crack. Circled nodes
are enriched with the discontinuous function while squared nodes are
enriched with near-tip asymptotic fields

spectral functions [41]. In [42], it was numerically observed
that to achieve optimal convergence rate, a fixed area around
the crack tip should be enriched with singular functions. This
was referred to as geometrical enrichment, as opposed to
topological enrichment, where only one layer of elements
around the crack tip is enriched. As detailed below, both
topological and geometrical enrichment strategies have been
considered in the present work. As proposed by Fries [36], a
linear weighting function is employed to suppress the oscil-
latory behavior in the partially enriched elements.

Another commonly investigated problem associated with
the XFEM is the numerical integration of singular and dis-
continuous integrands (c.f. Eqs. 18–20). One potential and
yet simple solution for the numerical integration is to parti-
tion the elements into triangles. The numerical integration
of singular and discontinuous integrands can be alterna-
tively done by: (a) polar integration [42]; (b) complex
mapping [43]; (c) equivalent polynomials [44]; (d) gener-
alized quadrature [45]; (e) smoothed XFEM [46] and (f)
adaptive integration schemes [47]. Recently, Chin et al. [48]
have employed themethod of numerical integration of homo-
geneous functions to integrate discontinuous and weakly
singular functions. In the present study, elements are par-
titioned into triangles and the triangular quadrature rule is
employed to integrate the terms in the stiffness matrix.

An in-house code is developed in MATLAB for both
the FEM and X-FEM cases. Newton–Raphson is employed
as solution procedure for the non-linear problem [49] and
stress contours are obtained by performing a Delaunay tri-
angulation and interpolating linearly within the vertex of the
triangles (integration points).

4 Results

4.1 Numerical model

As shown in Fig. 4, a cracked plate of dimensions W =
35 mm (width) and H = 100mm (height) subjected to uni-

Fig. 4 Single edge cracked plate: dimensions and boundary conditions

axial displacement is examined. Plane strain conditions are
assumed and the horizontal displacement is restricted in the
node located at x1 = W and x2 = H/2 so as to avoid rigid
body motion. The crack is horizontal and located in the mid-
dle of the specimen (H/2) with the distance from the edge to
the tip being 14mm. The following material properties are
adopted thorough the work: E = 260,000 MPa, ν = 0.3,
σY = 200 MPa and n = 5, with isotropic hardening being
defined by (16). A material length scale of l = 5 µm is con-
sidered, which would be a typical estimate for nickel [50]
and corresponds to an intermediate value within the range of
experimentally observed material length scales reported in
the literature.

4.2 FEM results

Figure5 shows the results obtained by means of the stan-
dard finite element method for different mesh densities. The
legend shows the number of degrees of freedom (DOFs)
intrinsic to each mesh, along with the characteristic length of
the smallest element in the vicinity of the crack. Quadratic
elements with reduced integration have been employed in all
cases. The opening stress distribution σ22 ahead of the crack
tip is shown normalized by the initial yield stress while the
distance to the crack tip is plotted in logarithmic scale and
normalized by the length scale parameter. Results have been
obtained for an applied displacement of U = 0.0011mm.
The prediction obtained for conventional plasticity is also
shown in a fine black line and one can easily see that the strain
gradient dominated zone is in all cases within r/ l < 0.1 (i.e.,
0.5 µm) for the particular problem, material properties and
loading conditions considered.
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Fig. 5 Normalized opening stress distribution ahead of the crack tip for
different mesh densities, identified as a function of the total number of
degrees of freedom (DOFs) and the characteristic length of the element
at the crack tip. The figure shows results along the extended crack plane
with the normalized distance to the crack tip r/ l in log scale

Figure5 reveals that numerical convergence has been
achieved for a mesh with 157,844 DOFs and a characteristic
length of the smallest element of 5nm, as further refinement
in the crack tip region leads to almost identical results. This
will be considered as the reference finite element solution. A
representative illustration of the mesh employed is shown in
Fig. 6, where only half of the model is shown, taking advan-
tage of symmetry. As it can be seen in the figure, special care
is taken so as to keep an element ratio of 1 close to the crack
tip while the mesh gets gradually coarser as we move away
from the crack. The use of such small elements is not only
very computationally expensive but it also leads to conver-
gence problems as the elements at the crack tip get distorted.

Avoiding such level of mesh refinement could strongly ben-
efit fracture and damage assessment within strain gradient
plasticity.

4.3 X-FEM results

The opening stress is computed in the cracked plate bymeans
of the X-FEM framework described in Sect. 3.2. A much
coarser mesh, relative to the conventional FE case, but with a
similar uniform structure is employed, as depicted in Fig. 7.
A tip element with a characteristic length of 1 µm is adopted
to ensure that the enriched region engulfs the gradient dom-
inated zone. While in the geometrical enrichment case, the
characteristic length of the enriched region is chosen so as
to coincide with the size of the GNDs-governed domain
(re = 0.5 µm), as discussed below.

Results obtained for both quadratic and linear elements
are shown in Fig. 8. As in the conventional FE case, the nor-
malized opening stress σ22/σY is plotted as a function of the
normalized distance r/ l, the latter being in logarithmic scale.

X-FEM predictions reveal a good agreement with the ref-
erence FE solution, despite the substantial differences in
the number of degrees of freedom. Moreover, and unlike
the conventional FE case, the influence of strain gradients
can also be captured by means of linear quadrilateral ele-
ments. This enrichment-enabled capability allows the use
of lower order displacement elements, minimizing computa-
tional efforts and maximizing user versatility. Further results
have been consequently computed with linear elements.

The present gradient-enhanced X-FEM scheme thus
shows very good accuracy for a characteristic element length
that is two orders of magnitude larger than its standard FEM
counterpart. At the local level, small differences are observed
in the blending elements, despite the corrected X-FEM

Fig. 6 Representative finite
element mesh, only the upper
half of the model is shown due
to symmetry
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Fig. 7 Mesh employed in the
X-FEM calculations, schematic
view and detail of the
topological (top) and
geometrical (bottom)
enrichment regions

Fig. 8 Normalized opening stress distribution ahead of the crack tip
for topological enrichment, with both linear and quadratic elements, and
the reference FEM solution, with mesh densities identified as a function
of the total number of degrees of freedom (DOFs) and the characteristic
length of the element at the crack tip. The figure shows results along
the extended crack plane with the normalized distance to the crack tip
r/ l in log scale

approximation adopted. Thereby, enriching the numerical
framework with the asymptotic solution of MSG plasticity
enables a precise and efficient characterization of crack tip

Fig. 9 Normalized opening stress distribution ahead of the crack tip
for geometrical enrichment with enrichment radius re = 0.5µm, linear
elements and different mesh densities, identified as a function of the
characteristic length of the element at the crack tip. The figure shows
results along the extended crack plane with the normalized distance to
the crack tip r/ l in log scale

fields, with results being indeed very sensitive to the choice
of the power of the stress singularity (see Supplementary
Figure 1). Figure9 shows the results obtained for a fixed
geometrical enrichment radius and different mesh densities.
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As in the topological case, a very promising agreement can
be observed, with mesh densities being significantly smaller
than the reference FEMsolution and computation times vary-
ing accordingly. A fixed enrichment radius of re = 0.5 µm
is considered in all cases as the highest precision is achieved
when the enriched area and the gradient dominated zone
agree. Unlike pure linear elastic analyses, accounting for
plastic deformations and the influence of GNDs implies hav-
ing a crack tip region characterized by three different singular
solutions (see Fig. 1). Ideally three classes of asymptotically-
enriched nodes should be defined, but such an elaborated
scheme is out of the scope of the present work. Hence, the
size of the enriched domain must be selected with care to
achieve convergence with coarser meshes. This limitation is
also intrinsic to the seminalwork byElguedj et al. [30],where
plasticity was confined to theHRR-enriched tip element. The
size of the GND-dominated region is nevertheless much less
sensitive to material properties or the external load than the
plastic zone, and can be properly chosen based on previous
parametric studies [20].

The capabilities of the proposed numerical scheme to
efficiently compute relevant fracture parameters are also
examined. First, the J -integral is computed by means of the
domain integralmethod [51] for different load levels,with the
external load being characterized through the remote applied
strain ε̄ ≡ 2U/H . Results obtained are shown in Fig. 10,
where it can be clearly observed that the agreement with the
reference FEM solution further increases when a global vari-
able is analyzed. The figure includes the predictions of the
standard FEM with a very refined mesh (157,844 DOFs and
a characteristic element size of �e = 5 nm) and the results
obtained for the present X-FEM scheme, with and without
tip enrichment, from a very coarse mesh (15,280 DOFs and
�e = 1000 nm).

The crack opening displacement δ, another meaningful
parameter from the fracture mechanics perspective, is also
computed for different mesh densities. The magnitude of the
crack opening displacement is measured at the crack mouth
and its variation with respect to the characteristic element
length and the number of degrees of freedom is respectively
shown in Figs. 11 and 12. In the former the tip element length
is normalized by the length parameter and in both cases the
crack opening is shown relative to the reference FEM value.

Results reveal a very good performance of the proposed
gradient-enhanced enrichment scheme, with an excellent
agreement being attained with very coarse meshes. The X-
FEMmodel is able to efficiently track crack tip blunting even
when the enriched domain goes far beyond the gradient dom-
inated zone, as the higher stress levels in the conventional
plasticity region compensate with the lack of integration
points in the vicinity of the crack. The strain gradient
plasticity-based enrichment strategy consequently enables
accurate estimations of relevant fracture parameters with

Fig. 10 J -integral versus remote strain for the reference FEM solution
(�e = 5 nm) and the X-FEM solution (�e = 1000nm) with and without
enrichment. The X-FEM results have been obtained with topological
enrichment and linear elements

Fig. 11 Crack opening displacement versus characteristic element
size. The horizontal axis corresponds to the material length parameter
l divided by the element length �e while the vertical axis is normalized
by the crack opening displacement of the reference FEM solution δ0.
The X-FEM results have been obtained with topological enrichment
and linear elements

much less computation effort. This could be of substantial
pertinence for structural integrity assessment in engineer-
ing industry, where pressures of time and cost demand rapid
analyses. As incorporating relevant microstructural features
at the micro and nano scales demands intense computations,
enriching the FE approximation with the local nature of the
solution could be the key enabler for the use of strain gra-
dient plasticity or other multiscale frameworks in crack tip
mechanics. Moreover, the present scheme can significantly
alleviate the convergence problems intrinsically associated
with the use of very refined meshes at deformation levels
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Fig. 12 Crack opening displacement versus mesh density. The hori-
zontal axis corresponds to the number of degrees of freedom (DOFs)
while the vertical axis is normalized by the crack opening displace-
ment of the reference FEM solution δ0. The X-FEM results have been
obtained with topological enrichment and linear elements

Fig. 13 Element distortion study: distortion measures (top) and ele-
ments under consideration (bottom); the element examined is high-
lighted in red

relevant for practical applications. This has been quantified
by investigating the distortion of the crack tip element for
both the reference FEM solution and the proposed gradient-
enhanced enrichment strategy. As depicted in Fig. 13 two
relevant distortion measures for quadrilateral elements have
been considered: the element aspect ratio and the taper in
the x-direction [52]; the element skew and the taper in the
y-direction are zero due to the symmetric nature of the defor-
mation field.

Fig. 14 Aspect ratio and the taper in the x-direction relations between
the reference FEM solution and the X-FEM scheme proposed. Results
are shown as a function of the external load, characterized by the remote
strain ε̄

As shown in Fig. 13 an equivalent tip element is defined in
the standard FEM approach, so as to directly compare with
theX-FEM solution. By considering only the deformed coor-
dinates of the corner nodes, the following shape parameters
are defined:

e2 = 1

4
(−x1 + x2 + x3 − x4) (21)

f3 = 1

4
(−y1 − y2 + y3 + y4) (22)

f4 = 1

4
(y1 − y2 + y3 − y4) (23)

where xi and yi are respectively the horizontal and vertical
local nodal coordinates, with counterclockwise node num-
bering and being the first node the one located in the bottom
left corner. The aspect ratioϒ and the taper in the x-direction
T x are then defined as:

ϒ = max

{
e2
f3

,
f3
e2

}
(24)

T x = f4/ f3 (25)

Results obtained as a function of the applied strain are
shown in Fig. 14. The predictions for both ϒ and T x with
the reference FEM model are shown normalized by the
X-FEM results. In that way it can be clearly seen that mesh
distortion is severely reduced with an appropriate enriched
scheme, even for the relatively low levels of the applied strain
considered.

Significant changes in the element aspect ratio and, partic-
ularly, the element tapering take place in the standard FEM
model as a consequence of the degree of mesh refinement
required. This leads to convergence problems in crack tip
mechanics analyses, where elements close to the crack dis-
tort excessively [18,27]. The present numerical framework
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allows to overcome such numerical difficulties and can there-
fore enable crack tip characterization in a wide range of load
levels. This could be particularly useful in environmentally
assisted cracking, where GNDs have proven to play a funda-
mental role [22].

5 Conclusions

A robust and efficient numerical framework for crack
tip characterization incorporating the role of geometri-
cally necessary dislocations has been developed. The pro-
posed numerical scheme is built from the mechanism-based
theory of strain gradient plasticity and takes advantage
of its known asymptotic stress singularity to enrich the
numerical solution by means of the X-FEM. The enriched
numerical framework developed can be downloaded from
www.empaneda.com/codes and is expected to be helpful to
both academic researchers and industry practitioners. The
strengths of the proposed X-FEM scheme are clearly seen in
the efficient and accurate computation of local stress fields
and global fracture parameters; significantly outperforming
the standard FEM and avoiding the convergence problems
inherent to large element distortions.

The range of applicability of the proposed numerical
scheme is enormous, as SGP theories have proven to play
a fundamental role in a number of structural integrity prob-
lems. The use of finite element solutions in large scale
engineering applications is hindered by the need to highly
refine themesh in the vicinity of the crack, with the character-
istic element length being on the order of a few nanometers.
As shown in the present work, this can be readily overcome
by employing the X-FEM enriched with the gradient asymp-
totic solution, SGP-based crack tip characterization being a
field where the use of the X-FEM could be of significant rele-
vance. Also, the present numerical framework can be readily
develop to model crack propagation within strain gradient
plasticity, although a physically-based criterion has yet to be
proposed.
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