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Exploring the configurational space of specific origami patterns (e.g. Miura-Ori, Eggbox) has led
to major advances in science and technology. To augment the origami design space, we present
a pattern, named Morph, that combines the features of its parent patterns. We introduce a four-
vertex origami cell that morphs continuously between a Miura mode and an Eggbox mode, forming a
homotopy class of configurations. This is achieved by changing Mountain/Valley assignment of one
of the creases, leading to a smooth switch through a wide range of negative and positive Poisson’s
ratios. We present elegant analytical expressions of Poisson’s ratios for both in-plane stretching
and out-of-plane bending, and find that they are equal in magnitude and opposite in sign. Further,
we show that by combining compatible unit cells in each of the aforementioned modes through
kinematic bifurcation, we can create hybrid origami patterns that display unique properties such
as topological mode-locking (irreversible morphing under stretch by synchronized engagement of
aligned panels in the Miura mode) and tunable switching of Poisson’s ratio.

Origami-inspired geometries have been used to design
metamaterials with unusual properties [1–7]. The aes-
thetically pleasant patterns and shapes typically start
from 2D sheets to construct 3D structures according to
mountain and valley assignments encoded in the crease
patterns. In this letter, we present a new periodic pat-
tern, named Morph, with a non-developable degree-4
unit cell that allows a certain crease to switch its moun-
tain/valley assignment, leading to properties such as ar-
bitrarily tunable Poisson’s ratio that spans from positive
to negative, and topological mode-locking.

Owing to their special geometries, origami metama-
terials usually display interesting behavior [8–11]. For
instance, the Miura-ori exhibits a negative Poisson’s ra-
tio under in-plane deformations [9], while the standard
Eggbox pattern has a positive Poisson’s ratio [12, 13]. In
comparison, our proposed pattern morphs continuously
between a Miura mode and an Eggbox mode (see Fig. 1),
thus behaving as a single material possessing both pos-
itive and negative Poisson’s ratio. The Poisson’s ratio
switching is an enticing phenomenon that has only been
found recently for selected mechanical metamaterial de-
signs, including nanoplates [14], re-entrant origami tube
assemblages [15], bistable auxetics [16], kirigami struc-
tures [17] and soft networks [18]. Compared to other de-
signs, the Morph excels on having a wider tunable range
of Poisson’s ratio, theoretically from negative infinity to
positive infinity. In addition, the Morph unit cells can
be assembled to form 2D tessellations in which the unit
cell can stay either in the Miura or Eggbox mode, which
allows the formation of hybrid patterns – achieved by
harnessing kinematic bifurcation.

In their most general form, the panel angles α and
β of the Morph pattern are two independent geometric
parameters (see Fig. 1), thereby enriching the origami
design space; unlike the standard cases such as Eggbox
(β = α) or Miura-ori (β = π−α) whose vertex geometry

is dictated by just a single parameter α.
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FIG. 1. (Top) Expanded design space of the Morph pat-
tern (yellow shading) with standard Eggbox (red line) and
Miura-ori (blue line) as particular cases. (Middle) Funda-
mental modes of the Morph pattern: Eggbox mode (left) and
Miura mode (right). (Bottom) Configuration space showing
transition of the Morph unit cell from one flat-folded state to
another (see supplementary Movie 1). The crease line shown
in red morphs from a mountain fold in the Eggbox mode to
a valley fold in the Miura mode.
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Additionally, for α 6= β, the degree-4 non-developability
feature that the Morph shares with the standard Eggbox
makes it a generalization of the basic pattern. Theoreti-
cally, the Poisson’s ratio of the Morph sweeps the whole
spectrum of real numbers as it morphs from one flat-
folded state to the Eggbox mode, to the Miura mode, and
to another flat-folded state, as shown in Fig. 1. The red
crease in Fig. 1 changes its mountain/valley assignment
as it transitions from Eggbox mode to the Miura mode,
which is made possible owing to the fact that the angle
β is smaller than the angle α of the other two panels.
By contrast, the standard Eggbox or Miura-ori patterns
do not allow any crease to switch its mountain/valley
assignment.

To parametrize the rigid origami behavior of the
Morph unit cell, we define angles φ, ψ as the angles
between opposing crease lines and denote the dihedral
angles between the panels as γ1, γ2, γ3, γ4, as shown in
Fig. 2(a). The unit cell has a degree-4 vertex, and thus it
is a single degree of freedom system. The dihedral angles
are related to one another and to φ, ψ. We derive that
γ2 = γ4, as 0 ≤ γ2, γ4 ≤ π, indicating the existence of a
plane of symmetry passing through the vertices denoted
by O4, O5 and O6. While 0 ≤ γ1 < π, the ability of
the crease O5O6 to switch between mountain and valley
allows γ3 to vary from 0 to 2π. In the flat-folded state
I, φ = φmax = α + β and γ3 = 0. For 0 < γ3 < π,
the unit cell is in Eggbox mode and O5O6 is a moun-
tain crease. As γ3 passes through π, O5O6 transitions
from a mountain to a valley crease and the panels on
either side of O5O6 become coplanar. In the transition
state, angle ψ also reaches its maximum ψmax = 2β. For
π < γ3 < 2π, the unit cell is in Miura mode and O5O6

is a valley crease. Finally, as γ3 → 2π, the unit cell ap-
proaches the flat-folded II state with φ = φmin = α− β.
Let us define two intermediate variables:

ξ = cosβ − cosα cosφ = sinα sinφ cos(γ1/2), (1)

ζ = cosα− cosβ cosφ = sinβ sinφ cos(γ3/2). (2)

The configurational space of the Morph unit cell is then
fully described by φ (0 ≤ ψ ≤ 2β < π) and ψ (0 <
α− β ≤ φ ≤ α+ β < π) through the following equation:

cosψ = cos 2α+ 2ξ2 csc2 φ, (3)

which is presented for various choices of panel angles in
Fig. 2(b). We can observe in Fig. 2(b) that as α → β,
the Miura mode vanishes.

We define the Poisson’s ratio for in-plane stretching as
the tangential ratio of the orthogonal strains measured
by the change of width W and length L of a unit cell
[8, 9], which are given by:

W = 2c sin(ψ/2), L =
√

a2 + b2 − 2ab cosφ. (4)
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FIG. 2. Geometric configuration and in-plane mechanics
of the Morph pattern. (a) Schematic of the unit cell with
the description of geometric parameters and vertices. (b)
& (c) represent the configuration space and Poisson’s ratio
in stretch, respectively, for different choices of α considering
α+ β = 100◦. The solid and dashed lines represent the Egg-
box and Miura modes, respectively. (d) Stretching stiffness
in W and L directions for α = 60◦, β = 40◦. The markers
represent numerical results from origami structural analyses
using the bar-and-hinge reduced order model [19]. We assume
that a = c = 1.

To assure the bounding box of a unit cell being or-
thorhombic, which requires for example, O1O4O7 ⊥
O1O7O9O3 and O1O2O3 ⊥ O1O7O9O3, the panel dimen-
sions a and b are constrained by b = a| cosα/ cosβ| (see
Section I of the Supplementary Material). The analytical
expression for the in-plane Poisson’s ratio when stretch-
ing in the L direction is

νs
WL

= −
dW/W

dL/L
=

4c2L2

a2W 2

∣

∣

∣

∣

cosβ

cosα

∣

∣

∣

∣

ξζ

sin4 φ
. (5)

As plotted in Fig. 2(c), it is clear that the stretch-
ing Poisson’s ratio is negative in the Miura mode and
positive in the Eggbox mode, with a smooth transition
near 0. Theoretically νs

WL
approaches −∞ or +∞ in the

two flat-folded limits, thereby leading to a wide range
of tunability. We note that, since W 2/c2 and L2/a2 do
not depend on the length dimensions of the unit cell,
the Poisson’s ratio of the unit cell depends only on α, β
and φ making it a purely geometric quantity that is also
independent of length scale of the pattern.

Accordingly, assuming that the energy of the unit cells
is comprised of deformation from linear elastic rotational
hinges along the crease lines, we can derive the linear in-
plane stretching stiffness of the pattern. Denoting kf as
the rotational spring modulus, the stored energy of the
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system is given by

Us =
kf
2

[

a(γ1 − γ1,0)
2 + b(γ3 − γ3,0)

2 + 2c(γ2 − γ2,0)
2
]

,

(6)
where γ1,0, γ2,0, and γ3,0 are the natural dihedral angles
in the undeformed state. Expressing γ2 and γ3 in terms
of γ1, the stiffnesses along L direction is derived as:

KL =
d2Us

dL2

∣

∣

∣

∣
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)−2
∣

∣

∣

∣

∣

γ1=γ1,0

. (7)

Similarly, we can get the stiffness along the W direction
(see Section II of the Supplementary Material). As shown
in Fig. 2(d), the in-plane stiffness in the W direction
(denoted by KW ) is minimum at flat-folded states and
reaches maximum at the transition state. Interestingly,
while KL is maximal at flat-folded states, it is only close
to minimum at the transition but slightly away towards
the Eggbox mode.
As revealed in previous research [8, 9, 12], kinemati-

cally single Degree of Freedom (DOF) origami pattern
may experience out-of-plane deformation, other than
pure (in-plane) folding, if compliance of panels is taken
into consideration. Accordingly, we define the Pois-
son’s ratio in bending as the ratio of principal curva-
tures (νb

WL
= −κW /κL) and find that the Morph pattern

features a saddle shaped geometry in the Miura mode,
and a dome shape geometry in the Eggbox mode (see
Figs. 3(a),(b)). It is intriguing that the Morph pattern
exhibits distinct Poisson’s ratio in stretching and bend-
ing, similar to what have been found, separately, with the
standard Miura-ori and the standard Eggbox patterns.
Here we show that, just like its two extreme cases [9, 12],
the Morph pattern displays Poisson’s ratio with oppo-
site sign but equal magnitude in stretching and bending.
We can analytically calculate the principal bending cur-
vatures by allowing each panel of the origami pattern to
bend along one of its diagonals [9], under the assumption
of infinitesimal deformation.
We add infinitesimal rotations δ1, δ2, δ3, δ4 as shown in

Fig. 2(a) to provide further DOFs to the system in order
to simulate bending of panels. Hence, there are in total
4 extra DOFs being added, yet isometric deformation is
still ensured. Bending of the unit cell shall preserve the
orthogonality between the two sides of a unit cell (i.e. L
and W). Thus we enforce that the normals of the side
triangles of a unit cell after bending (e.g. ∆O′
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dependent constraints:

aξ
δ1
ℓ1

= bζ
δ2
ℓ2
, bζ

δ3
ℓ3

= aξ
δ4
ℓ4
,
δ1
ℓ1

=
δ4
ℓ4
, (8)

where, ℓ1, ℓ2, ℓ3, ℓ4 are the lengths of the diagonals O2O4,
O2O6, O6O8 and O4O8, respectively. Thus, the bend-
ing is uniquely defined up to a single DOF. These con-
straints automatically ensure that the deformed unit cell

can be periodically tessellated in the two principal direc-
tions (i.e. L and W), that is, ∠O′

1
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.

The curvatures in L and W directions are determined
by:

κL = −
|θ147| ± |θ369|

L
, (9)

κW = −
|θ789|+ |θ123|

W
, (10)

where, the ′+′ or ′−′ in Eqn. 9 for κL depends on whether
the system is in the Eggbox mode or the Miura mode
respectively and θ147, θ369, θ789, θ123 are the tilt angles
(see Figs. 3(c),(d)). The bending Poisson’s ratio is then
obtained as (see Sections III and IV of the Supplementary
Material):

νb
WL

= −
κW
κL

= −
4c2L2

a2W 2

∣
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∣
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cosβ

cosα

∣

∣

∣

∣

ξζ

sin4 φ
. (11)

Comparing Eqn. 5 with Eqn. 11, we obtain the elegant
result, νb

WL
= −νs

WL
for the Morph pattern. The above

expression reduces to standard Miura-ori [8, 9] and Egg-
box [12] as two particular cases for appropriate choices
of panel angles α and β (see Sections V and VI of the
Supplementary Material).
The aforementioned bending mode allows us to analyt-

ically derive the bending stiffness of the Morph pattern,
which has similar characteristics to the in-plane stretch-
ing stiffness (see Fig. S8 of the Supplementary Material).
By performing numerical simulation using the reduced
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FIG. 3. Out-of-plane bending of the Morph pattern. (a) &
(b) Bent shapes of the pattern in Eggbox and Miura modes
respectively obtained using the bar-and-hinge origami model.
(c) & (d) Triangular face tilts creating a net angle change
across length L of the Morph pattern in Eggbox and Miura
modes, respectively. The new coordinates of vertices O7 and
O9 after bending (i.e. O′

7 and O′
9, respectively), can be cal-

culated using the Rodrigues’ rotation formula [20].
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order bar-and-hinge model [19], we find that the ana-
lytical model agrees well with the numerical simulations
with very small discrepancies, which further strengthens
the assumption that infinitesimal rotations about panel
diagonals are sufficient to characterize first order bending
response of the Morph pattern.

Owing to its mode switching feature, the Morph pat-
tern unit cells do not have to be tessellated with uniform
configuration. It is kinematically admissible to couple the
Morph unit cells into a hybrid pattern, such that there are
both Miura mode cells and Eggbox mode cells in a single
tessellation, as demonstrated in Figs. 4(a),(b). The feasi-
bility of such a system can be understood by noting that
in Fig. 2(b), a given ψ, can correspond to the angle φ in
either the Eggbox mode or the Miura mode which we de-
note as φe or φm respectively. These angles are given by
φe = φ1+φ2 and φm = φ1−φ2, where φ1, φ2 are as shown
in Fig. 4(c) and are given by cosφ1 = cosα/ cos(ψ/2),
cosφ2 = cosβ/ cos(ψ/2) (see Section VII of the Supple-
mentary Material).

In Fig. 4(c) we show that one can smoothly deform a
homogeneous Morph pattern to a hybrid pattern using
rigid origami motion (no panel bending). By compatibil-
ity, all the unit cells have the same ψ, i.e. ψm = ψe = ψ.
Also, when φm = φe, all the unit cells of the pattern are
either in the Miura mode or the Eggbox mode, depending
on whether φ = φm = φ1−φ2 or φ = φe = φ1+φ2 respec-
tively. In the figure, these configurations are represented
by the straight line in blue and red colors respectively. As
we move up the blue line, the φm increases and reaches
the transition point (which is φT = cos−1(cosα/ cosβ))
between Miura and Eggbox modes. At this point, we
note that there is kinematic bifurcation in the configu-
ration space, which could either move all the unit cells
into the Eggbox mode by uniformly increasing the angle
φ further across all cells or switch some of the strips back
into Miura mode and therefore generate hybrid patterns
represented by the green curve in the figure. This pro-
cess is also demonstrated through animations and partly
through physical testing in Movies 2 and 4 respectively of
the Supplementary Material. It can be seen that along
the green curve, φm reduces and φe increases as to be
expected from Fig. 2(b), for a compatible ψ, across the
two types of unit cells in the system.

Depending on the coupling mode of the hybrid pat-
tern, the tessellated sheet exhibits a different Poisson’s
ratio, νs

WL,h (see Eqn. S98 of the Supplementary Mate-
rial). There exists a transition point when νs

WL,h varies
from positive extremum (all unit cells in Eggbox mode) to
negative extremum (all unit cells in Miura mode), which
however, does not happen when the number of Miura
mode and Eggbox mode strips are the same, due to un-
equal contributions from both the modes. We consider a
system with 100 × 100 cells and increase the number of
Miura mode cells (in strips) along the L direction (de-
noted as nm) from 0 to 100 (see Fig. 4(d)). For a given

FIG. 4. Hybrid origami assemblages associated with the
Morph pattern. (a) Alternating strips of Miura (M) and Egg-
box (E) modes. (b) Half pattern with strips in Miura (M)
mode and the other half in Eggbox (E) mode. (c) Creation
of hybrid patterns from the Morph through kinematic bifur-
cation. (d) Change of Poisson’s ratio with respect to varying
number of Miura mode strips (nm) in a hybrid mode with
100 × 100 unit cells. The notation νsWL,h denotes the Pois-
son’s ratio under stretch for the hybrid pattern. In (c), (d)
we assume, α = 60◦, β = 40◦. (e) & (f) Mode-locking due to
extension in L direction when νsWL,h > 0. The positive global
Poisson’s ratio implies contraction in the W direction, result-
ing in decrease of ψe and ψm. The oppositely signed unit
cell Poisson’s ratios of the two modes indicates that while φe

increases, φm decreases, meaning the Miura mode cells are
axially contracting, opposite to the global axial deformation.
The Miura mode cells with decreasing φm are locked because
such cells can no longer smoothly transition to their Eggbox
mode in a rigid origami motion. (f) Contrasting global and
local deformations that occur in hybrid patterns leading to
mode-locking behavior. In (e), (f), the green lines represent
the panel diagonals, whose projections provides a clean way
of sketching the motions.
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pattern, the switching of Poisson’s ratio can be tuned to
occur at different fold angles by smoothly modifying the
number of Miura mode strips in the system (see Section
VII-B of the Supplementary Material), which renders the
Morph pattern reprogrammable.
The hybrid patterns also exhibit interesting behavior

in bending due to the combined action from Miura and
Eggbox mode cells (see Movie 3 of the Supplementary
Material). For example, a hybrid pattern with alternat-
ing Miura and Eggbox mode strips bends into a dome
shape (Fig. 4(a)) whereas that with a set a of Miura
mode strips adjacent to one another bends into a com-
plex geometry that has both saddle and dome shapes
(Fig. 4(b)).

The interplay between the contrasting Poisson’s ratios
of the Eggbox and Miura mode unit cells coupled with
the global Poisson’s ratio of the hybrid pattern leads to
mode-locking behavior. The most obvious mode-locking
is the tensile mode-locking (demonstrated in Movie 1 of
the Supplementary Material). For certain types of hy-
brid modes, if we stretch the hybrid pattern along the
L (axial) direction, the Miura mode cells, which nor-
mally would smoothly transition into Eggbox mode un-
der stretching, would rather lock themselves in Miura
mode and fold toward flat-folded state II. Tensile mode-
locking happens when a hybrid pattern displays a posi-
tive Poisson’s ratio globally, such that it shrinks in the
lateral direction under stretching. For a Miura mode
unit cell, this means that it must contract in the axial
direction (as well as the lateral direction), despite that
the global pattern is expanding in the axial direction in
which it is stretched, as illustrated in Fig. 4(f). Similarly,
compressive mode-locking happens to Eggbox unit cells
when a hybrid pattern with globally negative Poisson’s
ratio is contracted (see Section VII-C of the Supplemen-
tary Material). We remark that the mode-locking of a
hybrid Morph pattern is topological. It locks the moun-
tain/valley assignment of certain unit cells, but still al-
lows the pattern to fold smoothly as a rigid origami to
the flat-folded states. This is different from motion lock-
ing [21] where the panels come into contact with each
other hindering the rigid foldability and preventing the
pattern from reaching the flat-folded state.
The Morph pattern exhibits morphing characteristics

by breaking mountain/valley assignment, which leads
to smooth switching of Poisson’s ratio across a very
wide range of negative to positive values, and topolog-
ical mode-locking as a consequence of kinematic bifurca-
tion. Our analysis reveals that the Morph pattern ex-
hibits Poisson’s ratio with equal magnitude but opposite
sign when subject to in-plane and out-of plane deforma-
tions. Moreover, we discuss hybrid patterns that can be
created by coupling Morph unit cells in distinct modes,
creating a tessellation with reprogrammable Poisson’s ra-
tio and topological mode-locking. The locking feature of
the hybrid patterns can be useful in creating structures

with multi-stability [3]. We envision that hybrid patterns
can also have many applications in topological mechan-
ics due their ability to transform the symmetry of the
system under in-plane deformations [22, 23].
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