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GENERATOR MASAS IN q-DEFORMED ARAKI-WOODS VON

NEUMANN ALGEBRAS AND FACTORIALITY

PANCHUGOPAL BIKRAM AND KUNAL MUKHERJEE

Abstract. To any strongly continuous orthogonal representation of R on a real
Hilbert space HR, Hiai constructed q-deformed Araki-Woods von Neumann al-
gebras for −1 < q < 1, which are W ∗-algebras arising from non tracial rep-
resentations of the q-commutation relations, the latter yielding an interpolation
between the Bosonic and Fermionic statistics. We prove that if the orthogonal
representation is not ergodic then these von Neumann algebras are factors when-
ever dim(HR) ≥ 2 and q ∈ (−1, 1). In such case, the centralizer of the q-quasi free
state has trivial relative commutant. In the process, we study ‘generator masas’
in these factors and establish that they are strongly mixing.

1. Introduction

In free probability, Voiculescu’s C∗-free Gaussian functor associates a canonical
C∗-algebra denoted by Γ(HR) to a real Hilbert space HR, the former being generated
by s(ξ), ξ ∈ HR, where each s(ξ) is the sum of creation and annihilation operators
on the full Fock space of the complexification of HR. The associated von Neumann
algebra Γ(HR)

′′ is isomorphic to L(Fdim(HR)) and is the central object in the study of
free probability (see [VDN92] for more on the subject). In the literature, there are
three interesting types of deformations of Voiculescu’s free Gaussian functor each
of which has a real Hilbert space HR as the initial input data: (i) the q-Gaussian
functor due to Bo

.
zejko and Speicher for −1 < q < 1 (see [BS91]), (ii) a functor due

to Shlyakhtenko (see [Shl97]) which is a free probability analog of the construction
of quasi free states on the CAR and CCR algebras and (iii) the third one is a
combination of the first two and is due to Hiai (see [Hia03]); the associated von
Neumann algebras are respectively called Bo

.
zejko-Speicher factors (or q-Gaussian

von Neumann algebras), free Araki-Woods factors and q-deformed Araki-Woods von
Neumann algebras.
Historically, for the first time, Frisch and Bourret in [FB70] had considered oper-

ators satisfying the q-canonical commutation relations:

l(e)l(f)∗ − ql(f)∗l(e) = 〈e, f〉I, − 1 < q < 1.

The existence of such operators on an ‘appropriate Fock space’ was proved by
Bo

.
zejko and Speicher in [BS91] and these operators have importance in particle

statistics [Gre90, GGG93]. Since then many experts have studied the q-Gaussian
von Neumann algebras. Structural properties of the q-Gaussian algebras have been
studied in [Ave11, BS91, BKS97, Dab14, Ric05, Nou04, Sni04, Shl04, Shl09]. A short
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summary of the results obtained in these studies are as follows. For dim(HR) ≥ 2,
the q-Gaussian von Neumann algebras Γq(HR) are non-injective, solid, strongly solid,
non Γ factors with w∗-completely contractive approximation property. Further,
Γq(HR) ∼= L(Fdim(HR)) for values of q sufficiently close to zero [GS14].
The Shlyakhtenko functor in [Shl97] associates a C∗-algebra Γ(HR, Ut) to a pair

(HR, Ut), where HR is a real Hilbert space and (Ut) is a strongly continuous real
orthogonal representation of R on HR. The von Neumann algebras Γ(HR, Ut)

′′ ob-
tained this way i.e., the free Araki-Woods von Neumann algebras are full factors of
type IIIλ, 0 < λ ≤ 1, when (Ut) is non trivial and dim(HR) ≥ 2 [Shl97]. These
von Neumann algebras are type III counterparts of the free group factors. In short,
they satisfy complete metric approximation property, lack Cartan subalgebras, are
strongly solid, and, they satisfy Connes’ bicentralizer problem when they are type
III1 (see [Ho09, HR11, BHV15]). They have many more interesting properties.
The third functor mentioned above is the q-deformed functor due to Hiai for

−1 < q < 1 (see [Hia03]). Hiai’s functor is the main topic of this paper. It
is a combination of Bo

.
zejko-Speicher’s functor and Shlyakhtenko’s functor. This

functor, like the Shlyakhtenko’s functor, associates a C∗-algebra Γq(HR, Ut) to a
pair (HR, Ut), where HR is a real Hilbert space and (Ut) is a strongly continuous
orthogonal representation of R on HR as before. The associated von Neumann
algebras in this construction depend on q ∈ (−1, 1) and are represented in standard
form on ‘twisted full Fock spaces’ that carry the spectral data of (Ut) and connects
it to the modular theory of this particular standard representation in a manner
such that the canonical creation and annihilation operators satisfy the q-canonical
commutation relations of Frisch and Bourret. Hiai’s functor coincides with Bo

.
zejko-

Speicher’s functor when (Ut) is trivial and also coincides with Shlyakhtenko’s functor
when q = 0. Note that Γq(HR, Ut)

′′ is abelian when dim(HR) = 1, so the situation
becomes interesting when dim(HR) ≥ 2.
Assume dim(HR) ≥ 2. Unlike the free Araki-Woods factors, not much is known

about the q-deformed Araki-Woods von Neumann algebras. Hiai proved amongst
other things that when the almost periodic part of (Ut) is infinite dimensional, the
centralizer of the q-quasi free state (vacuum state) has trivial relative commutant and
thus decided factoriality of the ambient von Neumann algebra Γq(HR, Ut)

′′ (Thm.
3.2, [Hia03]). Thus, he was also able to decide the type of these factors under the
same hypothesis imposed (Thm. 3.3, [Hia03]). He also exhibited non injectivity of
Γq(HR, Ut)

′′ depending on the ‘thickness of the spectrum of the analytic generator
of (Ut)’ (Thm. 2.3, [Hia03]). Recently, Nelson generalized the techniques of free
monotone transport originally developed in [GS14] beyond the tracial case. Using
this powerful tool he proved that Γq(HR, Ut)

′′ ∼= Γ0(HR, Ut)
′′ (the latter being the

free Araki-Woods factors) around a small interval centred at 0, and hence decide
factoriality (Thm. 4.5, 4.6, [Nel15]). Thus, even factoriality of Γq(HR, Ut)

′′ is not
known to hold in general. The main purpose of this paper is to investigate the
factoriality of Γq(HR, Ut)

′′. The main result in this paper is the following:

Theorem 1.1. For any strongly continuous orthogonal representation t 7→ Ut, of

R on a separable real Hilbert space HR with dim(HR) ≥ 2 and for all q ∈ (−1, 1),
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the q-deformed Araki-Woods von Neumann algebras Γq(HR, Ut)
′′ are factors, if there

exists a unit vector ξ0 ∈ HR such that Utξ0 = ξ0 for all t ∈ R.

Our proof is primarily motivated by the main result in [Ric05] on masas. The
second observation is, if a finite von Neumann algebra contains a diffuse masa so
that the orthocomplement of the associated Jones’ projection (with respect to a
faithul normal tracial state) as a bimodule over the masa is a direct sum of coarse
bimodules, then the ambient von Neumann algebra must be a factor. Thus, our
proof depends on singular masas (and this is natural as we are dealing with alge-
bras which are close to free group factors). So, our techniques are more close to
understanding the measure-multiplicity invariant of a masa that was introduced in
[DSS06]. The masas that we work with lie in the centralizer of the q-quasi free state.
We call these as generator masas, as these masas are indeed the analogue of gener-
ator masas in the free group factors. The generator masas in the free group factors
have vigorous mixing properties. So, to compare, we investigate mixing properties of
generator masas in Γq(HR, Ut)

′′ and show that the left-right measure of these masas
(see [Muk09] for Defn.) are Lebesgue absolutely continuous.
Now we describe the layout of the paper. In §2, we collect all the necessary

material that is needed to address the problem. This section contains an account of
Hiai’s construction, associated modular theory, description of the commutant and
other technical details. A convenient description of the centralizer of the q-quasi free
state is required. The centralizer depends entirely on the almost periodic component
of (Ut) and its GNS space is described in Thm. 3.4. In §4, we investigate the
properties of the generator abelian algebras which are indispensable ingredients in
our arguments. In Thm. 4.2, we establish that a canonical self-adjoint generator of
Γq(HR, Ut)

′′ generates a diffuse abelian algebra (generator masa) having conditional
expectation that preserves the vacuum state if and only if the generator lies in the
centralizer of Γq(HR, Ut)

′′ with respect to the same state.
We begin §5 by making a short account on how to regard a GNS space of an

arbitrary von Neumann algebra equipped with a faithful normal state as a standard
bimodule over a masa, when the masa comes from the centralizer of the associated
state. We also discuss strong mixing of masas (lying inside the centralizer) with
respect to a particular faithful normal state and also highlight on calculating left-
right measures of masas. In Thm. 5.3 and Thm. 5.4, we show that for a generator
algebra (masa) in Γq(HR, Ut)

′′ that possess conditional expectation preserving the
vacuum state, the left-right measure is indeed Lebesgue absolutely continuous for all

q ∈ (−1, 1). This justifies the term ‘generator masa’. This statement is an indication
that Γq(HR, Ut)

′′ will share many properties of the free group factors even when q

is away from 0 (the case when q is close to ±1 is probably more interesting from
the point of view of physics) and is a reflection of a deep theorem of Voiculescu on
the subject [Voi96]. It readily follows that if the fixed point subspace of (Ut) is at
least two dimensional, then the centralizer of the vacuum state has trivial relative
commutant and hence Γq(HR, Ut)

′′ is a factor (Cor. 5.6).
In §6, we establish factoriality of Γq(HR, Ut)

′′ in Thm. 6.1 and Thm. 6.2, when
dim(HR) ≥ 2 and q ∈ (−1, 1), in the case when (Ut) is not ergodic or has a non trivial
weakly mixing component. In §7, we extend the statement of Cor. 5.6 in Thm. 7.1
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to show that the centralizer of the vacuum state has trivial relative commutant when
dim(HR) ≥ 2, the fixed point subspace of (Ut) is at least one dimensional and the
dimension of the almost periodic part of (Ut) is at least two dimensional. Finally,
we characterize the type of the factors obtained via Hiai’s construction in Thm. 8.1
and Thm. 8.2 under the assumption that (Ut) is almost periodic with a non trivial
fixed point or has a weakly mixing component. The results are analogous to the
ones found in Thm. 3.3 [Hia03].

Acknowledgements: The authors thank Roland Speicher, Pitor Śniady and Todd
Kemp for their help with references. Special thanks to Fumio Hiai for sending his
papers promptly on request which were not available to us. The first author is
grateful to IIT Madras and Hausdorff Research Institute for their warm hospitality
where much of this work was completed. The second author thanks Arindama Singh,
Jon Bannon and Jan Cameron for helpful discussions.

2. Preliminaries

In this section, we collect some well known facts about the q-deformed Araki-
Woods von Neumann algebras constructed by Hiai in [Hia03] that will be indis-
pensable for our purpose. For detailed exposition, we refer the interested readers to
[Hia03]. As a convention, all Hilbert spaces in this paper are separable, all von Neu-
mann algebras have separable preduals and inner products are linear in the second

variable.

2.1. Hiai’s Construction. Let HR be a real Hilbert space and let t 7→ Ut, t ∈ R,
be a strongly continuous orthogonal representation of R on HR. Let HC = HR⊗R C

denote the complexification of HR. Denote the inner product and norm on HC by
〈·, ·〉HC

and ‖·‖HC
respectively. Identify HR in HC by HR⊗1. Thus, HC = HR+ iHR,

and as a real Hilbert space the inner product of HR in HC is given by ℜ〈·, ·〉HC
.

Consider the bounded anti-linear operator J : HC → HC given by J (ξ+iη) = ξ−iη,
ξ, η ∈ HR, and note that J ξ = ξ for ξ ∈ HR. Moreover,

〈ξ, η〉HC
= 〈η, ξ〉HC

= 〈η,J ξ〉HC
, for all ξ ∈ HC, η ∈ HR.

Linearly extend the flow t 7→ Ut from HR to a strongly continuous one parameter
group of unitaries in HC and denote the extensions by Ut for each t with abuse of
notation. Let A denote the analytic generator and H the associated Hamiltonian
of the extension. Then A is positive, nonsingular and self-adjoint, while H is self-
adjoint. Since HR reduces Ut for all t ∈ R, so HR reduces iH as well. Denoting D(·)
to be the domain of an (unbounded) operator, one notes that D(H) = D(iH) and
H maps D(H) ∩ HR into iHR. It follows that JH = −HJ and JA = A−1J .
Introduce a new inner product on HC by 〈ξ, η〉U = 〈 2

1+A−1 ξ, η〉HC
, ξ, η ∈ HC, and

let ‖·‖U denote the associated norm on HC. Let H denote the complex Hilbert
space obtained by completing (HC, ‖·‖U). The inner product and norm of H will

respectively be denoted by 〈·, ·〉U and ‖·‖U as well. Then, (HR, ‖·‖HC
) ∋ ξ

ı7→ ξ ∈
(HC, ‖·‖U) ⊆ (H, ‖·‖U), is an isometric embedding of the real Hilbert space HR in H
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(in the sense of [Shl97]). With abuse of notation, we will identify HR with its image
i(HR). Then, HR ∩ iHR = {0} and HR + iHR is dense in H (see pp. 332 [Shl97]).
It is now appropriate to record a subtle point which will be crucial in our attempt

to describe the centralizers of the q-deformed Araki-Woods von Neumann algebras.
As A is affiliated to vN(Ut : t ∈ R), so note that

〈Utξ, Utη〉U = 〈ξ, η〉U , for ξ, η ∈ HC.(1)

Consequently, (Ut) extends to a strongly continuous unitary representation (Ũt) of

R on H. Let Ã be the analytic generator associated to (Ũt), which is obviously
an extension of A. From the definition of 〈·, ·〉U on HC, it follows that if µ is the

spectral measure of A, then ν = fµ is the spectral measure of Ã, where f(x) = 2x
1+x

for x ∈ R≥0, and by the spectral theorem (direct integral form), the multiplicity
functions in the associated direct integrals remain the same. Note that L2(F, µ|F ) ⊆
L2(F, ν|F ) for all Borel subsets F of (0,∞). But, as f is increasing, it follows that
L2(F, µ|F ) = L2(F, ν|F ) (as a vector space) when F ⊆ [λ,∞) is measurable for
all λ > 0. Moreover, 0 < λ is an atom of µ if and only if it is an atom of ν.
Thus, if EA and EÃ denote the associated projection-valued spectral measures, then
EA([λ,∞))(HC) = EÃ([λ,∞))(H) and EA(λ)(HC) = EÃ(λ)(H) for all λ > 0. We
record the following in the form of a proposition.

Proposition 2.1. Any eigenvector of Ã is an eigenvector of A corresponding to the

same eigenvalue.

Since the spectral data of A and Ã (and hence of (Ut) and (Ũt)) are essentially

the same, and Ũt, Ã are respectively extensions of Ut, A for all t ∈ R, so we would
now write Ã = A and Ũt = Ut for all t ∈ R. This abuse of notation will cause no
confusion; on occasions where we need to differentiate the two, we will notify.
Given a complex Hilbert space and −1 < q < 1, the notion of q-Fock space Fq(·)

was introduced in [BS91]. The q-Fock space Fq(H) of H is constructed as follows.
Let Ω be a distinguished unit vector in C usually referred to as the vacuum vector.
Denote H⊗0 = CΩ, and, for n ≥ 1, let H⊗n = spanC{ξ1 ⊗ · · · ⊗ ξn : ξi ∈ H for 1 ≤
i ≤ n} denote the algebraic tensor products. Let Ffin(H) = spanC{H⊗n : n ≥ 0}.
For n,m ≥ 0 and f = ξ1⊗· · ·⊗ ξn ∈ H⊗n, g = ζ1⊗· · ·⊗ ζm ∈ H⊗m, the association

〈f, g〉q = δm,n
∑

π∈Sn

qi(π)〈ξ1, ζπ(1)〉U · · · 〈ξn, ζπ(n)〉U ,(2)

where i(π) denotes the number of inversions of the permutation π ∈ Sn, defines a
positive definite sesquilinear form on Ffin(H) and the q-Fock space Fq(H) is the
completion of Ffin(H) with respect to the norm ‖·‖q induced by 〈·, ·〉q.
For n ∈ N, let H⊗qn = H⊗n‖·‖q . For our purposes, it is important to note that

〈·, ·〉q and 〈·, ·〉0 are equivalent on H⊗n and 〈·, ·〉0 is the inner product of the standard
tensor product. Thus, rephrasing and combining two lemmas of [BS91] one has the
following.
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Lemma 2.2. The map id : (H⊗n, ‖·‖q) → (H⊗n, ‖·‖0), given by id(ξ1 ⊗ · · · ⊗ ξn) =

(ξ1⊗· · ·⊗ξn), where ξi ∈ H, 1 ≤ i ≤ n, extends uniquely to a bounded and invertible

linear map S : (H⊗qn, ‖·‖q) → (H⊗0n, ‖·‖0) for −1 < q < 1.

Proof. Following [BS91], every π ∈ Sn induces an unitary operator on H⊗0n given
by Uπ(ξ1⊗· · ·⊗ ξn) = ξπ(1)⊗· · ·⊗ ξπ(n), ξi ∈ H, 1 ≤ i ≤ n. Let Pq =

∑
π∈Sn

qi(π)Uπ.
Then, Pq ∈ B(H⊗0n) and by Lemma 3 and Lemma 4 of [BS91], Pq is strictly positive
for −1 < q < 1 and 〈f, g〉q = 〈f, Pqg〉0 for all f, g ∈ H⊗n. Consequently, Pq is
injective and hence invertible. It follows that

1∥∥∥P− 1
2

q

∥∥∥
‖f‖0 ≤ ‖f‖q ≤ ‖Pq‖

1
2 ‖f‖0 , for f ∈ H⊗n.

The rest is obvious. �

The following norm inequalities will be crucial (c.f. [BKS97], [BS91], and [Ric05]):
• If ξ ∈ H and ‖ξ‖U = 1, then

∥∥ξ⊗n
∥∥2
q
= [n]q!,(3)

where [n]q := 1+q+ · · ·+q(n−1), [n]q! :=
∏n

j=1[j]q, for n ≥ 1, and [0]q := 0, [0]q! := 1
by convention.
• If ξ1, · · · , ξn, ξ ∈ H with ‖ξj‖U = ‖ξ‖U = 1 for all 1 ≤ j ≤ n, then the following
estimate holds:

∥∥ξ1 ⊗ · · · ⊗ ξn ⊗ ξ⊗m
∥∥
q
≤ C

n
2
q

√
[m]q!, m ≥ 0,(4)

where Cq =
∏∞

i=1
1

(1−|q|i) .

For ξ ∈ H, the left q-creation and q-annihilation operators on Fq(H) are respec-
tively defined by:

cq(ξ)Ω = ξ,(5)

cq(ξ)(ξ1 ⊗ · · · ⊗ ξn) = ξ ⊗ ξ1 ⊗ · · · ⊗ ξn,

and,

cq(ξ)
∗Ω = 0,

cq(ξ)
∗(ξ1 ⊗ · · · ⊗ ξn) =

n∑

i=1

qi−1〈ξ, ξi〉Uξ1 ⊗ · · · ⊗ ξi−1 ⊗ ξi+1 ⊗ · · · ⊗ ξn,

where ξ1 ⊗ · · · ⊗ ξn ∈ H⊗qn for n ≥ 1. The operators cq(ξ) and cq(ξ)
∗ are bounded

on Fq(H) and they are adjoints of each other. Moreover, they satisfy the following
q-commutation relations:

cq(ξ)
∗cq(ζ)− qcq(ζ)cq(ξ)

∗ = 〈ξ, ζ〉U1, for all ξ, ζ ∈ H.
The following observation will be crucial for our purpose.

Lemma 2.3. Let ξ, ξi, ηj ∈ H, for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then,

cq(ξ)
∗
(
(ξ1 ⊗ · · · ⊗ ξn)⊗ (η1 ⊗ · · · ⊗ ηm)

)
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=

(
cq(ξ)

∗(ξ1 ⊗ · · · ⊗ ξn)

)
⊗ (η1 ⊗ · · · ⊗ ηm)

+ qn(ξ1 ⊗ · · · ⊗ ξn)⊗
(
cq(ξ)

∗(η1 ⊗ · · · ⊗ ηm)

)
.

Proof. The proof follows easily from Eq. (5). We leave it as an exercise. �

Following [Shl97] and [Hia03], consider the C∗-algebra Γq(HR, Ut) =: C∗{sq(ξ) :
ξ ∈ HR} and the von Neumann algebra Γq(HR, Ut)

′′, where

sq(ξ) = cq(ξ) + cq(ξ)
∗, ξ ∈ HR.

Γq(HR, Ut)
′′ is known as the q-deformed Araki-Woods von Neumann algebra (see

[Hia03, §3]). The vacuum state ϕq,U := 〈Ω, · Ω〉q (also called the q-quasi free state),
is a faithful normal state of Γq(HR, Ut)

′′ and Fq(H) is the GNS Hilbert space of
Γq(HR, Ut)

′′ associated to ϕq,U . Thus, Γq(HR, Ut)
′′ acting on Fq(H) is in standard

form [Hag75].
Making slight violation of the traditional notations, we would use the symbols 〈·, ·〉q

and ‖·‖q respectively to denote the inner product and two-norm of elements of the

GNS Hilbert space.

2.2. Modular Theory. Most of what follows in §2.2 and §2.3 is taken from [Shl97,
Hia03]. We need to have a convenient description of the commutant and centralizer
of Γq(HR, Ut)

′′ (which has been recorded in the case q = 0 in [Shl97] and a similar
collection of operators in the commutant has been identified in [Hia03]). Thus, we
need to record some facts related to the modular theory of the q-quasi free state ϕq,U .
The modular theory of Γq(HR, Ut)

′′ associated to ϕq,U is as follows. Let Jϕq,U
and

∆ϕq,U
respectively denote the modular conjugation and modular operator associated

to ϕq,U and let Sϕq,U
= Jϕq,U

∆
1
2
ϕq,U . Then, for n ∈ N,

Jϕq,U
(ξ1 ⊗ · · · ⊗ ξn) = A−1/2ξn ⊗ · · · ⊗A−1/2ξ1, ∀ ξi ∈ HR ∩D(A− 1

2 );(6)

∆ϕq,U
(ξ1 ⊗ · · · ⊗ ξn) = A−1ξ1 ⊗ · · · ⊗ A−1ξn, ∀ ξi ∈ HR ∩D(A−1);

Sϕq,U
(ξ1 ⊗ · · · ⊗ ξn) = ξn ⊗ · · · ⊗ ξ1, ∀ ξi ∈ HR.

The modular automorphism group (σ
ϕq,U

t ) of ϕq,U is given by σ
ϕq,U

−t = Ad(F(Ut)),

where F(Ut) = id⊕⊕n≥1U
⊗qn
t , for all t ∈ R. In particular,

σ
ϕq,U

−t (sq(ξ)) = sq(Utξ), for all ξ ∈ HR.(7)

2.3. Commutant. Now we proceed to describe the commutant of Γq(HR, Ut)
′′.

Consider the set

H′
R = {ξ ∈ H : 〈ξ, η〉U ∈ R for all η ∈ HR}.

Note that H′
R
+ iH′

R
= H and H′

R
∩ iH′

R
= {0}. Let ζ ∈ D(A−1/2) ∩HR. Note that

for all η ∈ HR, one has

〈A−1/2ζ, η〉U = 〈 2A
−1/2

1 + A−1
ζ, η〉HC

= 〈η,J 2A−1/2

1 + A−1
ζ〉HC

(8)
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= 〈η, 2A
1/2

1 + A
ζ〉HC

= 〈 2

1 + A−1
η, A−1/2ζ〉HC

= 〈η, A−1/2ζ〉U .
From Eq. (8), it follows that

(9) A−1/2ζ ∈ H′
R
for all ζ ∈ D(A− 1

2 ) ∩HR.

Also note that for η, ξ ∈ D(A−1) ∩HR, one has

〈η, ξ〉U = 〈 2

1 + A−1
η, ξ〉HC

= 〈ξ,J 2

1 + A−1
η〉HC

(10)

= 〈ξ, 2

1 + A
η〉HC

= 〈 2

1 + A−1
ξ, A−1η〉HC

= 〈ξ, A−1η〉U = 〈A− 1
2 ξ, A− 1

2 η〉U (as D(A−1) ⊆ D(A− 1
2 )).

Now for ξ ∈ H, define the right creation operator rq(ξ) on Fq(H) by

rq(ξ)Ω = ξ,(11)

rq(ξ)(ξ1 ⊗ · · · ⊗ ξn) = ξ1 ⊗ · · · ⊗ ξn ⊗ ξ, ξi ∈ H, n ≥ 1.

Clearly, rq(ξ) = cq(ξ)
∗, where  : Fq(H) → Fq(H) is the unitary defined by

(ξ1 ⊗ · · · ⊗ ξn) = ξn ⊗ · · · ⊗ ξ1, where ξi ∈ H for all 1 ≤ i ≤ n, n ≥ 1,(12)

(Ω) = Ω.

Therefore, rq(ξ) is a bounded operator on Fq(H) and its adjoint rq(ξ)
∗ is given by

rq(ξ)
∗Ω = 0,

(13)

rq(ξ)
∗(ξ1 ⊗ · · · ⊗ ξn) =

n∑

i=1

qn−i〈ξ, ξi〉Uξ1 ⊗ · · · ⊗ ξi−1 ⊗ ξi+1 ⊗ · · · ⊗ ξn, ξi ∈ H, n ≥ 1.

Write dq(ξ) = rq(ξ) + rq(ξ)
∗, ξ ∈ H. It is easy to observe that {dq(ξ) : ξ ∈ H′

R
} ⊆

Γq(HR, Ut)
′. The following result establishes that the reverse inclusion is also true

and its proof is similar to the one obtained in [Shl97, Thm. 3.3].

Theorem 2.4. Suppose ξ ∈ D(A−1) ∩ HR. Then Jϕq,U
sq(ξ)Jϕq,U

= dq(A
− 1

2 ξ).
Moreover, Γ(HR, Ut)

′ = {dq(ξ) : ξ ∈ H′
R
}′′.

Proof. Fix n ≥ 1 and let η1, η2, · · · , ηn ∈ D(A−1)∩HR. Then from Eq. (6), we have

Jϕq,U
sq(ξ)(η1 ⊗ η2 ⊗ · · · ⊗ ηn)

= Jϕq,U

(
n∑

i=1

q(i−1)〈ξ, ηi〉Uη1 ⊗ · · · ⊗ ηi−1 ⊗ ηi+1 · · · ⊗ ηn

)
+ Jϕq,U

(ξ ⊗ η1 ⊗ · · · ⊗ ηn)

=

n∑

i=1

q(i−1)〈ηi, ξ〉UA− 1
2ηn ⊗ · · · ⊗A− 1

2 ηi+1 ⊗ A− 1
2ηi−1 ⊗ · · · ⊗ A− 1

2η1

+ A− 1
2ηn ⊗ · · · ⊗A− 1

2 η1 ⊗ A− 1
2 ξ (since D(A−1) ⊆ D(A− 1

2 ))
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=
n∑

i=1

q(i−1)〈ξ, A−1ηi〉UA− 1
2 ηn ⊗ · · · ⊗ A− 1

2ηi+1 ⊗A− 1
2 ηi−1 ⊗ · · · ⊗A− 1

2 η1

+ A− 1
2ηn ⊗ · · · ⊗A− 1

2 η1 ⊗ A− 1
2 ξ (by Eq. (10))

=

n∑

i=1

q(i−1)〈A− 1
2 ξ, A− 1

2 ηi〉UA− 1
2ηn ⊗ · · · ⊗A− 1

2 ηi+1 ⊗ A− 1
2 ηi−1 ⊗ · · · ⊗ A− 1

2η1

+ A− 1
2ηn ⊗ · · · ⊗A− 1

2 η1 ⊗ A− 1
2 ξ (since D(A−1) ⊆ D(A− 1

2 ))

= dq(A
− 1

2 ξ)Jϕq,U
(η1 ⊗ η2 ⊗ · · · ⊗ ηn) (from Eq. (11) and Eq. (13)).

It follows that Jϕq,U
sq(ξ)Jϕq,U

= dq(A
− 1

2 ξ).
Since Γq(HR, Ut)

′′ is in standard form in Fq(H), so from the fundamental theorem
of Tomita-Takesaki theory Γq(HR, Ut)

′ = Jϕq,U
Γq(HR, Ut)

′′Jϕq,U
. Again from Eq. (9),

one has A− 1
2 ξ ∈ H′

R
for all ξ ∈ D(A− 1

2 ) ∩ HR. By what we have proved so far, it
follows that {Jϕq,U

sq(ξ)Jϕq,U
: ξ ∈ D(A−1) ∩ HR} ⊆ {dq(ξ) : ξ ∈ H′

R
}′′. Note that

from Eq. (5) it follows that, if HR ∋ ξn → ξ ∈ HR in ‖·‖HC
(equivalently in ‖·‖U),

then sq(ξn) → sq(ξ) in ‖·‖ (as ‖sq(ζ)‖ = 2√
1−q ‖ζ‖U for all ζ ∈ HR). Consequently,

D(A−1) ∩ HR being dense in HR, it follows that Γq(HR, Ut)
′ ⊆ {dq(ξ) : ξ ∈ H′

R
}′′.

Since the reverse inclusion is straight forward to check, the proof is complete. �

2.4. Notations and some technical facts. In this paper, we are interested in the
factoriality of Γq(HR, Ut)

′′ and the orthogonal representation remain arbitrary but
fixed. Thus, to reduce notation, we will write Mq = Γq(HR, Ut)

′′ and ϕ = ϕq,U . We
will also denote Jϕq,U

by J and ∆ϕq,U
by ∆. As Ω is separating for both Mq and

M ′
q, for ζ ∈ MqΩ and η ∈ M ′

qΩ there exist unique xζ ∈ Mq and x
′
η ∈ M ′

q such that
ζ = xζΩ and η = x′ηΩ. In this case, we will write

sq(ζ) = xζ and dq(η) = x′η.(14)

Thus, for example, as ξ ∈ MqΩ for every ξ ∈ HR, so sq(ξ + iη) = sq(ξ) + isq(η) for
all ξ, η ∈ HR.
Caution: Note that cq(ξ) and rq(ξ) are bounded operators for all ξ ∈ H. Write

s̃q(ξ) = cq(ξ) + cq(ξ)
∗ and d̃q(ξ) = rq(ξ) + rq(ξ)

∗, ξ ∈ H.

Note that if ξ ∈ HR, then s̃q(ξ) = sq(ξ), and if ξ ∈ H′
R
then d̃q(ξ) = dq(ξ). If

ξ = ξ1 + iξ2 for ξ1, ξ2 ∈ HR and ξ2 6= 0, then note that s̃q(ξ) 6= sq(ξ).
Write Z(Mq) =Mq ∩M ′

q. Let M
ϕ
q denote the centralizer of Mq associated to the

state ϕ. For ξ ∈ HR, denote Mξ = vN(sq(ξ)). Note that Mξ is abelian as sq(ξ) is
self-adjoint. To understand the Hilbert space Fq(H) as a bimodule over Mξ, it will
be convenient for us to work with appropriate choice of orthonormal basis of HR

with respect to 〈·, ·〉HC
. We say that a vector ξ ∈ HR is analytic, if sq(ξ) is analytic

for (σϕt ).

Proposition 2.5. HR has an orthonormal basis with respect to 〈·, ·〉HC
comprising

of analytic vectors. Further, if ξ0 ∈ HR be a unit vector such that Utξ0 = ξ0 for all

t ∈ R, then such an orthonormal basis of HR can be chosen so that it includes ξ0.
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Proof. Note that Ut = Ait for all t ∈ R. For ζ ∈ HR and r > 0, let ζr =√
r
π

∫
R
e−rt

2
Utζdt. It is well known that ζr → ζ in ‖·‖HC

(equivalently in ‖·‖U
as the vectors involved are real) as r → 0. As (Ut) reduces HR and ζ ∈ MqΩ, so
ζr ∈ MqΩ for all r > 0. Fix r > 0. Consider sq(ζr) ∈ Mq (as defined in Eq. (14)).
Then, by Eq. (7) it follows that

σϕs (sq(ζr)) = sq(

√
r

π

∫

R

e−r(t+s)
2

Utζdt), s ∈ R.(15)

Note that fζr(z) =
√

r
π

∫
R
e−r(t+z)

2
Utζdt ∈ HC for all z ∈ C. Thus, sq(fζr(z)) is

defined by Eq. (14) and belongs to Mq. It is easy to see that sq(fζr(·)) : C →Mq is
an analytic extension of R ∋ s 7→ σϕs (sq(ζr)). Thus, ζr is analytic.
Let D0 = spanR{ζr : r > 0, ζ ∈ HR}. Note that D0 (consisting of analytic vectors)

is dense in (HR, 〈·, ·〉HC
). Finally, use the fact that any dense subspace of a separable

(real) Hilbert space has an orthonormal basis consisting of elements from the dense
subspace. The rest is clear. We omit the details. �

Remark 2.6. Note that from Eq. (14) and Eq. (15), it follows that σϕz (sq(ζr)) =
sq(fζr(z)) for all z ∈ C and r > 0 (where ζr ∈ D0 as in the proof of Prop. 2.5).
From Eq. (6), it follows that

A− 1
2 ζr = σ

ϕ

− i
2

(sq(ζr))Ω = sq
(
fζr(−

i

2
)
)
Ω =

√
r

π

∫

R

e−r(t−
i
2
)2Utζdt.

Decomposing into real and imaginary parts and arguing as in the proof of Prop. 2.5,
it is easy to check that A− 1

2 ζr is analytic for all r > 0 as well.

Note that 〈·, ·〉HC
is clearly not the inner product in the GNS space but is connected

to the latter. In fact, the following observation will be crucial all throughout the
paper and tries to find instances when ‘orthogonality’ with respect to one inner
product entails ‘certain orthogonality’ with respect to the other. The following is
an analogue of the fact that a word in the free group F2 = 〈a, b〉 is orthogonal to
the generator masa vN(a) with respect to the trace if and only if one letter in the
word is b or b−1.

Lemma 2.7. Let ξ0 ∈ HR be a unit vector such that Utξ0 = ξ0 for all t. Then the

following hold.

(1) For η ∈ HR + iHR one has

〈ξ0, η〉U = 〈ξ0, η〉HC
.

(2) Let ξ1, · · · , ξn ∈ HR be non zero vectors. If k ≥ 1, then

〈ξ⊗k0 , ξ1 ⊗ · · · ⊗ ξn〉q = 0,

if and only if n 6= k or 〈ξ0, ξi〉HC
= 0 for at least one i.

(3) Let ξ1, · · · , ξn ∈ HR ∩D(A− 1
2 ) be non zero vectors. If k ≥ 1, then

〈ξ⊗k0 , A− 1
2 ξ1 ⊗ · · · ⊗A− 1

2 ξn〉q = 0,

if and only if n 6= k or 〈ξ0, ξi〉HC
= 0 for at least one i.
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Proof. (1). Note that 2
1+A−1 ξ0 = ξ0. Thus, the result follows from the definition of

〈·, ·〉U .
(2). Note that

〈ξ⊗k0 , ξ1 ⊗ · · · ⊗ ξn〉q = δn,k〈ξ⊗n0 , ξ1 ⊗ · · · ⊗ ξn〉q

= δn,k
∑

π∈Sn

qi(π)
n∏

j=1

〈ξ0, ξπ(j)〉U (by Eq. (2))

= δn,k
∑

π∈Sn

qi(π)
n∏

j=1

〈 2

1 + A−1
ξ0, ξπ(j)〉HC

= δn,k
∑

π∈Sn

qi(π)
n∏

j=1

〈ξ0, ξπ(j)〉HC

= δn,k

n∏

j=1

〈ξ0, ξj〉HC

∑

π∈Sn

qi(π)

= δn,k

n∏

j=1

〈ξ0, ξj〉HC
[n]q!.

The rest is immediate.
(3). First note that as ξi ∈ HR, so A

− 1
2 ξi ∈ HC. Observe that

〈ξ⊗k0 , A− 1
2 ξ1 ⊗ · · · ⊗ A− 1

2 ξn〉q = δn,k〈ξ⊗n0 , A− 1
2 ξ1 ⊗ · · · ⊗ A− 1

2 ξn〉q

= δn,k
∑

π∈Sn

qi(π)
n∏

j=1

〈ξ0, A− 1
2 ξπ(j)〉U (by Eq. (2))

= δn,k
∑

π∈Sn

qi(π)
n∏

j=1

〈ξ0, ξπ(j)〉U

= 〈ξ⊗k0 , ξ1 ⊗ · · · ⊗ ξn〉q.

Thus, the result follows from (2) above. �

3. Centralizer

A convenient description of the centralizer Mϕ
q = {x ∈ Mq : σ

ϕ
t (x) = x ∀ t ∈ R}

is a component we need to decide the factoriality and type ofMq. In this section, we
borrow ideas from Thm. 2.2 of [Hia03] and show that the centralizer of Mq depends
on the almost periodic part of the orthogonal representation (Ut). We need some
intermediate results.

Lemma 3.1. The following hold.

(1) The vector ξ1 ⊗ · · · ⊗ ξn ∈MqΩ for any ξi ∈ HR, 1 ≤ i ≤ n and n ∈ N.

(2) The vector ξ1 ⊗ · · · ⊗ ξn ∈ M ′
qΩ for any ξi ∈ D(A− 1

2 ) ∩ HR, 1 ≤ i ≤ n and

n ∈ N.
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Proof. In both cases, the proof proceeds by induction.
(1) Let n = 1. Then by definition of Mq it follows that ξ = sq(ξ)Ω ∈ MqΩ for all
ξ ∈ HR. Now suppose that ξ1 ⊗ · · · ⊗ ξt ∈ MqΩ for all ξj ∈ HR, 1 ≤ j ≤ t and for
all 1 ≤ t ≤ n. Let ξn+1 ∈ HR. Then from Eq. (5) we have,

ξ1 ⊗ · · · ⊗ ξn ⊗ ξn+1 = sq(ξ1)sq(ξ2 ⊗ · · · ⊗ ξn+1)Ω

−
n+1∑

l=2

ql−2〈ξ1, ξl〉Uξ2 ⊗ · · · ⊗ ξl−1 ⊗ ξl+1 ⊗ · · · ⊗ ξn+1.

But the right hand side of the above expression lies in MqΩ by the induction hy-
pothesis. Thus, ξ1 ⊗ · · · ⊗ ξn ∈MqΩ for ξi ∈ HR, 1 ≤ i ≤ n and for all n ∈ N.

(2) Let ξ ∈ D(A− 1
2 ) ∩ HR. By Eq. (6), it follows that J(HR) ⊆ HC. Thus,

write Jξ = η1 + iη2 with η1, η2 ∈ HR. Then sq(ηj) ∈ Mq for j = 1, 2, thus Jξ =
(sq(η1) + isq(η2))Ω ∈ MqΩ. Note that Jsq(Jξ)JΩ = ξ. Consequently, ξ ∈ M ′

qΩ
by the fundamental theorem of Tomita-Takesaki theory. Like before, assume that
ξ1 ⊗ · · · ⊗ ξt ∈M ′

qΩ for all ξj ∈ HR ∩D(A− 1
2 ), 1 ≤ j ≤ t and for all 1 ≤ t ≤ n.

Fix ξn+1 ∈ D(A− 1
2 )∩HR and let Jξn+1 = A− 1

2 ξn+1 = η1n+1+iη
2
n+1 with η

1
n+1, η

2
n+1 ∈

HR (see Eq. (6)). Then for ξi ∈ D(A− 1
2 ) ∩ HR for all 1 ≤ i ≤ n, from Eq. (5), Eq.

(6), and the fact that J2 = 1, it follows that

Jsq(Jξn+1)Jdq(ξ1 ⊗ · · · ⊗ ξn)Ω

= Jsq(Jξn+1)J(ξ1 ⊗ · · · ⊗ ξn)

= J
(
(cq(η

1
n+1) + icq(η

2
n+1))(A

− 1
2 ξn ⊗ · · · ⊗ A− 1

2 ξ1)
)

+ J
(
(cq(η

1
n+1)

∗ + icq(η
2
n+1)

∗)(A− 1
2 ξn ⊗ · · · ⊗ A− 1

2 ξ1)
)

= J
(
(η1n+1 + iη2n+1)⊗ (A− 1

2 ξn ⊗ · · · ⊗ A− 1
2 ξ1)

)

+ J
(
(cq(η

1
n+1)

∗ + icq(η
2
n+1)

∗)(A− 1
2 ξn ⊗ · · · ⊗ A− 1

2 ξ1)
)

= J
(
A− 1

2 ξn+1 ⊗A− 1
2 ξn ⊗ · · · ⊗ A− 1

2 ξ1

)

+ J
(
(cq(η

1
n+1)

∗ + icq(η
2
n+1)

∗)(A− 1
2 ξn ⊗ · · · ⊗ A− 1

2 ξ1)
)

= ξ1 ⊗ · · · ⊗ ξn ⊗ ξn+1 + J
(
(cq(η

1
n+1)

∗ + icq(η
2
n+1)

∗)(A− 1
2 ξn ⊗ · · · ⊗ A− 1

2 ξ1)
)
.

Using the induction hypothesis, Eq. (5) and decomposing vectors in HC into real
and imaginary parts, it is straightforward to check that

J
(
(cq(η

1
n+1)

∗ + icq(η
2
n+1)

∗)(A− 1
2 ξn ⊗ · · · ⊗A− 1

2 ξ1)
)
∈M ′

qΩ.

Hence, ξ1 ⊗ · · · ⊗ ξn ⊗ ξn+1 ∈M ′
qΩ. Now use induction to complete the proof. �

In the next Lemma, we make use of Lemma 3.1 to show how certain operators in
Mq act on simple tensors.
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Lemma 3.2. Let ξ, ξi ∈ HR for 1 ≤ i ≤ n be such that 〈ξi, ξ〉U = 0 for 1 ≤ i ≤ n.

Then,

sq(ξ1 ⊗ · · · ⊗ ξn)(ξ
⊗k) = ξ1 ⊗ · · · ⊗ ξn ⊗ ξ⊗k, for all k ≥ 0.

Proof. Note that by Lemma 3.1, it follows that sq(ξ1 ⊗ · · · ⊗ ξn) ∈ Mq. The result
is clearly true for k = 0 by definition (see Eq. (14)). We will only prove this result
for k = 1. For k ≥ 2, the argument is similar.
We use induction. Let n = 1, then note that,

sq(ξ1)ξ = ξ1 ⊗ ξ + 〈ξ1, ξ〉UΩ = ξ1 ⊗ ξ, by Eq. (5).

Now suppose that the result is true for all 1 ≤ m ≤ n. Let ξn+1 ∈ HR be such that
〈ξn+1, ξ〉U = 0. Then, from Eq. (5) and the proof of Lemma 3.1, we have

sq(ξ1 ⊗ · · · ⊗ ξn ⊗ ξn+1) = sq(ξ1)sq(ξ2 ⊗ · · · ⊗ ξn+1)

−
n+1∑

l=2

ql−2〈ξ1, ξl〉Usq(ξ2 ⊗ · · · ⊗ ξl−1 ⊗ ξl+1 ⊗ · · · ⊗ ξn+1).

Consequently, by using the induction hypothesis, one has

sq(ξ1 ⊗ · · · ⊗ ξn ⊗ ξn+1)ξ

=sq(ξ1)sq(ξ2 ⊗ · · · ⊗ ξn+1)ξ

−
n+1∑

l=2

ql−2〈ξ1, ξl〉Usq(ξ2 ⊗ · · · ⊗ ξl−1 ⊗ ξl+1 ⊗ · · · ⊗ ξn+1)ξ

=sq(ξ1)(ξ2 ⊗ · · · ⊗ ξn+1 ⊗ ξ)

−
n+1∑

l=2

ql−2〈ξ1, ξl〉U(ξ2 ⊗ · · · ⊗ ξl−1 ⊗ ξl+1 ⊗ · · · ⊗ ξn+1 ⊗ ξ)

=ξ1 ⊗ · · · ⊗ ξn ⊗ ξn+1 ⊗ ξ, by Eq. (5).

This completes the proof. �

Since t 7→ Ut, t ∈ R, is a strongly continuous orthogonal representation of R on
the real Hilbert space HR, so there is a unique decomposition (c.f. [Shl97]),

(HR, Ut) =

(
N1⊕

j=1

(R, id)

)
⊕
(

N2⊕

k=1

(HR(k), Ut(k))

)
⊕ (H̃R, Ũt),(16)

where 0 ≤ N1, N2 ≤ ℵ0,

HR(k) = R
2, Ut(k) =

(
cos(t log λk) − sin(t log λk)
sin(t log λk) cos(t log λk)

)
, λk > 1,

and (H̃R, Ũt) corresponds to the weakly mixing component of the orthogonal repre-

sentation; thus H̃R is either 0 or infinite dimensional.
If N1 6= 0, let ej = 0⊕· · ·⊕0⊕1⊕0⊕· · ·⊕0 ∈⊕N1

j=1R, where 1 appears at the j-th

place for 1 ≤ j ≤ N1. Similarly, if N2 6= 0, let f 1
k = 0⊕· · ·⊕0⊕

(
1
0

)
⊕0⊕· · ·⊕0 ∈
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⊕N2

k=1HR(k) and f 2
k = 0 ⊕ · · · ⊕ 0 ⊕

(
0
1

)
⊕ 0 ⊕ · · · ⊕ 0 ∈ ⊕N2

k=1HR(k) be vectors

with non zero entries in the k-th position for 1 ≤ k ≤ N2. Denote

e1k =

√
λk + 1

2
(f 1
k + if 2

k ) and e
2
k =

√
λ−1
k + 1

2
(f 1
k − if 2

k ),

thus e1k, e
2
k ∈ HR(k) + iHR(k) are orthonormal basis of (HR(k) + iHR(k), 〈·, ·〉U) for

1 ≤ k ≤ N2. Fix 1 ≤ k ≤ N2. The analytic generator A(k) of (Ut(k)) is given by

A(k) =
1

2

(
λk +

1
λk

i(λk − 1
λk
)

−i(λk − 1
λk
) λk +

1
λk

)
.

Moreover,

A(k)e1k =
1

λk
e1k and A(k)e2k = λke

2
k.

Write S = {ej : 1 ≤ j ≤ N1} ∪ {e1k, e2k : 1 ≤ k ≤ N2} if N1 6= 0 or N2 6= 0, else
set S = {0}. If S 6= {0}, then S is an orthogonal set in (HC, 〈·, ·〉U) and the space
of eigen vectors of the analytic generator A of (Ut) is contained in span S. In the
event S 6= {0}, rename the elements of the set S as ζ1, ζ2, · · · , i.e., S = {ζi : 1 ≤
i ≤ N1 + 2N2}, whence Aζl = βlζl with βl ∈ EA for all l, where EA = {1} ∪ {λk :
1 ≤ k ≤ N2} ∪ { 1

λk
: 1 ≤ k ≤ N2}. It is to be understood that when N1 = ∞ (resp.

N2 = ∞), the constraints j ≤ N1 and i ≤ N1+2N2 (resp. k ≤ N2 and i ≤ N1+2N2)
(in defining S and EA) is replaced by j < N1 and i < N1 + 2N2 (resp. k < N2 and
i < N1 + 2N2).
The following result must be known to experts but we lag a reference, so we prove

it for the sake of convenience.

Proposition 3.3. Let (ρ,H) be a strongly continuous unitary representation of a

separable locally compact abelian group G on a Hilbert space H. For n ≥ 1 and

q ∈ (−1, 1), let ρ⊗qn be the n-fold amplification of ρ on H⊗qn defined by

ρ⊗qn(g)(ξ1 ⊗ · · · ⊗ ξn) = ρ(g)ξ1 ⊗ · · · ⊗ ρ(g)ξn, g ∈ G, ξi ∈ H for 1 ≤ i ≤ n.

Then (ρ⊗qn,H⊗qn) is a strongly continuous unitary representation of G. Let η ∈
H⊗qn be an eigen vector of ρ⊗qn with associated character χ ∈ Ĝ. Let

eχ =
{
ξ1 ⊗ · · · ⊗ ξn : ξi ∈ H, ∃ χi ∈ Ĝ such that

ρ(·)ξi = χi(·)ξi, 1 ≤ i ≤ n,

n∏

i=1

χi = χ
}
.

Then, η ∈ span eχ.

Proof. First of all, note that Eq. (2) forces that ρ⊗qn is a strongly continuous unitary
representation of G. Note that by Lemma 2.2, the operator S : (H⊗qn, ‖·‖q) →
(H⊗0n, ‖·‖0) defined by S(ξ1 ⊗ · · · ⊗ ξn) = ξ1 ⊗ · · · ⊗ ξn, for all ξi ∈ H, 1 ≤ i ≤ n,
is bounded and invertible. Moreover, S−1ρ⊗0n(·)S = ρ⊗qn(·). Consequently, the
spectral properties of ρ⊗qn and ρ⊗0n are identical. Also note that ρ⊗0n is the usual
tensor product representation on the usual tensor product of Hilbert spaces.
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The result now follows from the following fact. If Uj ∈ B(K) is unitary for
1 ≤ j ≤ n, then λ ∈ S1 is an eigen value of U1 ⊗ · · · ⊗ Un if and only if there
exist λj ∈ S1 and unit vectors ξj ∈ K such that Ujξj = λjξj for 1 ≤ j ≤ n and
λ =

∏n
j=1 λj . The rest is obvious, we omit the details. �

Theorem 3.4. Let

W0 =





{ζi1 ⊗ · · · ⊗ ζin : ζij ∈ S, 1 ≤ ij ≤ N1 + 2N2,
∏n

j=1 βij = 1, n ∈ N},
if max(N1, N2) <∞;

{ζi1 ⊗ · · · ⊗ ζin : ζij ∈ S, 1 ≤ ij < N1 + 2N2,
∏n

j=1 βij = 1, n ∈ N},
if max(N1, N2) = ∞.

Let W = CΩ⊕ span W0
‖·‖q . Then, Mϕ

q Ω = W ∩MqΩ.

Proof. Decomposing vectors in S into real and imaginary parts and using Lemma
3.1, it follows that W0 ⊆ MqΩ. Fix n ∈ N and let 1 ≤ i1, · · · , in ≤ N1 + 2N2 or
1 ≤ i1, · · · , in < N1 + 2N2 (as the case may be), be such that βi1 · · ·βin = 1. Pick
ζij ∈ S for 1 ≤ j ≤ n. Consider x = sq(ζi1 ⊗ · · · ⊗ ζin) ∈ Mq. As σϕ−t = Ad(F(Ut))
(see Eq. (6), (7)), so

σ
ϕ
−t(x)Ω = F(Ut)xF(Ut)

∗Ω = F(Ut)xΩ = F(Ut)(ζi1 ⊗ · · · ⊗ ζin)

= Utζi1 ⊗ · · · ⊗ Utζin

= (βi1 · · ·βin)it(ζi1 ⊗ · · · ⊗ ζin), (since Ut = Ait)

= sq(ζi1 ⊗ · · · ⊗ ζin)Ω

= xΩ, for all t ∈ R.

Consequently, x = sq(ζi1 ⊗ · · · ⊗ ζin) ∈ Mϕ
q . Therefore, conclude that W ∩MqΩ ⊆

Mϕ
q Ω.
For the reverse inclusion, let y ∈ Mϕ

q and write yΩ =
∑∞

n=0 ηn, where ηn ∈ H⊗qn

for all n ≥ 0 and the series converges in ‖·‖q. It is enough to show that ηn ∈ W for
all n ≥ 0. Again, note that

∞∑

n=0

ηn = σ
ϕ
−t(y)Ω = F(Ut)yF(Ut)

∗Ω

= F(Ut)yΩ

= F(Ut)

∞∑

n=0

ηn =

∞∑

n=0

F(Ut)ηn, for all t ∈ R.

Since F(Ut)H⊗qn = H⊗qn for all n ≥ 0 and for all t ∈ R, so we have F(Ut)ηn = ηn
for all n and for all t ∈ R. Fix n ≥ 1 such that ηn 6= 0. Therefore, by Prop. 2.1 and

Prop. 3.3, it follows that there exist ζ
(n)
k,l ∈ S and β

(n)
k,l ∈ EA with Aζ

(n)
k,l = β

(n)
k,l ζ

(n)
k,l

for 1 ≤ k ≤ n and scalars cn,l, l ∈ N, such that ηn =
∑

l cn,l(ζ
(n)
1,l ⊗ · · · ⊗ ζ

(n)
n,l ) and∏n

k=1 β
(n)
k,l = 1 for all l; the series above converges in ‖·‖q. Consequently, ηn ∈ W

for all n ≥ 0 and the proof is complete. �
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Remark 3.5. (i) Suppose N1 = 1, N2 = 0 and H̃R 6= 0 in Eq. (16). Then by Thm.
3.4 we have Mϕ

q = Mξ, where 0 6= ξ ∈ HR is such that Utξ = ξ for all t ∈ R. From
Thm. 5.4 (proved later), Mξ is a masa in Mq, so (Mϕ

q )
′ ∩Mq = Mϕ

q . Thus, the
conclusion of Thm. 3.2 of [Hia03] is not true in general.
(ii) If EA = {1}, then Mϕ

q is isomorphic to the q-Gaussian von Neumann algebra

of Bo
.
zejko and Speicher [BS91, BKS97]. Thus, in this case, if 1 is eigen value of

multiplicity more than or equal to 2, then Mϕ
q is a factor by [Ric05] (compare Cor.

5.6).

4. Generator Algebras Mξ

In this section, we investigate the von Neumann subalgebras Mξ for ξ ∈ HR, and
record some of their properties. This is a preparatory section and the aforesaid
subalgebras play major role in deciding the factoriality of Mq.
In the case when q = 0, t 7→ Ut is the identity representation of R and dim(HR) ≥

2, it is well known that M0 = Γ0(HR, idt) ∼= LFdim(HR) (see [VDN92]). In that case,
for all 0 6= ξ ∈ HR, the algebraMξ is maximal injective (see [Po83]), strongly mixing
masa, for which the orthocomplement of the associated Jones’ projection regarded
as aMξ-bimodule is infinite direct sum of coarse bimodules (see [CFM13], [DSS06]).
Moreover, if ξ1, ξ2 ∈ HR be non zero elements such that 〈ξ1, ξ2〉HC

= 0, then Mξ1

and Mξ2 are free and outer conjugate [VDN92].
Note that if 0 6= ξ ∈ HR and Utξ = ξ for all t ∈ R, then sq(ξ) ∈ Mϕ

q (from Eq.
(7)). So Jξ = Jsq(ξ)Ω = sq(ξ)

∗Ω = sq(ξ)Ω = ξ.
By Eq. (1.2) of [Hia03], for ξ ∈ HR with ‖ξ‖U = 1, the moments of the operator

sq(ξ) with respect to the q-quasi free state ϕ(·) = 〈Ω, ·Ω〉q is given by

ϕ(sq(ξ)
n) =

{
0, if n is odd,∑

V={π(r),κ(r)}1≤r≤n
2

qc(V), if n is even,

where the summation is taken over all pair partitions V = {π(r), κ(r)}1≤r≤n
2
of

{1, 2, · · · , n} with π(r) < κ(r) and c(V) is the number of crossings of V, i.e,
c(V) = #{(r, s) : π(r) < π(s) < κ(r) < κ(s)}.

So, it follows that for ξ ∈ HR with ‖ξ‖U = 1, the distribution of the single q-Gaussian
sq(ξ) does not depend on the group (Ut). In the tracial case, and thus in all cases, this
distribution obeys the semicircular law νq which is absolutely continuous with respect
to the uniform measure supported on the interval [− 2√

1−q ,
2√
1−q ]. The associated

orthogonal polynomials are q-Hermite polynomials Hq
n, n ≥ 0. For the density

function of νq and the recurrence relations defining the q-Hermite polynomials, we
refer the reader to Defn. 1.9 and Thm. 1.10 of [BKS97] (also see [Nou06], [VDN92]).
Hence, Mξ

∼= L∞([− 2√
1−q ,

2√
1−q ], νq), thus Mξ is diffuse and {Hq

n(sq(ξ))Ω : n ≥ 0},
is a total orthogonal set of vectors in MξΩ

‖·‖q . Write Eξ = {ξ⊗n : n ≥ 0}.
Lemma 4.1. The following hold.

(1) Let ξ ∈ HR be a unit vector such that Utξ = ξ for all t ∈ R. Then, Eξ ⊆
MqΩ ∩M ′

qΩ.
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(2) Let ξ ∈ HR be a unit vector. Then, MξΩ
‖·‖q = span Eξ

‖·‖q .

Proof. (1) This follows directly from Lemma 3.1 as ξ ∈ D(A− 1
2 ).

(2) From the Wick product formula in Prop. 2.9 of [BKS97], it follows that ξ⊗n =
Hq
n(sq(ξ))Ω for all n ≥ 0 (by convention ξ⊗0 = Ω). Thus, ξ⊗n ∈MξΩ for all n ≥ 0. It

is now clear that span Eξ‖·‖q ⊆MξΩ
‖·‖q . Now use Stone-Weierstrass and Kaplansky

density theorems or the fact that MξΩ
‖·‖q ∼= L2([− 2√

1−q ,
2√
1−q ], νq) to establish the

reverse inclusion. �

Theorem 4.2. Let ξ ∈ HR be a unit vector. There exists unique ϕ-preserving

faithful normal conditional expectation Eξ : Mq → Mξ if and only if sq(ξ) ∈ Mϕ
q ,

equivalently Utξ = ξ for all t ∈ R.

Proof. Suppose there exists a conditional expectation Eξ : Mq → Mξ such that
ϕ(Eξ(x)) = ϕ(x), for all x ∈ Mq. Clearly, Eξ is faithful and normal. By Takesaki’s
theorem [Tak72], we have σϕt (Mξ) = Mξ for all t ∈ R. Moreover, from [Tak72] we
have Eξ ◦ σϕt = σ

ϕ
t ◦ Eξ for all t ∈ R. Thus,

Eξ(σ
ϕ
t (sq(ξ))) = σ

ϕ
t (Eξ(sq(ξ))) for all t.

Let Pξ : L2(Mq, ϕ) → MξΩ
‖·‖q denote the orthogonal projection (L2(Mq, ϕ) =

Fq(H)). Since ϕ(sq(ξ)) = 0, so ϕ(σt(sq(ξ))) = 0 for all t ∈ R as well. Thus, using
Lemma 4.1 and expanding in terms of orthonormal basis, we have σϕt (sq(ξ))Ω =∑∞

n=1 an(t)ξ
⊗n, an(t) ∈ C, for all t ∈ R. Hence, from Eq. (7), we have

U−tξ = sq(U−tξ)Ω = σ
ϕ
t (sq(ξ))Ω

= σ
ϕ
t (Eξ(sq(ξ)))Ω = Eξ(σ

ϕ
t (sq(ξ)))Ω

= Pξσ
ϕ
t (sq(ξ))PξΩ

= Pξ

∞∑

n=1

an(t)ξ
⊗n

=
∞∑

n=1

an(t)ξ
⊗n.

Consequently, an(t) = 0 for all n ≥ 2 from Eq. (6), and

U−tξ = a1(t)ξ = λtξ, for all t ∈ R.

As Ω is seperating for Mq, it follows that σ
ϕ
t (sq(ξ)) = λtsq(ξ). Thus, λtλs = λt+s for

all t, s ∈ R, λ0 = 1, λt ∈ {±1} (as sq(ξ) is self-adjoint) and t 7→ λt is continuous.
Since the image of a connected set under a continuous map is connected, so either
λt = 1 for all t or λt = −1 for all t. But λ0 = 1, so λt = 1 for all t. Hence,
sq(ξ) ∈Mϕ

q .
Conversely, suppose sq(ξ) ∈ Mϕ

q . Then Mξ ⊆ Mϕ
q and the modular group fixes

Mϕ
q pointwise. Now use Takesaki’s theorem [Tak72] to finish the proof. �

We end this section with the following observation.
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Lemma 4.3. For η ∈ M ′
qΩ and ζ ∈ MqΩ one has sq(ζ)η = dq(η)ζ. In particular,

for η ∈ Z(Mq)Ω the same holds.

Proof. First note that the operators in the statement are defined by Eq. (14). Now
sq(ζ)η = sq(ζ)dq(η)Ω = dq(η)sq(ζ)Ω = dq(η)ζ . �

5. Strong Mixing of Generator Masas

In this section, we intend to show that for any unit vector ξ0 ∈ HR with Utξ0 =
ξ0 for all t ∈ R, the abelian algebra Mξ0 of Mq is a masa and possess vigorous
mixing properties. Needless to say, such masa is then singular from [FMI77, Muk13,
CFM13]. In order to do so, we need some general facts on masas. Most of these
facts appear in the literature in the framework of finite von Neumann algebras. But,
the masas of our interest in Mq lie in the centralizer Mϕ

q by Thm. 4.2; so we can
freely invoke most of these techniques (used for finite von Neumann algebras) in
our set up as well. We recall without proofs some facts that will be required in the
sequel, as a detailed exposition would be a digression. The proofs of these facts are
analogous to the ones for the tracial case.
Let M be a von Neumann algebra equipped with a faithful normal state ϕ. Let

M act on the GNS Hilbert space L2(M,ϕ) via left multiplication and let ‖·‖2,ϕ
denote the norm of L2(M,ϕ). Let Jϕ,Ωϕ respectively denote the associated modular
conjugation operator and the vacuum vector, and let (σϕt )t∈R denote the modular
automorphisms associated to ϕ. Let A ⊆ M be a diffuse abelian von Neumann
subalgebra contained in Mϕ = {x ∈ M : σϕt (x) = x ∀ t ∈ R}. Then there exists
a unique faithful, normal and ϕ-preserving conditional expectation EA from M on

to A [Tak72]. Let L2(A,ϕ) = AΩϕ
‖·‖2,ϕ . Denote A = (A ∪ JϕAJϕ)

′′. Then A is
abelian, so its commutant is a type I algebra. Note that A′∩M is globally invariant
under (σϕt ), thus there exists a unique faithful, normal and ϕ-preserving conditional
expectation fromM on to A′∩M (see [Tak72]), and the associated Jones’ projection
eA′∩M ∈ A [SS08, Lemma 7.1.1] and is a central projection of A′.1 (This fact will
not be directly used in this paper, nevertheless, it is worth mentioning as it is this
fact for which the theory of bimodules of masas work and is indispensable). This
algebra A has been studied extensively by many experts in the context of masas
to understand the size of normalizers, orbit equivalence, mixing properties and to
provide invariants of masas. In short, A captures the structure of L2(M,ϕ) as a
A-A bimodule (see Ch. 6, 7 [SS08]).
With the set up as above we define the following:

Definition 5.1. (c.f. [CFM13]) The diffuse abelian algebra A ⊆ M is said to be ϕ-
strongly mixing inM if ‖EA(xany)‖2,ϕ → 0 for all x, y ∈M with EA(x) = 0 = EA(y),

whenever {an} is a bounded sequence in A that goes to 0 in the w.o.t.

In fact, by a polarization identity it is enough to check the convergence of EA(xanx
∗)

in Defn. 5.1 for all x ∈M such that EA(x) = 0.

1The right action JϕuJϕ for u ∈ U(A) is right multiplication by u∗, since u is analytic. Thus,
the proof of [SS08, Lemma 7.1.1] works out in our set up.
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LetMa denote the ∗-subalgebra of all entire (analytic) elements ofM with respect
to (σϕt ). For x ∈M and y ∈Ma, define

Tx,y : L
2(A,ϕ) → L2(A,ϕ) by Tx,y(aΩϕ) = EA(xay)Ωϕ, a ∈ A.(17)

Note that Tx,y is bounded. Indeed, as y ∈ Ma so y∗ ∈ D(σϕz ) for all z ∈ C.
Hence, Jϕσ

ϕ

− i
2

(y∗)JϕaΩϕ = ayΩϕ for all a ∈ A, where (σϕz )z∈C denotes the analytic

continuation of (σϕt ) (see [Fal00]). Thus,

‖EA(xay)Ωϕ‖2,ϕ ≤ ‖xayΩϕ‖2,ϕ
≤ ‖x‖ ‖ayΩϕ‖2,ϕ
≤ ‖x‖

∥∥∥Jϕσϕ− i
2

(y∗)Jϕ

∥∥∥ ‖aΩϕ‖2,ϕ
= ‖x‖

∥∥∥σϕ− i
2

(y∗)
∥∥∥ ‖aΩϕ‖2,ϕ , for all a ∈ A.

One can identify A ∼= L∞(X, λ), where X is a standard Borel space and λ is a
non-atomic probability measure on X . The left-right measure of A is the measure
(strictly speaking the measure class) on X × X obtained from the direct integral
decomposition of L2(M,ϕ)⊖L2(A,ϕ) over X ×X so that A is the algebra of diag-
onalizable operators with respect to the decomposition [Muk13, Defn. 3], [CFM13].
If A is identified with L∞([a, b], λ) where λ is the normalized Lebesgue measure (or
Lebesgue equivalent), then from the results of §2 of [Muk13] (specifically Thm. 2.1),
it follows that the left-right measure of A is Lebesgue absolutely continuous when
Tx,y∗ is Hilbert-Schmidt for x, y varying over a set S such that EA(x) = 0 = EA(y)

for all x, y ∈ S and the span of SΩ is dense in L2(A,ϕ)
⊥
. (Note that the arguments

of §2 of [Muk13] use the unit interval. It was so chosen to make a standard frame of
reference. However, the arguments of §2 relating to absolute continuity of measures
do not depend on the choice of the interval. Neither does the same arguments to
prove Thm. 2.1 in [Muk13] required that A is a masa; it only involved measure
theory relevant to the context.) From Thm. 4.4 and Rem. 4.5 of [CFM14] (similarly
the proof of Thm. 4.4 of [CFM14] uses measure theory and not that the diffuse
abelian algebra there is a masa), it follows that A is ϕ-strongly mixing in M if the
left-right measure of A is Lebesgue absolutely continuous. Thus, one has:

Theorem 5.2. Let A ⊆ M be a diffuse abelian algebra such that A ⊆ Mϕ and

the left-right measure of A is Lebesgue absolutely continuous. Then, A is ϕ-strongly

mixing in M . In particular, A is a singular masa in M .

Proof. We only need to show that A is a singular masa in M . Let x ∈ A′ ∩M . Let
y = x − EA(x). Since A is diffuse choose a sequence of unitaries un ∈ A such that
un → 0 in w.o.t. Thus, by the previous discussion and by the hypothesis, it follows
that ‖yy∗‖2,ϕ = limn ‖EA(yuny∗)‖2,ϕ = 0. Thus, y = 0 proving A is a masa.

That A is singular follows from results of [FMI77, FMII77]and [Muk09]. �

We are now ready to prove that if ξ0 ∈ HR is a unit vector such that Utξ0 = ξ0
for all t ∈ R, then Mξ0 is ϕ-strongly mixing in Mq. Let Eξ0 denote the unique
ϕ-preserving, faithful, normal conditional expectation from Mq onto Mξ0 (see Thm.
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4.2). Extend ξ0 to an orthonormal basis

O = {ξk : ξk analytic, 0 ≤ k ≤ dim(HR)− 1}
of HR with respect to 〈·, ·〉HC

consisting of analytic vectors as described in Prop.
2.5. Fix ξij ∈ O for 1 ≤ j ≤ n. Note that as the analytic elements form a
(w∗-dense) ∗-subalgebra, so sq(ξi1 ⊗ · · · ⊗ ξin) is analytic with respect to (σϕt ) from

(the proof of) Lemma 3.1. Again by Rem. 2.6, it follows that sq(A
− 1

2 ξk) is also
analytic with respect to (σϕt ) for all ξk ∈ O. Thus, by (the proof of) Lemma

3.1, it follows that sq(A
− 1

2 ξi1 ⊗ · · · ⊗ A− 1
2 ξin) is also analytic with respect to (σϕt ).

Moreover, from Lemma 4.1 and Lemma 2.7 it follows that Eξ0(sq(ξi1⊗· · ·⊗ξin)) = 0
forces that at least one letter ξij must be different from ξ0. Furthermore, from

Lemma 2.7 it follows that A− 1
2 ξi1 ⊗ · · · ⊗ A− 1

2 ξin ∈ Fq(H)⊖ L2(Mξ0 , ϕ) if and only
if ξi1 ⊗ · · · ⊗ ξin ∈ Fq(H)⊖ L2(Mξ0 , ϕ).
In the light of the above discussion, the following theorem is crucial for our pur-

pose.

Theorem 5.3. Let t 7→ Ut be a strongly continuous orthogonal representation of R

on a real Hilbert space HR with dim(HR) ≥ 2. Suppose there exists a unit vector

ξ0 ∈ HR such that Utξ0 = ξ0 for all t ∈ R. Let x = sq(ξi1 ⊗ · · · ⊗ ξim) and

y = sq(A
− 1

2 ξj1 ⊗ · · · ⊗ A− 1
2 ξjk) be such that Eξ0(x) = 0 = Eξ0(y), where ξiu, ξjv ∈ O

for 1 ≤ u ≤ m and 1 ≤ v ≤ k. Then, Tx,y is a Hilbert-Schmidt operator.

Proof. First of all, as Utξ0 = ξ0 for all t ∈ R, soMξ0 ⊆Mq is a diffuse abelian algebra
in Mq lying in Mϕ

q . By the previous discussion, it follows that x, y are analytic with

respect to (σϕt ). Thus, Tx,y ∈ B(L2(Mξ0 , ϕ)).
Also note that ξj1 ⊗· · ·⊗ ξjk ∈MqΩ∩M ′

qΩ from Lemma 3.1. From Lemma 4.1, it

follows that Hq
n(sq(ξ0))Ω = ξ⊗n0 for all n ≥ 0. Note that dq(A

− 1
2 ξj1 ⊗· · ·⊗A− 1

2 ξjk) ∈
M ′

q by Thm. 2.4. Let eξ0 : L2(Mq, ϕ) → L2(Mξ0 , ϕ) denote the Jones’ projection
associated to Mξ0 . Then from Eq. (17), we have

Tx,y (H
q
n(sq(ξ0))Ω) = eξ0

(
xHq

n(sq(ξ0))sq(A
− 1

2 ξj1 ⊗ · · · ⊗ A− 1
2 ξjk)Ω

)(18)

= eξ0

(
xHq

n(sq(ξ0))(A
− 1

2 ξj1 ⊗ · · · ⊗ A− 1
2 ξjk)

)

= eξ0

(
xHq

n(sq(ξ0))dq(A
− 1

2 ξj1 ⊗ · · · ⊗ A− 1
2 ξjk)Ω

)

(from Eq. (14) and Lemma 4.3)

= eξ0

(
xdq(A

− 1
2 ξj1 ⊗ · · · ⊗ A− 1

2 ξjk)H
q
n(sq(ξ0))Ω

)

= eξ0

(
xdq(A

− 1
2 ξj1 ⊗ · · · ⊗ A− 1

2 ξjk)ξ
⊗n
0

)

= eξ0

(
sq(ξi1 ⊗ · · · ⊗ ξim)dq(A

− 1
2 ξj1 ⊗ · · · ⊗ A− 1

2 ξjk)ξ
⊗n
0

)
, n ≥ 0.

Now from Lemma 3.1 of [Hia03], we have

sq(ξi1 ⊗ · · · ⊗ ξim) =
∑∑

qℵ(K,I)cq(ξiκ(1)) · · · cq(ξiκ(n1)
)cq(ξiπ(1)

)∗ · · · cq(ξiπ(n2)
)∗ and
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dq(A
− 1

2 ξj1 ⊗ · · · ⊗ A− 1
2 ξjk)

=
∑∑

qℵ(K
′,I′)rq(A

− 1
2 ξjκ̃(1)) · · · rq(A− 1

2 ξjκ̃(m1)
)rq(A

− 1
2 ξjπ̃(1))

∗ · · · rq(A− 1
2 ξjπ̃(m2)

)∗,

where the first sum varies over the pairs (n1, n2) and (K, I) restricted to the following
conditions:

n1, n2 ≥ 0,
n1 + n2 = m;

and,
K = {κ(1), · · · , κ(n1) : κ(1) ≤ · · · ≤ κ(n1)},
I = {π(1), · · · , π(n2) : π(1) ≤ · · · ≤ π(n2)},

K ∪ I = {1, · · · , m}, K ∩ I = ∅,
(19)

and ℵ(K, I) = #{(r, s) : 1 ≤ r ≤ n1, 1 ≤ s ≤ n2, κ(r) > π(s)}. Similarly, the

expansion of dq(A
− 1

2 ξj1⊗· · ·⊗A− 1
2 ξjk) above is in terms ofm1, m2 ≥ 0, m1+m2 = k,

K ′, I ′,ℵ(K ′, I ′), κ̃, π̃ and rq(A
− 1

2 ξjκ̃(·)) and rq(A
− 1

2 ξjπ̃(·))
∗ defined analogous to Eq.

(19).

Note that
∥∥ξ⊗n0

∥∥2
q
= [n]q! for all n ≥ 0 (see Eq. (3)). Again from Lemma 4.1, it

follows that { 1√
[n]q!

ξ⊗n0 : n ≥ 0} is an orthonormal basis of L2(Mξ0 , ϕ). Thus, to show

Tx,y is a Hilbert-Schmidt operator we need to show that
∑∞

n=0
1

[n]q!

∥∥Tx,y(ξ⊗n0 )
∥∥2
q
<∞.

But since sq(ξi1 ⊗ · · · ⊗ ξim) and dq(A
− 1

2 ξj1 ⊗ · · · ⊗ A− 1
2 ξjk) split as finite sums, so

from Eq. (18) it is enough to show that for each fixed n1, n2, m1, m2, κ, π, κ̃, π̃ (in
Eq. (19)), if

ζn = eξ0(
(
cq(ξiκ(1)) · · · cq(ξiκ(n1)

)cq(ξiπ(1)
)∗ · · · cq(ξiπ(n2)

)∗

· rq(A− 1
2 ξjκ̃(1)) · · · rq(A− 1

2 ξjκ̃(m1)
)rq(A

− 1
2 ξjπ̃(1)

)∗ · · · rq(A− 1
2 ξjπ̃(m2)

)∗
)
ξ⊗n0 ), n ≥ 0,

then
∑∞

n=0
1

[n]q!
‖ζn‖2q <∞. Renaming indices, we may write

ζn = eξ0(
(
cq(ξi1) · · · cq(ξil)cq(ξil+1

)∗ · · · cq(ξim)∗

· rq(A− 1
2 ξj1) · · · rq(A− 1

2 ξjp)rq(A
− 1

2 ξjp+1)
∗ · · · rq(A− 1

2 ξjk)
∗
)
ξ⊗n0 ), n ≥ 0.

For ξj′ ∈ O, since 〈ξj′, ξ0〉q = 0 for j′ 6= 0 (by Lemma 2.7), (and hence 〈A− 1
2 ξ0, A

− 1
2 ξj′〉q =

0 for j′ 6= 0 by Eq. (10)), so rq(A
− 1

2 ξj′)
∗ξ⊗n0 = rq(A

− 1
2 ξj′)

∗(A− 1
2 ξ0)

⊗n = 0 for all

n ≥ 0 and j′ 6= 0. Since at least one letter in A− 1
2 ξj1 ⊗· · ·⊗A− 1

2 ξjk is different from

ξ0 and A− 1
2 ξ0 = ξ0, so ζn can be non zero only when ξjp+1 = · · · = ξjk = ξ0. Write

δ =
∏k

w=p+1 δξjw ,ξ0. Hence, from Eq. (11) and Eq. (13) we have

ζn = δ

n∏

t=n−(k−p)
(1 + q + · · ·+ qt−1)

(20)

· eξ0
(
cq(ξi1) · · · cq(ξil)cq(ξil+1

)∗ · · · cq(ξim)∗
(
ξ
⊗(n−(k−p))
0 ⊗ A− 1

2 ξj1 ⊗ · · · ⊗ A− 1
2 ξjp
))

= δ
[n]q!

[n− (k − p)]q!
eξ0

(
cq(ξi1) · · · cq(ξil)cq(ξil+1

)∗ · · · cq(ξim)∗
(
ξ
⊗(n−(k−p))
0 ⊗ A− 1

2 ξj1 ⊗ · · · ⊗A− 1
2 ξjp
))
.
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By hypothesis at least one letter in A− 1
2 ξj1 ⊗ · · · ⊗ A− 1

2 ξjp is different from ξ0 (=

A− 1
2 ξ0). Therefore, the constraints for ζn to be non zero are ir = 0 for all 1 ≤ r ≤ l,

#{ir : l + 1 ≤ r ≤ m, ir 6= 0} ≥ 1 (counted with multiplicities) and the expression

cq(ξi1) · · · cq(ξil)cq(ξil+1
)∗ · · · cq(ξim)∗(ξ⊗(n−(k−p))

0 ⊗ A− 1
2 ξj1 ⊗ · · · ⊗A− 1

2 ξjp)

has to lie in span Eξ0 (see Lemma 4.1 and the discussion preceding it).
By repeated application of Lemma 2.3, one obtains

cq(ξil+1
)∗ · · · cq(ξim)∗

(︷ ︸︸ ︷
ξ
⊗(n−(k−p))
0 ⊗

︷ ︸︸ ︷
(A− 1

2 ξj1 ⊗ · · · ⊗A− 1
2 ξjp)

)(21)

=cq(ξil+1
)∗ · · · cq(ξim−1)

∗

(︷ ︸︸ ︷
(cq(ξim)

∗ξ
⊗(n−(k−p))
0 )⊗

︷ ︸︸ ︷
(A− 1

2 ξj1 ⊗ · · · ⊗A− 1
2 ξjp)

+ q(n−(k−p))
︷ ︸︸ ︷
ξ
⊗(n−(k−p))
0 ⊗

︷ ︸︸ ︷
cq(ξim)

∗(A− 1
2 ξj1 ⊗ · · · ⊗ A− 1

2 ξjp)

)

...

=

1∑

r1=0

· · ·
1∑

rm−l=0

cr1,··· ,rm−l
·

(
m−l∏

w=1

(
cq(ξil+w

)∗
)(1−rw)

)
ξ
⊗(n−(k−p))
0 ⊗

(
m−l∏

w=1

(
cq(ξil+w

)∗
)rw
)
(A− 1

2 ξj1 ⊗ · · · ⊗A− 1
2 ξjp),

where cr1,··· ,rm−l
∈ R for (r1, · · · , rm−l) ∈ {0, 1}m−l are calculated as follows.

Given a (m−l)-bit string (r1, · · · , rm−l), let sw = # of zeros in {rw, rw+1, · · · , rm−l}
for 1 ≤ w ≤ m− l. Then, clearly sm−l = 1 − rm−l and by induction it follows that
sm−l−1 = (1−rm−l)+(1−rm−l−1), · · · , s1 = (1−rm−l)+(1−rm−l−1)+ · · ·+(1−r1).
Thus, repeated application of Lemma 2.3 in Eq. (21) entail that

cr1,··· ,rm−l
= q

(n−(k−p))
(

∑m−l
w=1 rw

)
−
∑m−l

w=1 rwsw

= q
(n−(k−p))

(
∑m−l

w=1 rw

)
−
∑m−l

w=1 rw

(
(m−l)−w+1−

∑m−l

w′=w
rw′

)

= q

(
(n−(k−p))−(m−l)−1

)(∑m−l
w=1 rw

)
+
∑m−l

w=1 wrw+
∑m−l

w=1

(
∑m−l

w′=w
rw′

)
rw
.

The above formula for cr1,··· ,rm−l
can be obtained by drawing a binary tree of height

(m−l) with weights attached along edges in such a way that it encodes the tensoring
on the left or on the right following Lemma 2.3. It is to be noted that the largest
power of q that appears in Eq. (21) is (n − (k − p))(m − l) which appears when
rw = 1 for all w and the smallest power of q is 0 and it occurs when rw = 0 for all
w.
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Further, notice that since #{ir : l + 1 ≤ r ≤ m, ir 6= 0} ≥ 1, i.e., there is at least
one r0 with l + 1 ≤ r0 ≤ m such that ξir0 ⊥ ξ0 (in 〈·, ·〉U), so

(
cq(ξil+1

)∗ · · · cq(ξim−1)
∗cq(ξim)

∗
)
ξ
⊗(n−(k−p))
0 ⊗

(
A− 1

2 ξj1 ⊗ · · · ⊗ A− 1
2 ξjp

)
= 0.

Therefore, the expression in Eq. (21) has at most 2m−l−1 many non zero terms each
with scalar coefficients of the form qd, where d ≥ ((n− (k − p))− (m− l − 1)).
Consequently, by Eq. (4), Eq. (5), Eq. (12) and Eq. (20), we conclude that there
is a positive constant K(l, m, p, q) independent of n and N0 ∈ N such that

‖ζn‖2q ≤ K(l, m, p, q)q2n
(

[n]|q|!

[n− (k − p)]|q|!

√
[n−N0]q!

)2

, for all n > N0.

Define a sequence {an} of real numbers as follows:

an =





1, if 0 ≤ n ≤ N0,

1
[n]q!

|q|2n
(

[n]|q|!

[n−(k−p)]|q|!
√

[n−N0]q!

)2

, otherwise.

Note that limn→∞
an+1

an
= |q|2 < 1. Consequently, by ratio test

∑
n≥1 an <∞. Since

the sequence {an} eventually dominates the tail of the sequence { 1
[n]q!

‖ζn‖2q} modulo

a scalar multiple, the proof is complete. �

Thus, we have the following results.

Theorem 5.4. Let t 7→ Ut be a strongly continuous orthogonal representation of R

on a real Hilbert space HR with dim(HR) ≥ 2. Let ξ0 ∈ HR be a unit vector such

that Utξ0 = ξ0 for all t ∈ R. Then, Mξ0 is a ϕ-strongly mixing masa in Mq whose

left-right measure is Lebesgue absolutely continuous.

Proof. In this proof, we repeatedly use Eq. (6), the right multiplication of elements
of Mξ0 from [Fal00] and the fact that the analytic extension of (σϕt ) is algebraic
on the analytic elements of Mq. Fix m, p ∈ N. Note that if ξi1 , · · · , ξim ∈ O and

ξj1, · · · , ξjp ∈ O, and x = sq(ξi1⊗· · ·⊗ξim) and y = sq(A
− 1

2 ξj1⊗· · ·⊗A− 1
2 ξjp) be such

that Eξ0(x) = 0 = Eξ0(y), then by Thm. 5.3 it follows that Tx,y, Tx∗,y are Hilbert-
Schmidt operators. Consequently, letting a = 2√

1−q , there exists f ∈ L2(νq ⊗ νq)

such that for all n, k ≥ 0 one has
∫ a

−a

∫ a

−a
Hq
n(t)H

q
k(s)f(t, s)dνq(t)dνq(s)

=
〈
sq(ξi1 ⊗ · · · ⊗ ξim)Ω, H

q
n(sq(ξ0))sq(A

− 1
2 ξj1 ⊗ · · · ⊗ A− 1

2 ξjp)H
q
k(sq(ξ0))Ω

〉
q

=
〈
sq(ξi1 ⊗ · · · ⊗ ξim)Ω, H

q
n(sq(ξ0))sq(A

− 1
2 ξj1 ⊗ · · · ⊗ A− 1

2 ξjp)JH
q
k(sq(ξ0))JΩ

〉
q

=
〈
sq(ξi1 ⊗ · · · ⊗ ξim)Ω, H

q
n(sq(ξ0))JH

q
k(sq(ξ0))Jsq(A

− 1
2 ξj1 ⊗ · · · ⊗A− 1

2 ξjp)Ω
〉
q

=
〈
Hq
n(sq(ξ0))sq(ξi1 ⊗ · · · ⊗ ξim)H

q
k(sq(ξ0))Ω, sq(A

− 1
2 ξj1 ⊗ · · · ⊗A− 1

2 ξjp)Ω
〉
q

=
〈
Hq
n(sq(ξ0))sq(ξi1 ⊗ · · · ⊗ ξim)H

q
k(sq(ξ0))Ω,∆

1
2 (ξj1 ⊗ · · · ⊗ ξjp)

〉
q

(by Eq. (6))
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=
〈
∆

1
4

(
Hq
n(sq(ξ0))sq(ξi1 ⊗ · · · ⊗ ξim)H

q
k(sq(ξ0))

)
Ω,∆

1
4 (ξj1 ⊗ · · · ⊗ ξjp)

〉
q

=
〈
σ
ϕ

− i
4

(
Hq
n(sq(ξ0))sq(ξi1 ⊗ · · · ⊗ ξim)H

q
k(sq(ξ0))

)
Ω,∆

1
4 (ξj1 ⊗ · · · ⊗ ξjp)

〉
q

=
〈
Hq
n(sq(ξ0))σ

ϕ

− i
4

(
sq(ξi1 ⊗ · · · ⊗ ξim)

)
H
q
k(sq(ξ0))Ω,∆

1
4 (ξj1 ⊗ · · · ⊗ ξjp)

〉
q
(as sq(ξ0) ∈Mϕ

q )

=
〈
σ
ϕ

− i
4

(
sq(ξi1 ⊗ · · · ⊗ ξim)

)
Ω, Hq

n(sq(ξ0))
(
σ
ϕ

− i
4

(sq(ξj1 ⊗ · · · ⊗ ξjp)
)
H
q
k(sq(ξ0))Ω

〉
q
.

From the above argument, it follows that Tz∗,w is also a Hilbert-Schmidt operator,
where z = σ

ϕ

− i
4

(sq(ξi1⊗· · ·⊗ξim)) and w = σ
ϕ

− i
4

(sq(ξj1⊗· · ·⊗ξjp)), as it is an integral

operator given by a square integrable kernel.
Now use the discussion preceding Thm. 5.3, Eq. (6) and the fact that the complex

span of

{σϕ− i
4

(sq(ξi1 ⊗ · · · ⊗ ξim)) : ξij ∈ O, 1 ≤ j ≤ m, ξij 6= ξ0 for at least one ξij , m ∈ N}

is dense in Fq(H) ⊖ L2(Mξ0 , ϕ) to conclude that the left-right measure of Mξ0 is
Lebesgue absolutely continuous. The rest is immediate from Thm. 5.2. �

The results of this section obtained so far can thus be summarized as follows.

Corollary 5.5. Let t 7→ Ut be a strongly continuous orthogonal representation of R

on a real Hilbert space HR with dim(HR) ≥ 2. Let ξ0 ∈ HR be a unit vector. Then

the following are equivalent:

(1) sq(ξ0) ∈Mϕ
q ;

(2) Utξ0 = ξ0, for all t ∈ R;
(3) there exists a faithful normal conditional expectation Eξ0 : Mq → Mξ0 such

that ϕ(Eξ0(x)) = ϕ(x) for all x ∈Mq;
(4) Mξ0 is a ϕ-strongly mixing masa in Mq.

Proof. The stated conditions in the statement are equivalent from Thm. 4.2 and
Thm. 5.4. �

Hiai proved that if the almost periodic part of the orthogonal representation is
infinite dimensional, then the centralizer Mϕ

q has trivial relative communtant, i.e.,
(Mϕ

q )
′ ∩Mq = C1 (Thm. 3.2 [Hia03]). Now we show that the same result is true

under a weaker hypothesis as well.

Corollary 5.6. Let t 7→ Ut be a strongly continuous orthogonal representation of

R on a real Hilbert space HR with dim(HR) ≥ 2. Suppose there exist unit vectors

ξi ∈ HR such that Utξi = ξi, i = 1, 2, for all t ∈ R, and 〈ξ1, ξ2〉U = 0. Then,

(Mϕ
q )

′ ∩Mq = C1.

Proof. By Thm. 4.2 and Thm. 5.4, it follows that Mξi ⊆ Mϕ
q is a masa in Mq for

i = 1, 2. Let x ∈ (Mϕ
q )

′ ∩Mq. Then x ∈ Mξ1 ∩Mξ2 and hence xΩ ∈ span Eξ1
‖·‖q ∩

span Eξ2
‖·‖q from Lemma 4.1. But from Eq. (2), it follows that span Eξ1

‖·‖q ∩
span Eξ2

‖·‖q = CΩ. As Ω is a separating vector for Mq the result follows. �
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Remark 5.7. The hypothesis of Cor. 5.6 actually forces Mq to be a factor but we
will establish the factoriality of Mq under a weaker hypothesis.

6. Factoriality

In this section, we extend the previous efforts to decide the factoriality ofMq. We
establish that Mq is a factor when dim(HR) ≥ 2 and (Ut) is not ergodic or has a
nontrivial weakly mixing component.
Our approach to prove factoriality is fundamentally along the lines of Éric Ricard

[Ric05]. As discussed in the introduction, our approach is to use ideas coming from
Ergodic theory, namely, strong mixing, as seen in the previous section. Our idea
stems from the following observation. If a finite von Neumann algebra contains a
diffuse masa for which the orthocomplement of the associated Jones’ projection is a
coarse bimodule, then the von Neumann algebra must be a factor [CFM14]. But for
the masa Mξ0 (in §5), instead of showing that the orthocomplement of the Jones’
projection is a coarse bimodule over Mξ0 , we only settled with absolute continuity
in Thm. 5.3 and Thm. 5.4 to avoid cumbersome calculations. In this section, we
use the fact that Mξ0 is a masa in Mq as obtained in the previous section, to decide
factoriality of Mq in the case when (Ut) has a non trivial fixed vector.
The arguments needed to prove factoriality of Mq is divided into two cases, one

dealing with the discrete part of the spectrum of A corresponding to the eigen value
1 and the other dealing with the continuous part of the spectrum.

Theorem 6.1. Let t 7→ Ut be a strongly continuous orthogonal representation of R

on a real Hilbert space HR. Suppose that the invariant subspace of weakly mixing

vectors in HR is non trivial. Then Mq is a factor.

Proof. Decompose HR = Hc ⊕ Hwm (direct sum taken in 〈·, ·〉HC
), where Hc and

Hwm are closed invariant subspaces of the orthogonal representation consisting of
compact and weakly mixing vectors respectively. First of all note that HR is infinite
dimensional as Hwm 6= 0. If Hc = 0, then by Eq. (7) and Thm. 3.4, (σϕt ) acts
ergodically on Mq. Consequently, Mq is a III1 factor [Tak73].
Let Hc 6= 0. Then Mϕ

q is non trivial from Thm. 3.4. Let ξ ∈ Hwm be a unit
analytic vector (see Prop. 2.5). Note that Z(Mq) ⊆Mϕ

q . Borrowing notations from
Thm. 3.4 and the discussion in §3 preceding it, we have the following. For ζij ∈ S,
1 ≤ ij ≤ N1 + 2N2 (or 1 ≤ ij < N1 + 2N2 as the case may be) for 1 ≤ j ≤ n and∏n

j=1 βij = 1, note that ζi1⊗· · ·⊗ζin ∈Mϕ
q Ω. Note that the real and imaginary parts

of ζij are analytic and individually orthogonal to ξ with respect to 〈·, ·, 〉U and 〈·, ·〉HC

for all 1 ≤ j ≤ n. Then, decomposing vectors into real and imaginary parts and using
Eq. (5) and Lemma 3.2, it follows that sq(ξ)sq(ζi1 ⊗ · · ·⊗ ζin)Ω = ξ⊗ ζi1 ⊗ · · ·⊗ ζin,
while sq(ζi1 ⊗ · · · ⊗ ζin)sq(ξ)Ω = ζi1 ⊗ · · · ⊗ ζin ⊗ ξ. This observation forces that if
a ∈ Z(Mq), then sq(ξ)aΩ = ξ ⊗ aΩ, while asq(ξ)Ω = aΩ ⊗ ξ using the definition of
right multiplication from [Fal00] and the fact that cq(ξ), rq(ξ) are bounded. Thus,
sq(ξ) cannot commute with a unless a is a scalar multiple of 1, as Ω is a separating
vector for Mq. This completes the argument. �
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Theorem 6.2. Let HR be a real Hilbert space with dim(HR) ≥ 2. Let t 7→ Ut be a

strongly continuous orthogonal representation of R on HR. Suppose there exists a

unit vector ξ0 ∈ HR such that Utξ0 = ξ0 for all t ∈ HR. Then Mq is a factor.

Proof. Let x ∈ Z(Mq). We will show that x is a scalar multiple of 1. By Thm. 5.4,
Mξ0 ⊆ Mq is a diffuse masa with a unique ϕ-preserving faithful normal conditional
expectation. Thus, Z(Mq) ⊆ Mξ0 and hence x ∈ Mξ0 . As seen in the proof of

Lemma 4.1, Hq
n(sq(ξ0))Ω = ξ⊗n0 for all n ≥ 0. Consequently, xΩ ∈ span Eξ0

‖·‖q from
Lemma 4.1 and hence

xΩ =

∞∑

n=0

anξ
⊗n
0 =

∞∑

n=0

anH
q
n(sq(ξ0))Ω, an ∈ C,

where the series converges in ‖·‖q.
Since dim(HR) ≥ 2, so there exists an analytic vector ξ1 ∈ HR (see Prop. 2.5)

such that 〈ξ0, ξ1〉HC
= 0. Hence, from Eq. (5) and Lemma 2.7 it follows that

sq(ξ1)xΩ =

∞∑

n=0

ansq(ξ1)H
q
n(sq(ξ0))Ω

=

∞∑

n=0

ansq(ξ1)ξ
⊗n
0 =

∞∑

n=0

an(ξ1 ⊗ ξ⊗n0 ).

Again, from Eq. (5), Hq
n(sq(ξ0))sq(ξ1)Ω = ξ⊗n0 ⊗ ξ1 for all n ≥ 0. To see this, we

use induction. For n = 0, the conclusion is obvious, and for n = 1 the same follows
from Lemma 2.7. Assume that the result is true for k = 0, 1, · · · , n. Note that the
q-Hermite polynomials obey the following recurrence relations:

H
q
0(x) = 1, Hq

1(x) = x and

xHq
n(x) = H

q
n+1(x) + [n]qH

q
n−1(x), n ≥ 1, x ∈ [− 2√

1− q
,

2√
1− q

] [BKS97, Defn. 1.9].

Thus, by functional calculus one has

H
q
n+1(sq(ξ0))ξ1 = sq(ξ0)H

q
n(sq(ξ0))ξ1 − [n]qH

q
n−1(sq(ξ0))ξ1

= sq(ξ0)(ξ
⊗n
0 ⊗ ξ1)− [n]q(ξ

⊗(n−1)
0 ⊗ ξ1)

= ξ
⊗(n+1)
0 ⊗ ξ1, by Eq. (5) and Lemma 2.7.

Thus, by induction the above conclusion follows. (This can also be proved by Lemma
2.7 and Lemma 3.2).
Note that x is a limit in s.o.t. of a sequence of operators from the linear span

of {Hq
n(sq(ξ0)) : n ≥ 0}. Consequently, xsq(ξ1)Ω ∈ span {ξ⊗n0 ⊗ ξ1 : n ≥ 0}‖·‖q .

Therefore, xsq(ξ1) = sq(ξ1)x forces that an = 0 for all n ≥ 1. Thus, xΩ = a0Ω and
hence x = a01 as Ω is separating for Mq. So the proof is complete. �

Remark 6.3. Note that Hiai has proved that if the almost periodic part of (Ut) is
infinite dimensional, then the centralizer Mϕ

q of Mq has trivial relative commutant
and thus Mq is a factor [Hia03]. Thus, combined with our result the factoriality of
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Mq remains open only when HR is of even dimension and (Ut) is ergodic (and non
trivial).

7. Structure of the Centralizer

In this section, we discuss the factoriality of the centralizer Mϕ
q of the q-deformed

Araki-Woods von Neumnn algebra Mq. By Rem. 3.5 and Thm. 5.4, it follows that
if the point spectrum of the analytic generator A of (Ut) is {1} and is of simple
multiplicity, then Mϕ

q is a masa in Mq. Thus, for the centralizer to be large, the
almost periodic part of (Ut) need to be reasonably large.
For a short account on bicentralizers that follows, we refer the reader to [Hag87].

Let M be a separable type III1 factor and let ψ be a faithful normal state on M .
Denote [x, y] = xy − yx and [x, ψ] = xψ − ψx for x, y ∈ M . The asymptotic
centralizer of ψ is defined to be

ACψ = {(xn) ∈ ℓ∞(N,M) : ‖[xn, ψ]‖ → 0 as n→ ∞}.
Observe that ACψ is a unital C∗-subalgebra of ℓ∞(N,M). The bicentralizer of ψ is
defined by

Bψ = {y ∈ M : [y, xn] → 0 ultrastrongly as n→ ∞ for all (xn) ∈ ACψ}.
Note that Bψ is a von Neumann subalgebra of M which is globally invariant with

respect to the modular automorphism group (σψt ). Further, Bψ ⊆ (Mψ)′ ∩M . The
type III1 factor M is said to have trivial bicentralizer if Bψ = C1 for any faithful
normal state ψ ofM . The bicentralizer problem of Connes is open and asks if every
separable type III1 factor has trivial bicentralizer.

Theorem 7.1. Let HR be a real Hilbert space such that dim(HR) ≥ 2. Let (Ut) be
a strongly continuous real orthogonal representation of R on HR such that -

(i) there exists a unit vector ξ0 ∈ HR satisfying Utξ0 = ξ0 for all t ∈ R,

(ii) the almost periodic part of (Ut) is at least two dimensional.

Then,

(Mϕ
q )

′ ∩Mq = C1.

In particular, the centralizer Mϕ
q of Mq is a factor. Moreover, if Mq is a III1 factor

then it has trivial bicentralizer.

Proof. The first statement was settled in the case when the almost periodic part
of (Ut) is two dimensional (see Cor. 5.6). First of all, note that from Cor. 5.5,
the von Neumann algebra Mξ0 = vN(sq(ξ0)) ⊆ Mϕ

q is a masa in Mq with a unique
ϕ-preserving faithful normal conditional expectation Eξ0 : Mq → Mξ0 . Therefore,
(Mϕ

q )
′ ∩Mq ⊆Mξ0 . Let x ∈ (Mϕ

q )
′ ∩Mq.

Since the dimension of the almost periodic part of (Ut) is at least two, so from
Thm. 3.4, it follows that there exist vectors ζi ∈ HC (with real and imaginary
parts individually analytic), 1 ≤ i ≤ k, such that ζ1 ⊗ · · · ⊗ ζk ∈ Mϕ

q Ω and ζi
and as well as its real and imaginary parts are orthogonal to ξ0 for all 1 ≤ i ≤ k,
with respect to 〈·, ·〉HC

(as well as orthogonal in 〈·, ·〉U , as dim(HR) ≥ 2). Let
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y = sq(ζ1 ⊗ · · · ⊗ ζk) ∈Mϕ
q . As seen in the proof of Lemma 4.1, Hq

n(sq(ξ0))Ω = ξ⊗n0

for all n ≥ 0. Consequently, xΩ ∈ span Eξ0
‖·‖q from Lemma 4.1 and hence,

xΩ =

∞∑

n=0

anξ
⊗n
0 =

∞∑

n=0

anH
q
n(sq(ξ0))Ω, an ∈ C,

where the series converges in ‖·‖q. Moreover, decomposing vectors into real and
imaginary parts and using Lemma 3.2, it follows that

yxΩ ∈ span {ζ1 ⊗ · · · ⊗ ζk ⊗ ξ⊗n0 : n ≥ 0}‖·‖q .
Further, decomposing vectors into real and imaginary parts and using Eq. (5)
and Lemma 2.7 it follows that sq(ξ0)(ζ1 ⊗ · · · ⊗ ζk) = ξ0 ⊗ ζ1 ⊗ · · · ⊗ ζk. Assume
that sq(H

q
m(ξ0))(ζ1 ⊗ · · · ⊗ ζk) = ξ⊗m0 ⊗ ζ1 ⊗ · · · ⊗ ζk, for m = 0, 1, · · · , n. Using the

recurrence relations of q-Hermite polynomials (as in the proof of Thm. 6.2), Eq. (5),
Lemma 2.7 and the induction hypothesis, it follows that Hq

n(sq(ξ0))(ζ1⊗ · · ·⊗ ζk) =
ξ⊗n0 ⊗ ζ1 ⊗ · · · ⊗ ζk, for all n ≥ 0. Now note that

xyΩ = Jy∗JxΩ =

∞∑

n=0

anJy
∗JHq

n(sq(ξ0))Ω =

∞∑

n=0

anH
q
n(sq(ξ0))yΩ

=

∞∑

n=0

an
(
ξ⊗n0 ⊗ (ζ1 ⊗ · · · ⊗ ζk)

)
.

Since, xy = yx, so an = 0 for all n 6= 0. Thus, the first statement follows.
The final statement is a direct consequence of Connes-Størmer transitivity theo-

rem [CS78]. �

8. Type Classification

In this section, we describe the type of Mq under the same constraints as in §6
by showing that the type depends on the spectral information of A as expected. To
begin with, we recall some well known facts about the S invariant of Connes.
The S invariant of a factorM was defined in [Co73] to be the intersection over all

faithful normal semifinite (f.n.s.) weights φ of the spectra of the associated modular
operators ∆φ. Further, M is a type III factor if and only if 0 ∈ S(M) and in this
case Connes classified type III factors using their S invariant as follows:

S(M) =





[0,∞), if M is type III1,

{0, 1}, if M is type III0,

{λn : n ∈ Z} ∪ {0}, if M is type IIIλ, 0 < λ < 1.

Also, recall from [Co73] that for a fixed faithful normal state (resp. f.n.s. weight)
φ on M , the S invariant can be written as

S(M) = ∩{Sp(∆φp) : 0 6= p ∈ P(Z(Mφ))},
P(Z(Mφ)) denoting the lattice of projections in the center of the centralizer Mφ

and φp = φ|pMp. So, let φ be a faithful normal state on M and let 0 6= p ∈ Mφ

be a projection. Let ∆φp and (σ
φp
t ) respectively denote the modular operator and
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the modular automorphism group of the corner pMp associated to the positive
functional φp. When p = 1, write ∆φ1 and (σϕ1

t ) respectively as ∆φ and (σφt ). It is

clear that σ
φp
t (pxp) = pσ

φ
t (x)p for all x ∈M and t ∈ R. It is also easy to check that

σ
φp
t is implemented by ∆it

φp = p∆it
φp for all t ∈ R.

Theorem 8.1. Let (Ut) be a strongly continuous real orthogonal representation of

R on a real Hilbert space HR such that the weakly mixing component of (Ut) is non

trivial. Then Mq is a type III1 factor.

Proof. Note that HR is infinite dimensional. We need to show that S(Mq) = [0,∞).
So, let 0 6= p ∈ P(Z(Mϕ

q )). By the hypothesis and Prop. 2.1, there exists 0 6= ξ ∈
HR ⊆ HC ⊆ Fq(H) such that

1

2T

∫ T

−T
|〈Utξ, ξ〉U |2 dt→ 0, as T → ∞ (see Eq. (1)).

Thus, by Eq. (2), Eq. (6), Eq. (7) and the discussion following it, one has

1

2T

∫ T

−T
|〈F(Ut)ξ, ξ〉q|2 dt→ 0, as T → ∞.

Consequently, if µξ denotes the elementary spectral measure (on R) associated to ξ
of the representation {t 7→ F(Ut) : t ∈ R}, then µξ is non atomic (from Eq. (7)).
If p 6= 1, note that pξ, (1 − p)ξ are non zero vectors. Indeed, if ζ ∈ Mϕ

q Ω is
such that sq(ζ) = p (see Eq. (14)), then by Thm. 3.2 and Thm. 3.4 (as in the
proof of Thm. 6.1), it follows that pξ = ζ ⊗ ξ 6= 0. Similar is the argument for
(1 − p)ξ. Let µpξ, µ(1−p)ξ respectively denote the elementary spectral measures of
{t 7→ F(Ut) : t ∈ R} associated to the vectors pξ and (1 − p)ξ. Note that µpξ is
the elementary spectral measure of t 7→ p∆itp (= ∆it

ϕp
), t ∈ R, corresponding to the

vector pξ, and the former implements (σ
ϕp

t ). Also, as p ∈ Mϕ
q , so the range of p is

an invariant subspace of {F(Ut) : t ∈ R}. Hence,
〈F(Ut)pξ, (1− p)ξ〉q = 0, for all t ∈ R.

Consequently, µξ = µpξ + µ(1−p)ξ, thus µpξ and µ(1−p)ξ are both non atomic.
Note that the weakly mixing component of {t 7→ F(Ut) : t ∈ R} is invariant under

the anti-unitary J . This follows by using the fact that J∆itJ = ∆it for all t ∈ R and
by the definition of weak mixing. Thus, µpJξ is non zero and non atomic. Note that
both ξ and Jξ are vectors in the 1-particle space H of Fq(H). This forces that the
spectral measure of the action {t 7→ F(Ut) : t ∈ R} when restricted to the 1-particle
space H contains a non trivial non atomic component on both sides of 0 by an
application of Stone-Weierstrass theorem. Since, F(Ut) = id ⊕⊕n≥1U

⊗qn
t , t ∈ R, it

follows that Sp(∆ϕp
) contains a closed multiplicative group inside [0,∞) generated

by the support of a non atomic measure such that the support intersects both (0, 1)
and (1,∞) non trivially (in measure theoretic sense). So, Sp(∆ϕp

) = [0,∞). Thus,
the result follows. �

Now we turn to the case when the orthogonal representation is almost periodic.



30 BIKRAM AND MUKHERJEE

Theorem 8.2. Let (Ut) be a strongly continuous almost periodic orthogonal repre-

sentation of R on a real Hilbert space HR such that dim(HR) ≥ 2 and such that

there exists a unit vector ξ0 ∈ HR with Utξ0 = ξ0 for all t ∈ HR. Let G be the closed

subgroup of R×
+ generated by the spectrum of A. Then,

Mq is





type III1 if G = R
×
+,

type IIIλ if G = λZ, 0 < λ < 1,

type II1 if G = {1}.
The type II1 case corresponds to (Ut) = (id) and thus Mq is the Bo

.
zejko-Speicher’s

II1 factor.

Proof. The hypothesis forces that if dim(HR) = 2, then Mq is a II1 factor from Cor.
5.6 and there is nothing to prove. If dim(HR) ≥ 3, then by Thm. 7.1 it follows that
(Mϕ

q )
′∩Mq = C1. Thus, Mϕ

q is a factor, and hence S(Mq) is completely determined

by Sp(∆). Now use the fact that F(Ut) = id ⊕ ⊕n≥1U
⊗qn
t , t ∈ R, and Prop. 3.3 to

complete the proof. We omit the details. �
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133–252, (1973).
[CS78] A. Connes and E. Størmer, Homogeneity of the State Space of Factors of Type III1, J.
Funct. Anal., 28 (1978), 187–196.
[Dab14] Y. Dabrowski, A free stochastic partial differential equation, Ann. Inst. H. Poincaré
Probab. Statist., 50 (4) (2014), 1404–1455.
[DSS06] K. Dykema, A. Sinclair and R. Smith, Values of the Pukánszky invariant in free group
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