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Abstract
One of the fundamental questions in biology is how the genotype regulates the phenotype. An

increasing number of studies indicate that, in most cases, the effect of a genetic locus on the phe-

notype is context‐dependent, i.e. it is influenced by the genetic background and the environment

in which the phenotype is measured. Still, the majority of the studies, in both model organisms

and humans, that map the genetic regulation of phenotypic variation in complex traits primarily

identify additive loci with independent effects. This does not reflect an absence of the contribu-

tion of genetic interactions to phenotypic variation, but instead is a consequence of the technical

limitations in mapping gene–gene interactions (GGI) and gene–environment interactions (GEI).

Yeast, with its detailed molecular understanding, diverse population genomics and ease of genetic

manipulation, is a unique and powerful resource to study the contributions of GGI and GEI in the

regulation of phenotypic variation. Here we review studies in yeast that have identified GGI and

GEI that regulate phenotypic variation, and discuss the contribution of these findings in

explaining missing heritability of complex traits, and how observations from these GGI and GEI

studies enhance our understanding of the mechanisms underlying genetic robustness and adapt-

ability that shape the architecture of the genotype–phenotype map.
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1 | INTRODUCTION

Our understanding of the regulation of biological processes has signif-

icantly evolved from the one‐gene, one‐phenotype paradigm, with

new studies continuously adding to the current understanding of a

complex, polygenic architecture of the relationship between genotype

and phenotype (Bloom, Ehrenreich, Loo, & Kruglyak, 2013; Bloom

et al., 2015; Fay, 2013; Hou et al., 2016; Liti & Louis, 2012; Märtens,

Hallin, Warringer, Liti, & Parts, 2016; Parts, 2014; Taylor & Ehrenreich,

2015). Multiple genes and their products contribute to a phenotype; in

turn, a single gene can affect multiple phenotypes. As a result, there

exists a highly interconnected network of genes with related molecular

functions that contribute to and regulate various cellular processes,

resulting in a phenotype.

In the budding yeast, Saccharomyces cerevisiae, genome‐wide col-

lections of strains with gross genetic perturbations such as deletion,

knockdown or overexpression that have been phenotyped in various
wileyonlinelibrary.com/journal/ye
abiotic and biotic environmental conditions have helped in characteriz-

ing the independent functional effects of single genes. These studies

show that while only 20% of the genes are essential in rich conditions,

97% of the genes are essential in at least one out of a total of 178 envi-

ronments (Hillenmeyer et al., 2008). Furthermore, S. cerevisiae is the

only eukaryotic organism in which genetic interactions have been sys-

tematically estimated in a genome‐wide manner. The genetic interac-

tion map constructed by comparing the effects of single and double

gene deletions in the laboratory strain has determined the network

of pairwise genetic interactions that affects yeast growth in rich condi-

tions (Baryshnikova, Costanzo, Myers, Andrews, & Boone, 2013;

Costanzo et al., 2010; Costanzo 2016). While these studies have been

very significant in uncovering the effects of genetic interactions on

growth in rich conditions, they have not demonstrated the effects of

genetic interactions in different environments at a global level. Akin

to single gene deletions, when genetic interactions for a subset of

genes were tested in different environments, their effects emerged
Copyright © 2018 John Wiley & Sons, Ltd.a 403
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as highly conditional (Gutin, Sadeh, Rahat, Aharoni, & Friedman, 2015;

Martin et al., 2015).

Most of the above studies compare the effect of gross perturbations

like deletions and have been performed in the laboratory strain S288c,

isolated from a fig and cultivated in laboratory conditions for over

100 years (Gu et al., 2005). Comparisons of growth of ecologically and

geographically diverse yeast strains across different environments have

shown that the laboratory strain has the lowest phenotypic correlation

with other strains, making it a phenotypic outlier (Warringer et al.,

2011). This indicates that the genetic architecture underlying the same

phenotype across diverse natural strains and environments could be very

different. Evidentially, genotype–phenotype comparisons in different

environments have identified variants within genes that were not identi-

fied by deletion, knockdown or overexpression studies in the laboratory

strains. Similarly, double deletion studies do not encompass the breadth

of genetic interactions that influence the phenotype in natural popula-

tions (Gasch, Payseur, & Pool, 2016). Similar discrepancies have been

observed in organisms other than yeast, including humans, where differ-

ent genes were identified to be phenotypically essential in CRISPR‐based

deletion studies vs. using population genomic variation (Bartha, di Iulio,

Venter, & Telenti, 2018). Hence, the deductions regarding the relation-

ship between the genotype and phenotype based solely on a single

genetic background (strain) might not necessarily be fully representative

of the yeast biology and, more generally, of eukaryotic biology.

There are several advantages to studying different strains, even

within a well‐studied model system like yeast. Sequencing of natural

strains of yeast has revealed significant genetic variation in genomic

sequences ranging from 0.3 to 0.8% (Liti, Carter, et al., 2009;

Schacherer, Shapiro, Ruderfer, & Kruglyak, 2009; Strope et al., 2015).

Bergström et al. (2014) show that 46% of the variants in protein‐cod-

ing genes are strain specific. Furthermore, phenotypic diversity is even

higher than this genomic diversity in budding yeast strains compared

with other yeasts (Liti, Warringer, & Blomberg, 2017). Different alleles

can have variable effects on the phenotype and even the same allele

present in two different genetic backgrounds can have diverse pheno-

typic consequences (Gasch et al., 2016). This natural diversity in yeast

can be exploited to understand the basis of heterogeneity in genotype–

phenotype relationships and to gain a deeper understanding of non‐lin-

earity in genotype–phenotype associations such as variable expressivity,

i.e. when a phenotype is affected to different degrees in individuals car-

rying the same variant, and incomplete penetrance, i.e. the ability of a

variant to affect the phenotype in one individual and not another. Con-

clusions derived from studying the regulation of complex traits in natural

yeast strains have helped expand molecular and functional understand-

ing of diverse genes and pathways (reviewed in Liti & Louis, 2012;

Fay, 2013). In this review, we will discuss the understanding of gene–

gene (GGI) and gene–environment interactions (GEI) gained by exploring

genetic regulation of complex traits in yeast, and implications for our

comprehension of the genotype–phenotype map that describes the

complex relationship between genes and their phenotypic effects.

GGI and GEI have played a key role in dissecting genes involved in

different pathways and other biological processes, but their contribution

to phenotypic variation in quantitative traits is less clear (Phillips, 2008).

Studies in metazoans have identified very few cases of genetic interac-

tions that affect phenotypic variation in different diseases and traits. Is
this because variants (as against large‐scale perturbations like gene dele-

tions) have independent effects on the phenotype? Or is the effect of

genetic interactions on phenotypic variation too small to be identified

using the power of the current study designs? Are new analytical

approaches required to determine the role of GGI amongst the genetic

variants? GGI mapping studies in yeast have provided insights into these

questions and, along with uncovering novel principles of adaptation and

evolution in yeast, have contributed to determining the role of these

interactions in shaping the genotype–phenotype map. Similarly, while

there is a significant appreciation of the importance of environment in

influencing the phenotype, it is difficult to untangle the magnitude of

environmental influence from other confounding factors such as popula-

tion history and structure. The insights gained from the high‐throughput,

systematic studies of yeast populations grown in multiple controlled

environments provide a framework to gauge the role of environment

in phenotypic variation in a comprehensive manner.
2 | GENE–GENE INTERACTIONS

Unlike molecular and biophysical interactions, genetic interactions are

not limited to specific biomolecules like mRNA, proteins or metabo-

lites. Within an organism, a genetic interaction regulating a phenotype

can be mediated at any molecular level. This is one reason why system-

atic genetic networks tend to be denser than biophysical networks

(Costanzo et al., 2010, 2016). However, genetic interactions identified

by such synthetic perturbations within laboratory strains vs. those

identified between naturally occurring variants uncover different

aspects of the genotype–phenotype map.

Quantitative trait loci (QTL) are the genetic loci that contribute to

phenotypic variation between genetically divergent strains (Figure 1A).

QTL are identified by performing linkage mapping on the segregants

generated by crossing two strains, phenotyping them and performing

genotype–phenotype comparisons (reviewed in Mackay, Stone, &

Ayroles, 2009). The comprehensibility of mapping is determined by the

amount of heritability explained by the loci identified, i.e. the proportion

of phenotypic variance attributable to genetic variance. Broad sense

heritability refers to all genetic contributions to the phenotypic variance

whereas narrow sense heritability refers to additive genetic contribu-

tions to the phenotypic variance. A QTL is additive if its effect on the

phenotype is independent of variation at other loci. On the other hand,

phenotypic variation will be the result of a genetic interaction if variants

in two loci contribute non‐additively to the phenotype. Missing heritabil-

ity, i.e. the inability of loci identified through mapping to explain the var-

iance in the phenotype, has been a long‐standing problem in population

and quantitative genetics (Eichler et al., 2010). One leading cause of

missing heritability in genome‐wide studies is the differential contribu-

tion of rare and common variants. It is possible that, instead of a few

common variants, a large number of rare variants that are often not

captured by genome‐wide association studies contribute to phenotypic

differences (Zuk et al., 2014). On the other hand, common variants

could indeed be the major contributors to phenotypic variation (Golan,

Lander, & Rosset, 2014) but can be incompletely penetrant, i.e. affect

the phenotype in only a subset of individuals that carry them, or have

variable expressivity, i.e. affect the phenotype to different degrees in



FIGURE 1 Gene–gene interactions (GGI). (A)
Quantitative trait loci (QTL) mapping in a
segregating biparental population identify
additive loci (denoted as M‐R on the genome).
Closed box denotes positive allele (M‐R) while
open box is either a negative or neutral allele
(m‐r). (B) The effect of a locus is dependent on
the genetic background of the strain it is
present in. The locus M can have both positive
or neutral effect on the phenotype depending
on the genetic background. Additionally,
either of the alleles of the locus M (M orm) can
show a positive effect on the phenotype
depending on the genetic background. (C)
Candidate based approaches – gene–gene
interaction can be detected in (a) diploid or (b)
haploid background. Only one of the allelic
combinations (MN) has the positive effect on
the phenotype, while other combinations (Mn,
mN, mn) have negative or no effect. (D)
Genome‐wide interaction mapping identifies

the effect of all QTL–QTL combinations on
the phenotype. The heatmap depicts all
variants present in the segregating population
on the x‐ and y‐axes. Blue colour on the
heatmap indicates that the effect of the two
corresponding QTL is additive, whereas yellow
indicates that it is interactive. The zoomed‐out
figure shows the distribution of alleles across
segregants that is used to identify QTL–QTL
interactions. In this case, loci M and N interact
to affect the phenotype. All segregants
containing allelic combination MN have a
higher growth than the rest of the allelic
combinations (Mn, mN, mn). (E) Variance QTL
is a mapping technique that identifies loci with
differential effects on the population variance.
In presence of the M allele, the phenotypic
effects of the other loci are suppressed in the
segregating populations. However, these loci
show their effects in the presence of the m
allele, resulting in an increased phenotypic
variance of the population. This can also be
interpreted as differential regulation of cryptic
genetic variation, where it is buffered by M
allele and released by the m allele [Colour
figure can be viewed at wileyonlinelibrary.
com]
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different individuals. This differential penetrance can be a result of

genetic background dependence (GGI) or environmental influence on

the effect of the loci (GEI; Zuk, Hechter, Sunyaev, & Lander, 2012).

Mapping these interactions will be key to explaining the missing herita-

bility, estimating the contribution of rare and common variants, and

understanding incomplete penetrance and variable expressivity.
2.1 | Approaches to mapping gene–gene (QTL–QTL)
interactions

The ability to map GGI depends on the sample size and population

structure of the segregants being tested, phenotypes considered,
mapping techniques used and the statistical comparisons performed.

Here we enumerate the studies that either provide indirect insights

or have been specifically undertaken to understand the extent of

GGI in populations (also see the Box).

2.1.1 | Indirect evidence for gene–gene interactions from
background dependence

Without directly estimating GGI, the studies discussed below provide

indirect evidence that supports an influential role of genetic interac-

tions in phenotypic variation by demonstrating background depen-

dence of allelic effects (Figure 1B). Sinha, Nicholson, Steinmetz, and

McCusker (2006) showed that each of the three alleles of MKT1,

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


Box: Gene–gene interactions (GGI) and additive vs. interactive genetic architecture

A fundamental characteristic of adaptation and evolution, and hence complex traits is GGI or epistasis (Hansen, 2013; Hemani, Knott, &

Haley, 2013). While originally associated with suppression of the phenotype of one gene by another gene (as defined by Bateson), the

definition of epistasis in association with complex traits in an allelic context, as coined by Fisher, refers to any statistical deviation

from the additive combination of two loci in their effects on a phenotype (Carlborg & Haley, 2004; Phillips, 2008). Essentially, it

means that two genes interact to regulate variation in the phenotype if their allelic combinations show a phenotype that deviates

from the sum of their independent effects (additive effects). This deviation can either be synergistic, i.e. the allelic combination can

perform better than the sum of their independent effects, resulting in positive epistasis, or suppressive, i.e. the allelic combination

performs worse than expected, resulting in negative epistasis (Mackay, 2014). To map such genetic interactions, the population is

divided based on two genetic loci (into four categories in case of a haploid population and nine in case of a diploid) instead of one

(Mackay, 2014; Phillips, 2008). These allelic combinations are then multiple‐tested against a null additive model of their effect on the

phenotype. While such mapping allows identification of genetic interactions regulating the phenotype, they are severely limited by the

population size as the same population is now divided into a greater number of groups compared with single quantitative trait loci

(QTL) mapping. Simply put, to identify interacting loci with the same accuracy and power as single loci, the sample sizes required

increase exponentially by the power of 2 (from n to n2). A central contradiction in the regulation of the genotype–phenotype map is

that, while a highly interactive genetic network is emerging from systems‐level molecular studies, in both model organisms and

humans, the majority of the phenotypic variation in both Mendelian and complex traits is still explained by additive loci. A comparison

of different types of GGI studies in yeast uncover the reasons that might underlie this apparent paradox.

1. Most loci that show interactions often have independent effects (Bhatia et al., 2014; Bloom et al., 2013; Cubillos et al., 2011),

indicating that genetic interactions tend to modify the effects of loci. Even in a scenario where major allele frequency equals the

minor allele frequency and the population is in a Hardy–Weinberg equilibrium, only one‐quarter of the population would carry

both the loci.

2. Comparison of interaction studies performed in different biparental populations has shown that most of the GGI tend to be strain

specific (Cubillos et al., 2011, 2013), indicating that these, often small‐effect, interactions are background dependent. This explains

why genome‐wide association studies, with multiple parent populations with varying allele‐frequencies, fail to identify these GGI.

3. Furthermore, studies reveal that background dependence of the effect of loci can be explained, at least partially, by the higher‐order

interactions between multiple loci (Taylor & Ehrenreich, 2014; Yadav et al., 2016a). This may underlie the inability of two‐locus scans

to identify interactions, and the small effect of two‐locus interactions in cases where they are identified.

These insights from yeast genetics and genomics advocate for a change in approaches for mapping genetic interactions and epistasis.

These results further imply that, while genetic interactions might not, on average, have high effect sizes, they will play a key role in

predicting the effect of a genetic variant in different backgrounds. Together, they would help explain the missing heritability in

complex traits and understand the incomplete penetrance of genetic loci.
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RHO2 and END3 had differential effects on high‐temperature growth

when present in genetically divergent strains, including laboratory,

clinical and vineyard isolates. If a dominant large‐effect single QTL

has a negative epistatic effect on many small‐effect QTL, i.e. it masks

the phenotype of these minor effect QTL, then eliminating this large‐

effect QTL uncovers the effects of these small‐effect QTL (Demogines,

Smith, Kruglyak, & Alani, 2008; Sinha et al., 2008; Yang et al., 2013).

However, systematic mapping of GGI is still required to discriminate

between the following two possibilities. The first is a case of bona fide

genetic interaction where the influence of a small‐effect locus is

epistatically masked by the large‐effect locus. The second is a technical

artefact of the dynamic range of detection methods where the influ-

ence of small‐effect locus is too small to be detected when a large‐

effect locus is present. This genetic background dependence has been

observed in other studies using multiple crossing techniques (Cubillos

et al., 2011; Cubillos et al., 2013; Ehrenreich et al., 2012; Parts et al.,

2011; Sinha et al., 2008; Torabi & Kruglyak, 2011; Yang et al., 2013).
The genetic basis for this background dependence was identified in

specific cases. In a round robin cross among 12 strains, the loci that reg-

ulated variation in growth in sodium chloride and caffeine were influ-

enced by the mating‐type locus of the strains (Treusch, Albert, Bloom,

Kotenko, & Kruglyak, 2015). In another example, for variation in sporula-

tion efficiency in a segregating population derived from oak (YPS606) and

wine (BC187) yeast strains, RME1 interacted with IME1 and RSF1 (Gerke,

Lorenz, & Cohen, 2009), whereas in S288c‐ and SK1‐derived populations,

RME1 interacted with MKT1 and TAO3 (Deutschbauer & Davis, 2005).

2.1.2 | Candidate approach to mapping gene–gene (QTN–
QTN) interactions

The most successful examples of gene–gene interactions, resolved at

the genetic level, have been dissected using candidate approaches,

i.e. non‐systematic approaches that target specific genes (Figure 1C).

The basic and most common unit of genetic variation in populations

is single nucleotide polymorphism (SNP) and the nucleotide change
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underlying a QTL is called a QuantitativeTrait Nucleotide (QTN). A few

studies in yeast have investigated GGI, or more precisely, SNP–SNP

(QTN–QTN) interactions between causal genes affecting quantitative

traits. Sporulation efficiency variation in yeast was mapped to precisely

three nucleotides in RME1(ins‐308A), MKT1(D30G) and TAO3(E1493Q)

between SK1 and S288c (Deutschbauer & Davis, 2005). For all of

these, the QTN from the SK1 background conferred higher sporulation

efficiency. These polymorphisms showed a strict additive model at

24 h sporulation, i.e. the phenotypic effect of QTN–QTN interaction

was equivalent to the sum of their single phenotypic effects and a

potential epistatic relationship at 48 h. In another study, the causal

genes for variation in sporulation efficiency inYPS606 and BC187 seg-

regants identified genetic interactions among QTN IME1(L325M),

IME1(A‐548G) and RSF1(D181G) (Gerke et al., 2009). For high‐temper-

ature growth, QTNMKT1(D30G), END3(S258N) and RHO2(3′UTR poly-

morphisms) showed both additive and epistatic interactions (Sinha

et al., 2006). The phenotypic effect of QTN inMKT1 and RHO2, as well

as MKT1 and END3, was found to be additive. In contrast, the genetic

interaction between END3 and RHO2 was negatively epistatic, i.e. the

combined phenotypic effect of the QTN of both the genes was less

than the sum of their single effects.

The main advantage of studying GGI at such high resolution is that

the phenotypic effect is assigned very specifically to a polymorphism

without the ambiguity of any other variant confounding the result.

Since these effects are tested in homozygous diploid or haploid back-

grounds, heterogeneity of the background (heterozygosity) and mode

of inheritance (dominance vs. recessive) do not confound the estima-

tion of genetic interactions. However, mapping QTN–QTN interac-

tions is time consuming as it first involves mapping the causal loci

and then identifying causal nucleotide within those loci. Moreover,

the above approach will have to be substantially modified if multiple

causal QTN within a QTL affect the phenotype. For example, multiple

polymorphisms within IRA2 contribute to its additive effect (Cubillos

et al., 2013; Smith & Kruglyak, 2008), and all or a select few of these

polymorphisms could be involved in the multiple genetic interactions

of the locus (Yadav, Radhakrishnan, Bhanot, & Sinha, 2015). Subject

to the power of the study and the size of the locus, the majority of

the loci identified by mapping contain several genes with multiple cod-

ing and non‐coding SNPs. It is possible that one or more of these cod-

ing SNPs may be causal, and while the synonymous SNPs will not

change the protein sequence, owing to differences in codon biases,

these SNPs can affect other processes like translational efficiency.

Most importantly, owing to the limitation of designing strains for

specific nucleotide variations, this approach cannot yet be applied

genome‐wide. Despite the tedium of mapping QTN and thereafter

estimating the effects of combinations of these QTN, it is important

to map QTN–QTN interactions. Apart from understanding the

genetic and molecular changes that alter the phenotype, mapping

QTN and QTN–QTN interactions plays a crucial role in answering

several long‐standing questions regarding the architecture of com-

plex traits. Fine‐mapping the QTN and comparing their effects with

that of the entire locus will help in understanding the contribution

of each variant to the phenotype. Estimating allele frequency of a

QTN, identified in a biparental population, across diverse yeast

strains can determine whether causal alleles tend to be rare (Sinha
et al., 2006) or common (Muller, Lucas, Georgianna, & McCusker,

2011). Common causal variants would provide an opportunity to

study the effects of variants across diverse genetic backgrounds

and dissect the genetic interactions that underlie variable penetrance

and hence missing heritability.

For cases where it is not possible to fine‐map each locus to a

nucleotide level, an alternative is studying RHA–RHA interaction.

Reciprocal hemizygosity analysis, RHA, is a fine‐mapping tool to

compare the effects of two alleles in a hybrid genetic background.

These alleles can be of varying sizes, i.e. restricted to the size of

the gene (Steinmetz et al., 2002) or larger genomic regions (Singh

& Sinha, 2014; Yang et al., 2013). RHA has been a very successful

in identifying causal alleles that contribute to a phenotype. Since

it was first introduced by Steinmetz et al. (2002), it has been exten-

sively used to map phenotypic differences precisely to an allele

(Ambroset et al., 2011; Ben‐Ari et al., 2006; Cubillos et al., 2011,

2013; Gagneur et al., 2013; Hou et al., 2016; Kim & Fay, 2009;

Kim, Huh, Riles, Reyes, & Fay, 2012; Lewis, Broman, Will, & Gasch,

2014; Liti, Haricharan, et al., 2009; Lorenz & Cohen, 2014; Maurer

et al., 2016; Parts et al., 2011; Romano, et al., 2010; Salinas et al.,

2016; Singh & Sinha, 2014; Sinha et al., 2006; Sinha et al., 2008;

Swinnen et al., 2012; Wilkening et al., 2014; Yang et al., 2013).

Unlike other fine mapping techniques such as backcrossing and

generation of recombinant inbred lines, RHA is a one‐step tech-

nique to fine map the causal genes within a large locus. Further-

more, RHA has been successfully employed to map genes and

alleles between interacting loci (Sinha et al., 2006; Yang et al.,

2013) and to study their phenotypic effects across homogeneous

backgrounds. Finally, RHA–RHA can identify genetic interactions

between loci in linkage disequilibrium that are difficult to dissect

in recombinant populations. In case of high‐temperature growth,

RHA–RHA was used to identify an epistatic interaction between

RHO2 and END3 alleles that are in linkage disequilibrium (Sinha

et al., 2006). Despite having a better performing END3 allele, the

laboratory strain grows poorly compared with the clinical isolate

at high temperatures. RHA–RHA interactions revealed that this is

because of a negative epistatic interaction between the laboratory

strain alleles of END3 and RHO2, where the RHO2 allele masks

the high‐temperature growth phenotype of END3.

Despite the success of RHA, its application to study even targeted

RHA–RHA interactions are still contingent upon mapping and dissect-

ing QTL–QTL interactions to a gene level. Additionally, the candidate‐

based targeted approaches to map interactions are limited to loci with

large effect sizes. Finally, since these interactions are tested in a uni-

form background, any contribution of the genetic background to these

interactions is levelled, thereby limiting the estimation of their poten-

tial effect size.
2.1.3 | QTL–QTL interactions

The comprehensive approach to identifying the full extent of pairwise

GGI within two parental strains is to test all possible pairs of polymor-

phisms between the strains for potential genetic interaction, i.e. whole

genome by whole genome interaction analysis (Figure 1D). A biparen-

tal haploid population is divided into four groups (compared with just
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two for single QTL mapping) based on the biallelic combinations of the

genotype of the segregants. To perform QTL–QTL analysis for n num-

ber of variants, the total number of unique paired combinations to be

tested is given by the binomial coefficient C(n,2), which is a substan-

tially larger than the n combination required for single QTL mapping.

Therefore, while this is a comprehensive approach to identify genetic

interactions, the ability to perform a genome‐wide QTL–QTL screen

is limited by the size of the population (also see the Box). This limita-

tion was demonstrated by a study that conducted mapping for single

and interacting loci in multiparental populations, identifying 82 single

loci but only one QTL–QTL interaction (Cubillos et al., 2011).

Studies with large sample sizes that have identified multiple QTL–

QTL interactions (Bloom et al., 2013, 2015; Hallin et al., 2016) show

that QTL–QTL interactions explain a very small amount of phenotypic

variance compared with the additive loci. Bloom et al. (2015) identified

797 single additive QTL and 205 QTL–QTL interactions in a biparental

population of 4000 recombinants grown in 20 environments, with

QTL–QTL interactions explaining an average of 9.2% phenotypic vari-

ance compared with 43.3% explained by the additive loci. A similar

trend is observed in other populations, where QTL–QTL interactions

explained 1–15% overall phenotypic variance, with an average of 7%,

within one environment for a phenotype (Hallin et al., 2016). In addi-

tion, most of the loci participating in epistatic interactions often have

an independent effect. Of the 19 QTL–QTL interactions identified in

segregants from a cross between BY and YJM789 (clinical isolate)

grown in different carbon sources, 11 interactions involved at least

one significant additive QTL (Bhatia et al., 2014), while the remaining

eight interactions had low effect size on average. Similarly, in the

majority (92%) of the QTL–QTL interaction pairs, at least one locus

was a significant additive QTL (Bloom et al., 2015). Together, these

studies indicate that, while genetic interactions are common among

QTL, their contribution to phenotypic variation, as judged by these

techniques, is limited.
2.1.4 | Higher‐order genetic interactions

Much like single QTL, background dependence of the phenotypic

effects of QTL–QTL interactions indicates that other variants interact

with these two‐locus interactions, suggesting the presence of higher‐

order genetic interactions (Deutschbauer & Davis, 2005; Gerke et al.,

2009; Sinha et al., 2006; Yang et al., 2013). In a study testing high‐tem-

perature growth, it was observed that genetic interaction between the

causal alleles MKT1 and NCS2 depended on the genetic background in

which the combination was present (Sinha et al., 2008). The interaction

was only observed when the genetic background was YJM421/S288c

(50% YJM421 background) but not in the backcross hybrid back-

grounds (25% YJM421 background). Similarly, the genetic interaction

betweenMKT1–RHO2 was observed only in theYJM145/S288c back-

ground (Sinha et al., 2006) but was absent in YJM421/S288c (Sinha

et al., 2008). The same phenotype in segregants of MUCL28177 and

S288c identified PRP42‐SMD2 interaction that was background spe-

cific (Yang et al., 2013). Higher‐order genetic interactions involving

alleles of END3, TRR1, IRA2, FLO8 andMSS11 were mapped for colony

morphology in backcross progeny of a cross between BY4716 and

322134S strains (Taylor & Ehrenreich, 2014). The prevalence of
higher‐order interactions in genetic architecture could be a potential

reason for the inability to identify large‐effect two‐locus interactions

in genetic crosses (Taylor & Ehrenreich, 2015). The inability of single‐

locus and QTL–QTL interactions to entirely explain the phenotypic

variance suggests that higher‐order epistatic interactions may underlie

phenotypic variation.

The ability of the already underpowered QTL–QTL analysis is

further limited when mapping for higher‐order interactions such as

three‐locus interactions, making it difficult to identify statistically

significant interactions (Bloom et al., 2015). A study that estimated

the contribution of three‐loci interactions showed that they

explained a very small percentage of phenotypic variance (average

1.7%; Hallin et al., 2016). Further, in another study, the higher‐

order epistatic interactions were unique to each environment

(Bhatia et al., 2014). However, these studies indicate that these

higher‐order interactions may underlie the phenotypic heterogene-

ity of a population containing the same allele and hence explain

the pervasive incomplete penetrance observed in both model

organisms and humans.

While a relatively larger number of segregants (1000–4000) can

identify QTL–QTL interactions (Bloom et al., 2015), the interacting loci

often have large interval sizes, which is due to small effect sizes of

these interactions and limited recombination events within the popula-

tion. Hence, while population studies in yeast have the power to iden-

tify genetic interactions at a locus level and estimate their contribution

to phenotypic variation, more work needs to be done to identify the

genes contributing to, and the mechanisms underlying, these genetic

interactions.
2.1.5 | Genome‐wide association studies

Candidate‐based, targeted and multilocus interaction approaches

described above cover more genetic diversity than SGA, but are still

limited to genetic variation present in only two parental strains. More-

over, as segregants are synthesized by crossing two natural strains in

approaches based on linkage mapping, an equal weighting is given to

all segregating polymorphisms without accounting for their adaptive

or evolutionary significance.

An alternate to linkage mapping is genome‐wide association stud-

ies (GWAS), where multiple natural strains with diverse evolutionary

histories and genetic backgrounds with varying allele frequencies are

used to identify the loci contributing to phenotypic variation (Mackay

et al., 2009). The main advantage of this approach is that the strains

are studied in their natural genetic state (not synthetically generated

recombinants), which allows understanding of the role of genetic inter-

actions in shaping adaptation. A few GWAS (Connelly & Akey, 2012;

Diao & Chen, 2012; Tomar et al., 2013) have been performed in yeast

using a collection of wild SGRP strains (Liti, Carter, et al., 2009). How-

ever, the currently available small number of natural yeast strains with

whole genome sequences significantly limits the application of this

approach to even single locus mapping, making genome‐wide scans

for genetic interactions practically impossible.

In addition, natural yeast strains have a strong population struc-

ture, i.e. genetic stratification within populations that arises because

of non‐random mating and genetic drift (Connelly & Akey, 2012; Diao
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& Chen, 2012). This impacts all genotype–phenotype analysis and

thereby further complicates the ability to perform GWAS in yeast

and identify additive and interacting loci (Bergström et al., 2014;

Connelly & Akey, 2012; Diao & Chen, 2012; Liti, Carter, et al., 2009;

Tomar et al., 2013). As a result, while it is possible to detect cis‐acting

QTL in these GWA studies, identification of trans‐acting QTL is often

confounded by population structure. These limitations can be over-

come by increasing the number of yeast strains with the help of under-

takings such as the ongoing 1000 yeast genomes project (http://

1002genomes.u‐strasbg.fr). However, whether these strains would

be enough to circumvent the complexity of such strong population

structure remains to be seen.
3 | GENE–ENVIRONMENT INTERACTIONS

A GEI occurs when the effect of a gene or a locus depends on the

environment in which the phenotype is measured. Phenotypes show

a diverse range of environment dependence, with Mendelian

phenotypes often being less susceptible to the environment than

complex traits. GEI mapping can uncover the dependence and

vulnerability of the phenotype to different environments, as well as

explain the missing heritability of a population phenotyped in

heterogeneous environments. However, accurate, unbiased GEI

mapping is often hindered by the inability to test the same

population in different environments in both humans and model

organisms. As a result, it is often difficult to uncouple the contribu-

tion of genetic and environmental influences on the phenotypic

differences.

Yeast is highly sensitive to the environment, and the ability to test

the same population in various environments provides a platform to

study the full extent of GEI (Bhatia et al., 2014; Gagneur et al., 2013;

Gerke, Lorenz, Ramnarine, & Cohen, 2010; Granek & Magwene,

2010; Matsui & Ehrenreich, 2016; Smith & Kruglyak, 2008). As exem-

plified by the yeast deletion collection, a strain containing a deletion of

a single gene can have varied growth phenotypes in different environ-

ments (Hillenmeyer et al., 2008). Furthermore, the same gene deletion

in the strains with different evolutionary histories can have variable

effects within and across environments (Singh & Sinha, 2014; Sinha

et al., 2006; Wilkening et al., 2014). Studies in yeast have contributed

to a deeper understanding of both the extent and the nature of GEI.

Mapping GEI in the yeast strains isolated from a variety of ecological

niches provides a platform to identify alleles that aid adaptation to

these diverse conditions as well as to study the pleiotropic effects of

such alleles in novel environments (Liti, 2015; Liti, Carter, et al.,

2009; Warringer et al., 2011).
3.1 | Approaches to mapping gene–environment
interactions

3.1.1 | Indirect evidence

Similar to GGI, indirect evidence for the abundance for GEI comes

from studies that have mapped loci independently in various environ-

ments (Bloom et al., 2013, 2015; Hallin et al., 2016; Perlstein et al.,

2006; Perlstein, Ruderfer, Roberts, Schreiber, & Kruglyak, 2007; Smith
& Kruglyak, 2008; Steinmetz et al., 2002). These studies indicated that

the large effect loci showed two categories of response – they can

either be highly environment specific, e.g. a MAL13 variant renders

the laboratory strain incapable of utilizing maltose, but has no effect

on other carbon sources (Bloom et al., 2013), and a RAD5 variant has

an effect only in genotoxic environments (Demogines et al., 2008), or

they can have an effect on the phenotype in multiple conditions, such

as variation in stress response genes like IRA2 or MKT1 that have

effects across multiple environments (Fay, 2013). Many factors can

contribute to an apparent difference in the effect of a locus across

two environments, including overall phenotypic variation in the envi-

ronments and effect of other loci. Hence, a two‐way environmental

comparison is necessary to get an accurate estimate of the abundance

and directionality of GEI (Figure 2).

3.1.2 | Gene–environment interaction mapping

The direct approach to mapping GEI of a locus is to study its effects

across two environments using the environment as a covariate, i.e. a

variable that can influence the phenotype (Figure 2), and estimate

the effect of the locus after normalizing for phenotypic variation in

the two environments (Broman, Wu, Sen, & Churchill, 2003). Since

this approach allows for a genome‐wide scan for GEI, loci can be

identified independent of their effects in individual environments.

This reveals a large number of small effect loci with GEI that would

not be identified in independent QTL mapping. GEI have been identi-

fied for both biparental (Bhatia et al., 2014; Smith & Kruglyak, 2008;

Yadav et al., 2015) and multiparental yeast populations (Cubillos et al.,

2011, 2013). Moreover, many small‐effect loci that are not detected

in single environment mapping are identified when their effects are

compared across environments (Bhatia et al., 2014; Yadav et al.,

2015). Such systematic GEI shows that the majority of the loci, inde-

pendent of their effect size, show an interaction with the

environment.

Based on the relative effects on the phenotype across two envi-

ronments, GEI exhibited by a locus can be classified into three catego-

ries: environment specific, scale and antagonistic effects (Figure 2B). It

is important to note that it is statistically challenging to distinguish

between the effect of small effect environment‐specific or scale

effects, and there is a danger of over‐interpreting the environmental

specificity for small effect loci or underestimating the environmental

dependence in case of large effect loci.
3.2 | Insights from GEI mapping

GEI mapping in yeast provides a unique platform to study the indepen-

dent effect of variants, accumulated in strains over the course of evo-

lution, across multiple pairs of environments and to determine their

relative effects on the phenotype. It is a tool to study the genetic reg-

ulation of the response to different environments. In his Genetical The-

ory of Adaptation, Fisher proposed that it is highly unlikely that a

genetic variant will confer a beneficial effect on all phenotypes in mul-

tiple environments (Fisher, 1930; Levins, 1968). Most of these variants

will be neutral across several environments and some can even show

trade‐off across two or more environments, i.e. have advantageous

effects in one and detrimental effects in another, thereby restricting

http://1002genomes.u-strasbg.fr
http://1002genomes.u-strasbg.fr
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FIGURE 2 Gene–environment interactions (GEI). (A) E1, E2 and E3 are three different environments and the circles depict three loci that affect the
phenotype in these environments. A white circle indicates that the locus has no effect, whereas a black circle indicates that the alleles of the locus
have different effects on the phenotype. Loci N and P have an effect in E1, M and N in E2 and P in E3. (B) Reaction norm diagrams, which describe
the pattern of phenotypic expression of a single genotype in two or more environments, depicting the three categories of GEI shown by loci M, N
and P in E1, E2 and E3

1. Environment‐specific or conditionally neutral – in this case, the alleles show a phenotypic difference in one environment but no effect in the
other, i.e. the slopes of the reaction norms of the two alleles are divergent from a point, across an environmental pair. Locus M shows envi-
ronment‐specific GEI as it has no effect in E1 but allele M performs better than allele m in E2.

2. Scale – in this case, a locus shows an effect on both environments, with the alleles showing a difference in the same direction in the two envi-
ronments, but with varying magnitudes, i.e. the reaction norm slopes are divergent but now with a significant difference between the allelic
effects in both environments. Locus N shows scale GEI as it has an effect in the same direction in both E1 and E2 with allele N performing
better than allele n, but the magnitude of this allelic difference in larger in E2 than in E1.

3. Antagonistic – this is the most special class of GEI in which alleles show opposing effects in the two environments, i.e. the slopes of the two
alleles intersect with each other. Locus P shows antagonistic GEI as it has an effect in both E1 and E3, but while allele p performs better in E1,
allele P performs better in E3.

[Colour figure can be viewed at wileyonlinelibrary.com]
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adaptation (Hill, O’Meara, & Cowen, 2015; Magwene Granek, et al.,

2011; Wenger et al., 2011; Zakrzewska et al., 2011). Comparing the

abundance and effect of loci showing GEI has provided empirical evi-

dence for these predictions.
3.2.1 | Effect size of GEI

Loci regulating complex traits tend to show a range of effect sizes of

GEI with a few loci showing a large effect and the majority of the loci

showing small‐effect GEI (Bhatia et al., 2014; Yadav et al., 2015). A var-

iant in theMAL13 gene that affects growth in only maltose and not any

other carbon source is an intuitive example of a large‐effect locus

showing GEI. Most large‐effect GEI are already identified by indepen-

dent mapping studies and the power of GEI mapping lies in the identi-

fication of small‐effect loci that contribute to environmental

dependence and cumulatively increase the amount of variance

explained in each environment. In addition, these small‐effect loci that

show GEI can be the primary contributors to phenotypic plasticity, i.e.
the ability of individuals to show diverse phenotypes across multiple

environments (plasticity QTL; Yadav, Dhole, & Sinha, 2016b).
3.2.2 | Trade‐offs in adaptation and evolution

A trade‐off, i.e. when a locus has opposing effects across a pair of envi-

ronments with one allele performing better in one environment and

the other allele in the other, is the most extreme and perhaps the most

interesting example of GEI (Figure 2B).

A study that mapped GEI in a biparental segregating population

phenotyped for growth in 12 environments showed that a large pro-

portion (~40%) of the loci show trade‐off across at least one pair of

environments (Wei & Zhang, 2017; Yadav et al., 2015). Moreover, loci

tend to show trade‐off across different types of stresses, i.e. stresses

that elicit different global cellular responses and pathways, e.g. across

rich conditions and oxidative stresses. However, the trade‐off was also

observed across stresses that invoke similar systematic cellular and

molecular responses (Gasch et al., 2001; Gasch et al., 2000). For

http://wileyonlinelibrary.com
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example, in two different oxidative stresses, one‐third of the loci

showing GEI were found to show trade‐off across paraquat and

hydroxyurea (Yadav et al., 2015). Additionally, various laboratory evo-

lution studies have shown that indeed evolution for a particular pheno-

type results in fixation of alleles that show trade‐off in other

environments, e.g. carbon‐limited environments (Wenger et al., 2011).

A trade‐off can occur when an allele with a positive or neutral

effect under a selection pressure shows negative effects on the pheno-

type in an environment that is not under selection. Therefore, a high

abundance of trade‐off does not imply that variants with opposing

effects across different environments are selected during the course

of evolution. All trade‐off does not necessarily result in antagonistic

pleiotropy, which specifically implies long‐term selection of alleles with

opposite effects on different phenotypes or environments (Hedrick,

1999). While it is difficult to distinguish between trade‐off and antag-

onistic pleiotropy using only linkage mapping analysis, comparing fixa-

tion patterns of alleles in diverse yeast populations or strains can help

decipher the phenotypic implications of a locus. A recently acquired

allele or an allele present in the same phylogenetic branch that shows

opposite effects across environments is more likely to be an example

of trade‐off with a possibility of being lost under opposing selection.

In contrast, multiple alleles with beneficial effects in different environ-

ments can be maintained in divergent strains, i.e. show signatures of

balancing selection (Turelli & Barton, 2004). While abundant trade‐

off has been identified in yeast GEI studies, only a few loci have a large

effect with characteristics of antagonistic pleiotropy (Hughes & Leips,

2016; Qian, Ma, Xiao, Wang, & Zhang, 2012; Smith & Kruglyak,

2008; Yadav et al., 2015). We would like to state that these are deduc-

tions since it is not possible to accurately estimate the evolutionary

importance of effect size of an allele based on phenotypic measure-

ments in a laboratory condition.

One of the molecular pathways whose genes have frequently

shown antagonistic pleiotropy is the Ras/PKA pathway (Granek,

Kayıkçı, & Magwene, 2011). A negative regulator of this pathway,

IRA2, showed trade‐off across diverse nutritional and oxidative

stresses (Yadav et al., 2015). Laboratory yeast evolution studies in lim-

iting glucose conditions showed that most adaptive haploid strains

were enriched for Ras/PKA pathway genes, including IRA2

(Venkataram et al., 2016). Additionally, IRA2 and several other Ras/

PKA pathway genes showed balancing selection in isolates of both S.

cerevisiae and S. paradoxus, indicating that multiple genes in the path-

way contribute to the phenotypic diversity of these strains in natural

populations. This antagonistic pleiotropy can be mitigated by GGI

within the parental strains, thus maintaining conditionally damaging

alleles within a strain (Ono, Gerstein, & Otto, 2017; Yadav et al.,

2015). Pleiotropy can result from the same or different molecular func-

tions of the same locus. Even though the same loci are identified in dif-

ferent environments, the genetic interactions tend to be highly

environment‐specific, indicating differential effects of these loci on

various biological processes.
3.2.3 | Case studies of environmentally driven selection

It is intuitive that GEI can actively influence genetic variation by facil-

itating selection of loci that provide a fitness advantage in specific
environment(s). The high phenotypic diversity of budding yeast strains

is inferred to be the result of domestication of budding yeast for vari-

ous purposes and its occupation of environmental niches more diverse

than other yeast strains such as S. paradoxus (Liti, Carter, et al., 2009).

This enhanced phenotypic diversity of S. cerevisiae strains provides an

opportunity to study the interplay between environment and genetic

variation.

Interestingly, despite being isolated from unique environmental

conditions, at a genome‐wide level, yeast strains do not cluster based

on their ecological niches but their geographical history, suggesting

that it is largely an outcome of genetic drift (Liti, Carter, et al.,

2009; Wenger et al., 2011). This is akin to what is observed in other

organisms including humans, where genetic history, rather than the

environment, influences the overall population structure (The 1000

Genomes Project Consortium, 2012; The 1000 Genomes Project

Consortium, 2015). However, broad signatures of environmental

influence have been detected by GEI analysis for specific strains

and phenotypes. In a comparison of the genomes of clinical and non-

clinical isolates, certain alleles that may provide a pathogenic poten-

tial were more frequent in clinical vs. non‐clinical strains,

independent of their geographical origin (Muller & McCusker, 2009;

Strope et al., 2015).

Allelic bias is observed when an allele is beneficial in one environ-

ment but detrimental in another, which results in maintenance of two

or more alleles of a gene in the population. Adaptive loss of aquaporins

in subgroups of natural yeast strains resulting in a difference in freeze–

thaw tolerance indicates a signature of balancing selection (Will et al.,

2010), i.e. maintenance of multiple alleles of a gene in a population.

Although aquaporins are necessary for surviving freeze–thaw, they

are disadvantageous in high‐sugar substrates found in natural environ-

ments of most yeast strains. As a result, functional aquaporins have

been lost at least six times in the history of these yeast strains. Simi-

larly, among the yeast strains, signatures of balancing selection were

identified in IRA2, as one allele was beneficial in various oxidative

and genotoxic stresses and the other allele was fitter in rich carbon

source conditions (Yadav et al., 2015). In a set of 12 biophysically

interacting high‐temperature growth genes, alleles from a clinical strain

were advantageous over alleles from the laboratory strain when grown

at high temperature on solid medium. However, these allelic effects

were reversed when the growth medium was changed to liquid with

the laboratory alleles being more advantageous, thereby revealing

novel complexities underlying GEI (Fraser et al., 2012).

GEI can also influence the accumulation of mutations at a shorter

timescale. In the laboratory strain S288c, MKT1, a gene important for

growth in various stresses (Dimitrov, Brem, Kruglyak, & Gottschling,

2009; Lewis et al., 2014; Smith & Kruglyak, 2008), has a functionally

null mutation, while all the wild‐type strains carry the functional allele

(Liti, Carter, et al., 2009; Strope et al., 2015). A more striking example

of environmentally driven selection is of the GAL genes where differ-

ent yeast strains have independently lost the ability to utilize galactose

owing to mutations in various genes of the GAL system (Warringer

et al., 2011). The laboratory strain has a point mutation in GAL2, the

West African strains have several large mutations in GAL2 and GAL4

genes, and the mosaic strains have mutations in GAL3 (Liti, Carter,

et al., 2009).
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4 | INFERRING THE ROLE OF GENE–GENE
AND GENE–ENVIRONMENT INTERACTIONS
IN SHAPING THE GENOTYPE–PHENOTYPE
MAP

The architecture of the genotype–phenotype map confers robustness

to genetic and environmental perturbations while facilitating the fixa-

tion of variants beneficial in specific selection pressures (Siegal &

Leu, 2014). While it is one of the fundamental long‐standing questions

in biology, understanding of the mechanisms underlying robustness

has been difficult to deduce at both genetic and molecular levels. This

is because of the technical limitations of measuring robustness in

higher organisms, large sample sizes required to simultaneously mea-

sure the effect of multiple variants and complexity of the genomic

architecture and population structure. GGI and GEI mapping studies,

by refining the model of genotype–phenotype map, shine a light upon

the mechanisms of robustness and evolvability, and the balance

between the two (also see the Box).

The turning point in the theory of molecular evolution was

uncovering of evidence that showed that the majority of the variants

may not have an effect on the phenotype (ENCODE Project Consor-

tium, 2012; Siegal & Leu, 2014). This could happen if the variants are

indeed inconsequential to the phenotype or if their phenotypic conse-

quences are buffered by other mechanisms (Siegal, 2013). It has been

postulated that the majority of the genes within an organism contribute

to this buffering, although empirical evidence exists for only a couple of

cases (Siegal & Masel, 2012). Interactions of a variant with other loci as

well as the environment, i.e. GGI and GEI, can play a key role in buffering

the phenotypic consequences of the variant (Siegal & Leu, 2014).

With each replication event, new genetic variants are introduced

that are then meiotically segregated in the population. While these

variants arise independently, their influence on the phenotype is a

combined outcome of the genetic and environmental background in

which the variant is present. Also, since different populations experi-

ence disparate selective forces, and thus follow divergent evolutionary

trajectories, fixation of a variant is dependent on the genetic back-

ground, i.e. the other genetic variants in a population (Gibson &

Dworkin, 2004; Masel & Siegal, 2009; Masel & Trotter, 2010;

McGuigan & Sgrò, 2009; Paaby & Rockman, 2014). As a result, often

deleterious alleles are maintained in populations because their effects

are suppressed in certain genetic backgrounds. This suppression or

genetic buffering results in incomplete penetrance of the deleterious

alleles. Even though most striking with respect to deleterious muta-

tions, this heterogeneity of the phenotype is observed for variants

with both positive and negative effects. While the effect of a variant

is determined by the other variants present in linkage, generating map-

ping populations by crossing two strains delinks these linkages that can

lead to a revelation of the individual variant effects (Liti & Louis, 2012).

One such phenomenon contributing to genetic buffering is the

regulation of cryptic genetic variation, which refers to genetic variants

that show their effects only in certain genetic backgrounds or environ-

ments and are phenotypically neutral in others (Gibson & Dworkin,

2004; Gibson & Reed, 2008; Masel & Trotter, 2010; Paaby &

Rockman, 2014). Genetic buffering can be understood as a special

manifestation of GGI and GEI, where the effects of not just a single
locus, but a large number of variants depend on specific genetic back-

grounds and environments. GGI and GEI mapping can be used to iden-

tify global modulators of genetic buffering (Paaby & Rockman, 2014;

Schell, Mullis, & Ehrenreich, 2016).

Novel mapping strategies have identified variance QTL (vQTL)

that regulate the phenotypic variance instead of only the overall mean,

i.e. they govern the phenotypic manifestation of other genetic variants

present in the individuals (Fraser & Schadt, 2010; Rönnegård & Valdar,

2011, 2012). While these genetic variants are able to manifest pheno-

typically in the presence of one allele of the vQTL, they are buffered in

the presence of the other allele (Figure 1E). Many conventional addi-

tive loci with a strong effect on the population mean also have differ-

ential effects on the phenotypic variance (McGuigan & Sgrò, 2009;

Yadav, Dhole, & Sinha, 2016a). Additionally, multiple vQTL interact

with each other to regulate this phenotypic manifestation of other var-

iants, in an environment‐specific manner (Yadav et al., 2016a), suggest-

ing that differential regulation of genetic buffering could be a potential

contributor to other central phenomena such as GEI. For instance, the

abundance of small‐effect GEI can be explained by differential buffer-

ing of these variants across two environments. These loci could poten-

tially be the global regulators of genetic buffering.

This influence of differential buffering on GEI indicates that in

order to gain a comprehensive understanding of effects of loci across

environments, it is not sufficient to focus on either a single or multiple

environments independently (Bloom et al., 2013, 2015; Perlstein et al.,

2007). This is demonstrated by a study that attempts to map loci reg-

ulating the plasticity of yeast growth across multiple environments

(Yadav et al., 2016b). Plasticity refers to the ability of a genotype to

show diverse phenotypes in different environments, which facilitates

adaptation and helps populations escape extinctions in novel environ-

ments, thereby driving evolution. While some loci that affect plasticity

are also pleiotropic, others have a significant effect on phenotypic

plasticity without being significant in any environment independently

(Yadav et al., 2016b). These results indicate that to understand the

molecular basis of adaptation it is important to study multiple strains

and many environments together and not in isolation.
5 | FUTURE DIRECTIONS

The study of complex traits in yeast, especially GGI and GEI, has pro-

vided insights into complex features of the genotype–phenotype

map, which would have been difficult in other systems, for example,

multilocus interactions, plasticity QTL and background dependence,

and consequently the molecular mechanisms of adaptation and evolu-

tion. However, the field of complex traits in yeast is surprisingly lack-

ing in gene‐level resolution of the loci involved in GGI and GEI. This

hinders identification of biological mechanisms contributing to or

affected by such interactions. One of the underlying causes for this

lack of gene‐level resolution is the primary use of linkage mapping

in identifying these loci, which identifies large haplotypes containing

multiple genes. A single or multiple variants in same or different

genes can contribute to the effect of the causal locus (Steinmetz

et al., 2002). This lack of resolution often hampers the accuracy of

identification and mechanistic understanding of GGI and GEI. A
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perceived antagonistic GEI could be a result of independent, opposite

effects of two variants present in the physical linkage, such that they

are identified within the same locus. One of the future challenges in

the study of complex traits in yeast is attaining a gene and variant

level resolution of GGI and GEI, which is of utmost priority to under-

stand the mechanistic basis of these interactions. Variant level resolu-

tion can be achieved by fine mapping, increasing the number of

segregants used for linkage mapping or performing GWAS using a

large number of yeast strains.

Studies in yeast have challenged the notion of complex vs. Mende-

lian traits and demonstrated a strong population and environment

dependence of such categorization, i.e. the mode of inheritance of a

trait depends on the population and the environment in which the phe-

notype is measured. Gene and variant level resolution of the loci iden-

tified for different traits in yeast will shed light upon the relative

contribution of coding and regulatory variants in regulation of different

traits. A highly simplified conclusion from over 15 years of mapping of

human traits and diseases is that Mendelian diseases are caused by

coding variants, whereas complex traits highly susceptible to the effect

of the environment and the background are primarily regulated by

non‐coding variants (Hindorff et al., 2009). Even though yeast, for

the most part, lacks enhancers, it contains highly specialized pro-

moters, non‐coding variants within which contribute to phenotypic

variation (Salinas et al., 2016). GGI and GEI are believed to be rampant

in both complex and many Mendelian traits in humans to different

degrees, resulting in variable expressivity and incomplete penetrance.

However, the loci contributing to this phenotypic heterogeneity are

difficult to identify because of low power to map GGI and GEI in

human traits. Studies in yeast have demonstrated the power of the

model organism to identify a range of GGI and GEI. The next steps in

the field would be to integrate the effects of these interactions on phe-

notype with effects on different biomolecules such as mRNA, protein

and metabolites to understand the molecular mechanisms underlying

GGI and GEI.
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