
ar
X

iv
:1

70
2.

07
22

3v
1 

 [
cs

.C
R

] 
 2

3 
Fe

b 
20

17

GANDALF: A fine-grained hardware-software

co-design for preventing memory attacks

Gnanambikai Krishnakumar∗, Patanjali SLPSK†, Prasanna Karthik Vairam‡ and Chester Rebeiro §

Department of Computer Science and Engineering, IIT Madras

Email: ∗ambika@cse.iitm.ac.in, †slpskp@cse.iitm.ac.in, ‡pkarthik@cse.iitm.ac.in, §chester@cse.iitm.ac.in

Abstract—Reading or writing outside the bounds of a buffer
is a serious security vulnerability that has been exploited in
numerous occasions. These attacks can be prevented by en-
suring that every buffer is only accessed within its specified
bounds. In this paper we present Gandalf, a compiler assisted
hardware extension for the OpenRISC processor that thwarts
all forms of memory based attacks including buffer overflows
and overreads.The feature associates lightweight base and bound
capabilities to all pointer variables, which are checked at run time
by the hardware. Gandalf is transparent to the user and does
not require significant OS modifications. Moreover it achieves
locality, thus resulting in small performance penalties.

I. INTRODUCTION

Even though twenty years have gone by since Aleph One’s

benchmark paper in [1], buffer overflows remain one of

the most exploited vulnerability in C and C++ programs.

Malware that overflow buffers corrupt system or other critical

memory regions forcing execution of an attacker specified

code. This has lead to privilege escalation attacks, malfunction

of applications, network penetration, or denial of service. More

recently a variant of buffer overflow, called the Heartbleed

bug1, overreads buffers allowing an attacker to read sensitive

information from the program space. This has been used,

for instance, to leak information such as certificates, digital

signatures, and passwords from a web server that uses the

OpenSSL library 2.

Over the years several preventive measures have been

introduced into systems. One of the first, was the use of

smart pointers in programming languages like Java and C#

to perform bound checking on buffers. While these languages

stymie buffer overflows, they unfortunately cannot replace

the huge amounts of C and C++ codes that is in use and

cannot be applied for system programming. Modifications

were also made to the compiler, for example by the use of

canaries and address space layout randomization (ASLR),

which made it more difficult to exploit buffer overflows but

did not completely eliminate them. The weakness of these

approaches were that they did not try to stop buffers from

overflowing but rather tried to prevent overflowing buffers

from causing damage. In due course, attackers found ways

to execute their payloads in the system in-spite of canaries

and ASLR.

1http://heartbleed.com/
2https://www.openssl.org/

The wide spread use of buffer overflows in several malware,

worms, and viruses, dictated prevention mechanisms to be

implemented in the hardware. Intel was one of the first to

introduce such a mechanism with the NX bit in their proces-

sors. This prevented attack payloads executing from the stack

and other data segments in the program. Attackers soon found

ways to bypass this with attacks such as the return-to-libc

and the return-oriented-programming (ROP) attack [2]. More

recently Intel introduced the MPX instruction extensions 3

to further fortify their processors against ROP attacks. Other

processor vendors are following suit. For example, ARM

introduced authenticated pointers 4 in their recent additions.

In the research community there have been several works to

prevent buffer overflows by modifying the processor architec-

ture. The approaches can be broadly classified as follows : the

use of a shadow stack (such as [3], [4]), tagged memories

(such as [5]), xor encrypted function calls (such as [6]),

signed memories (such as [7]), and by control flow integrity

checks (such as [8]). Encrypted function calls, tagged, and

signed memory techniques require programming acumen to

differentiate between sensitive and non-sensitive parts of the

code. Thus can be subject to human error leading to exploits.

On the other hand shadow stacks are limited to preventing

exploits based on corrupting return addresses. Other vulnera-

bilities such as corruption of function pointers, modification of

local variables, and buffer overreads cannot not be prevented.

Further, implementations of shadow stack require memory that

is typically isolated from the program. This could lead to

execution overheads due to loss in locality.

In this paper we propose Gandalf; a mitigation technique

for buffer overflows and overreads. The motivation is to make

security transparent to programmers thus preventing human

error. Our proposal is (almost) operating system agnostic and

only requires architecture and compiler changes. Furthmore,

Gandalf provides fine-grained security, which is capable of

protecting each pointer individually and blocks all known

memory corruption attacks in the stack and heap. It also

prevents attacks like Heartbleed which overreads buffers.

Gandalf works by pre-pending every declared pointer in

the program with three capabilities: base, bound, and a magic

number as shown in Figure 1. The base and bound define

3https://software.intel.com/en-us/articles/introduction-to-intel-memory-
protection-extensions

4https://community.arm.com/groups/processors/blog/2016/10/27/armv8-a-
architecture-2016-additions

http://arxiv.org/abs/1702.07223v1


Fig. 1. Stack Structure with Gandalf enabled. The pointer ptr can only
access the buffer var2 because its capabilities are set by the limits of var2.
Any attempt to read or write to a location beyond var2 will result in an
exception.

the capabilities of the pointer, while the magic number allows

quickly to identify the metadata. It helps prevent unauthorized

changes to the base and bound values. Each load and store, is

first authenticated by the pointer’s capabilities and only then

allowed to complete. If a load or a store fails this test, then an

illegal instruction exception is sent to the program terminating

it.

We implemented Gandalf in an OpenRISC environment

and tested it with different memory corruption based exploits.

It required about 500 lines of Verilog code to be changed /

added/modified in the processor.

The rest of this paper is organized as follows: Section II

describes the overall sketch of our solution. Implementation

of the solution is detail is covered in Section III in terms

of changes made to the compiler, operating system and the

hardware. Some security arguments supporting our scheme is

presented in Section IV. The Overhead of our solution and

some optimizations to improve the performance are discussed

in Section V. Finally, we conclude our findings in Section VI.

II. GANDALF: A LEAST EFFORT MEMORY DEFENSE

SCHEME

In this section we describe the working of Gandalf, the

flowchart is shown in Figure 2. Gandalf performs memory

out of bound access checks for every named variable in the

user program. Every variable in the user program is augmented

with metadata, called the Protection-Header that specifies its

legal boundaries. The Protection-Header is then used by the

hardware to perform base and bounds check during every

memory access. When a variable tries to write or read to

a memory location outside its bounds, Gandalf triggers an

exception causing the program to terminate.

Gandalf ensures that the programmer is oblivious to

the presence of the program-header as well as the bound

checks made by the hardware. The Protection-Header and

the Gandalf hardware configuration (Protection-header) de-

tails are added by the instrumented compiler when the user

code is compiled. The Protection-header is added to instruct

the processor to switch between Gandalf and the normal

mode of operation. Enabling Gandalf involves (a) populating

the Protection-Headers and (b) using the Protection-Headers

for bounds check. When the program starts, Gandalf uses

Protection-Header to instruct the hardware to populate the

Protection-Headers. Once the headers are up to date, it in-

structs the hardware to enable bound checking. Protection-

Headers comprise of the base, bound and the Magic number

for every variable used in the program, as shown in Figure 1.

Data in the program can be of four types, namely a) scalar

variables, b) arrays, c) pointers and d) system variables (such

as return pointers and frame pointers). The code to populate

Protection-Headers for cases a) and b) is introduced by the

compiler after analyzing the variable tyes. However, in case

of pointers, the compiler ensures that they inherit the base and

bound values based on the variable it points to at runtime.

All load and store instructions from the user program

are routed through the Gandalf hardware since these are

the only instructions that manipulate memory in any load-

store architecture. Gandalf hardware performs bound check

based on the metadata available in the Protection-Header

corresponding to the address used in the load or store. Firstly,

the load-store instruction is decoded to identify the program

variable associated with the instruction. Next, we index into

the Protection-Header to extract the base and bound associated

with the variable. Finally, we check if the indexed value is

within the valid limits specified by the base and bound.

Programmers can choose to enable or disable Gandalf

for every program using a compiler option. The compiler

instructs the Gandalf hardware to perform checks using the

Protection-Headers. Therefore, Linux and user programs can

be instrumented very easily to use the Gandalf hardware for

security. Additionally, programs (existing programs inclusive)

that do not have Protection-Header will bypass the Gandalf

hardware logic and execute normally.

A. Assumptions

We make the following assumptions about the attacker’s

capabilities, hardware and the software.

1) The stack structure is intuitive to attackers. Specifically,

the location and contents of Protection-Headers and data

are not assumed to be oblivious to attacker.

2) The attacker cannot modify the executable binary of

victim program. However, the attacker can provide run

time inputs (payloads) to the program, in order to modify

the control flow.

3) Since the data accesses are made only using the register-

indirect addressing mode in OpenRISC, every memory



Fig. 2. Flowchart describing Gandalf scheme Grey indicates the steps done at compiler level and Pink indicates the steps done by the hardware

access is of the form load rB, rA(I) or store rA(I), rB. For

array and pointer based accesses, we expect the compiler

to use the array’s base address in (rA). For non-array

variables, we require the compiler to use the register r2

(which stores the stack frame pointer) as the base. It is

to be noted that the gcc compiler already does this.

4) The two bits in SPR registers, namely Gandalf Enable

bit (GEB) and the Protection Header write enable bit

(PHWE), are to be saved and restored during context

switches. We have made necessary modifications to the

Linux source code to achieve the same.

5) We have not tested attacks that overflow the data/system

variables present on the heap, though our scheme can be

directly or with slight modifications used to handle this.

III. IMPLEMENTATION

Gandalf requires modifications to be made in the hardware

and compiler. Typically no modifications are required in the

OS. However in the current version of the Linux kernel

(ver 4.4.0-de0 nano) that was used, minor modifications were

needed in the kernel to save context. This section provides

a top-to-down overview of the Gandalf implementation on

OpenRISC.

A. Compiler Changes

Every program compiled for the system has an option

to turn on/off Gandalf independent of the other programs.

This is done by a compile time switch that respectively en-

ables/disables Gandalf. When enabled, the compiler programs

the following additional steps into the executable image.

• When the program starts it enables Gandalf in the

hardware. In OpenRISC this is implemented by setting

the 17th bit in the special purpose register (the SPR).

This bit is referred to as the Gandalf enable bit (GEB).

• For every named variable the protection-header data

fields including the magic number, base, and bound are

populated. While the base and bound are obtained from

the program flow, the magic number is filled with its own

address as follows.

store[Magic addr], magic addr, where [·] denotes the

value stored in the address. For example, if 0x80012340 is

the magic address then the magic number is 0x80012340.

This simple step allows (a) unique magic numbers for

every live protection-header in the program and (b) an

easy way to test the magic number. To perform the test,

we simply need to check if the loaded data is equal to

the corresponding address.

To write to protection-headers a special store instruction

is used. The processor is made to distinguish between a

normal store and this special store by setting the 18th bit

in the SPR. This bit is called the protection-header write

enable bit (PHWE).

• Resetting the 18th bit in the SPR indicates that all

subsequent loads and stores have to be validated for

memory overflows or overreads. This validation happens

in hardware.

B. Hardware Changes

When the Gandalf enable flag (GEB) is set and the

protection-header write enable bit (PHWE) is 0, hardware

extensions to OpenRISC validates every load and store as

shown in Algorithm 1.

• If GEB is set and PHWE is 0, the execute stage, generates

three addresses in addition to the effective address of

the load / store. These three addresses correspond to the

magic number, base pointer and bound pointer for the

corresponding effective address.

• In OpenRISC’s load-store unit, data is fetched as follows.

1) Fetch data from address corresponding to the magic

number and do the following check to ensure that

it is indeed the magic number.

[Magicaddress] == Magicaddress (1)

, where [·] denotes the value stored in the address.

2) If the magic data sanity check passes then the data

from address stored in base pointer is fetched and

the effective address is then compared with it. If

the effective address is greater than the base then

we fetch the bound address If the effective address

is less than the bounds then the corresponding

load/store instruction is performed. Any violation



will trigger an exception which will cause the pro-

gram to halt.

Algorithm 1: Hardware Protection Checks

if GEB && !PHWE then

Set mismatch = true;

if [MagicAddress] == MagicAddress then

if BaseAddress < EffectiveAddress then
if BoundAddress > EffectiveAddress

then

mismatch = false;

end

end

if mismatch == true then

raise mismatchexception;

end

else

execute instruction;

end

end

else if GEB && PHWE then

/* Populate protection-header */

set mismatch = false;

execute instruction;

end

else

/* Normal loads and stores */

Set mismatch = false;

execute instruction;

end

C. Linux Kernel Changes

Since the protection scheme is selectively enabled or dis-

abled from process to process, the operating system has to save

and restore the GEB and PHWE bit for every process. The

thread start and thread switch functions in the Linux

kernel to save the state of these bits on a per-process basis. It

may be noted that if these bits were implemented in the flags

register, whose state is already saved on a per-process basis,

then the OS would require no alteration.

IV. SECURITY ARGUMENT

In order for memory corruption to occur, the attacker must

be able to manipulate the effective address to point to the

target data as shown in Figure 1. This can only be possible

using one of the following methods:

• Overflowing a memory segment

Claim: This is not possible because each named variable

is tagged with a protection-header and the attacker

cannot read and write into memory locations that are

outside the bounds.

• Manipulating the content of the protection-header

Claim1: A write into the protection-header memory

segment is possible only when the 18th bit in the Special

purpose register is set and since the user has no control

over this bit, any write into the protection-header memory

segment by the attacker will result in a exception.

Claim2: A write into the protection-header memory

segment using a normal store will trigger the Gandalf

check routine in hardware and since the protection-

header memory segment will not have its appropriate

protection-header data, an exception is triggered.

• Generating a spurious protection-header

Claim1:The user cannot setup the protection-header con-

tent via the payload for the following reason: Once the

spurious-protection header content is set, the attacker can

perform malicious memory access if he can generate

effective addresses that are within the range of malicious

base and malicious bound. OpenRISC uses a relative

displacement addressing scheme for accessing data and

hence the attacker needs to manipulate either the base

or the offset part of the address. The attacker has no

control over the base and if he tries to generate a

spurious effective address by manipulating the offset, the

protection-header of the corresponding base address will

detect it.

For example, if the attacker tries to do int a[15]; int *p

=&a[14]+4; p will inherit a’s protection-header content

and hence any subsequent access via p will be treated as

illegal.

The above claims show that our scheme protects memory

segments from getting corrupted by including the protection-

header.

V. OVERHEADS AND OPTIMIZATIONS

Gandalf offers additional security at the cost of perfor-

mance and memory that is required to execute the programs.

We can divide Gandalfś operations into a) populating the

Protection-Headers and b) performing base and bounds check

at run-time.

A. Protection-Header Population

Populating the Protection-Headers requires additional store

instructions per program variable, in order to populate the

base, bound and the magic number. The Protection-Header

population for scalar, array and system variables happens in

the prologue of every function. For pointers, the protection-

header is added whenever the pointer is initialized. This

operation increases the overall time required for the program

to execute. Additionally, the memory overhead required for

storing the Program-Header is also high.

Optimization: OpenRISC uses a store buffer to do lazy

writes and hence the penalty for writing data into memory

will not be felt by the processor.



B. Base Bound Checks

Performing base and bounds check at run-time requires

additional ALU operations to compute 3 additional effective

addresses (for base, bound and the magic number). More

importantly, 3 extra loads need to be performed to retrieve

the base, bound and the magic numbers. The extra loads are

issued for both load and store instructions making the clock

cycles required per operation very high.

Optimization: Since the protection-header data has spatial

locality with respect to the current data segment, it is mostly

likely to be present in the L1 cache. Thus an increase in

the L1 cache size may have significant benefits. A further

optimization could be to maintain 3 on chip registers to store

the protection-header data.

C. Compiler Overheads

Adding additional instructions will cause the program to

bloat.

Optimization: The increase in size is less than 30%

VI. CONCLUSION

Memory corruption attacks are a serious threat to software.

Over the last 20 years, several works have been published in

this regard, however recent design trends have necessitated the

need for a robust hardware model which requires less design

overhaul. In this work, we introduce Gandalf, a light-weight

and robust hardware-software ecosystem which prevents such

attacks. We show that the scheme achieves fine grained se-

curity through our security argument. Further,Gandalf nips

buffer overflows at the bud, it prevents all forms of attacks

including the format string vulnerabilities, ROP attacks, and

return-to-libc attack. The hardware or software changes is

minimal when compared to the other schemes that currently

exist in practice.
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