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Abstract 

This paper presents a probabilistic failure analysis of leakage of the oil and gas in a subsea production system using fault tree analysis 

(FTA). A fault tree was constructed by considering four major areas where the leakages can be initiated. These are: gas and oil wells, 

pipelines, key facilities and third party damage. Conventional FTA requires precise values for the probability of failure of the basic events. 

However, since the failure data are uncertain, a fuzzy approach to these data is taken which leads to the so-called fuzzy fault tree analysis 

(FFTA), a method that employs expert elicitation and fuzzy set theories to calculate the failure probabilities of the intermediate events and 

the top event through identification of the minimal cut sets of the fault tree. A number of importance measures for minimal cut sets and 

the basic events have been obtained which helps to identify the nature of dependence of the top event on the basic events and thereby can 

identify the weakest links that may cause leakage in the subsea production system. 

© 2017 Shanghai Jiaotong University. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1. Introduction 

Subsea oil production systems consist of wells, flow-lines, 

manifolds, X-trees, risers, pipelines etc. Their operation in- 

volves many challenges such as pressure containment, main- 

tenance and flow assurance in hostile sea surface and subsea 

environment. Low temperature and high pressure are the com- 

mon characteristics of this environment that lead to high costs 

of maintenance and repair of such systems. Due to the large 

geographical spread of the subsea oil production systems, the 

task of risk assessment for gas or oil leakage becomes an ex- 

tensive task. One of the most powerful risk analysis methods 

is the fault tree analysis, which is a quantitative method for 

the computation of failure probabilities of the components of 

a particular system. 

Fault tree analysis (FTA) is a top-down deductive failure 

analysis for estimating the system reliability using Boolean 

logic. In FTA, a top event is defined and is further resolved 
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into intermediate and basic events that are interrelated by 

logic gates. The fault tree is analysed using the rules of 

Boolean algebra with which the tree is represented by an 

equivalent set of Boolean equations. 

In conventional FTA, the failure probabilities of the basic 

events ( BE ) are exact values. However, the precise estimation 

of failure probabilities of the BE s is impractical due to insuf- 

ficient data [19] . Hence, it is often necessary to work with 

approximate estimates of probabilities in the absence of pre- 

cise data. In such cases, it is appropriate to use ‘possibility’ 

instead of ‘probability’ [21] . Fuzzy approach provides a way 

to determine failure probability values when little quantita- 

tive information is available ( [21,23] and [31] ) wherein the 

BE probabilities are treated as fuzzy numbers. In this sce- 

nario, the conventional FTA is replaced by fuzzy fault tree 

analysis (FFTA). 

Lin and Wang [20] combined fuzzy set theories with ex- 

pert elicitation to evaluate the failure probability of the BE s 

of a robot drilling system. Shu et al. [29] used fuzzy meth- 

ods to analyse fault trees for a printed circuit board assem- 

bly. Khan and Abbasi [15] developed computer based tool for 
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determining the reliability of chemical process industries. Re- 

search had been carried out to evaluate the importance of the 

BE s in fuzzy fault tree analysis (FFTA). Furuta and Shiraishi 

[6] represented the values of fuzzy membership functions to 

find the importance of the BE s. Suresh et al. [31] followed 

Euclidean distance to evaluate the importance and uncertainty 

of fuzzy basis set. FFTA had been extensively applied to var- 

ious engineering problems. 

The various aspects of safety and reliability of components 

of subsea systems have received attention, e.g. Hui et al. 

[11] on reliability estimates of safety instrumented systems 

and Wanvik [33] on reliability of subsea X-trees etc. How- 

ever, application of risk based methodologies, specifically the 

FTA methodology in a subsea system had been rare. The 

FTA approach, however, had long been extensively adopted 

in aerospace and nuclear industries. The oil and gas trans- 

portation pipelines and wells represent an area where one can 

find many applications of FTA, FFTA and Bayesian network. 

Some recent works in this area are by Shan et al. [28] , Guo 

et al. [8] , Lavasani et al. [17] and Li et al. [18] . These works 

deal with oil and gas pipelines and abandoned oil and gas 

wells. Specifically, Lavasani et al. [16] and Shahriar et al. 

[27] used FFTA in studying offshore oil and gas pipelines. 

Application to deepwater drilling operation is treated in Rath- 

nayaka et al. [25] and Khakzad et al. [13] . Actual accidents 

in the oil and gas sector have been studied using a variety 

of risk assessment methodologies in Khakzad et al. [14] and 

Kalantarina et al. [12] . 

The subsea production systems are complex, operate in 

harsh environment, and inaccessible, making the repair and 

maintenance activities costly and time consuming. Therefore, 

it is imperative that quantitative risk estimation methodologies 

be adopted in their design and operation. Hu et al. [10] made 

an attempt to use the FFTA approach to the problem of leak- 

age of oil and gas in a subsea production system, but the 

details had been sketchy and analysis preliminary. In this pa- 

per, this problem has been adopted and an exhaustive FFTA 

has been carried out. Several importance measures reflect- 

ing the sensitivity of the TE on the BE s are computed and 

discussed. The methodology presented in this paper can be 

readily extended to the subsea systems that include produc- 

tion platforms in an oil and gas field and incorporate the 

pipeline export system to shore. 

It should be noted that FTA, FFTA and several other ap- 

proaches to quantitative risk analysis (QRA) such as ETA, 

combined FTA and ETA or bow tie analysis, Bayesian net- 

works etc. have been adopted in many application oriented 

papers for assessing risk of oil and gas pipelines (both on- 

shore and offshore), submarine pipelines, oil and gas wells 

(both onshore and offshore), deep water drilling operations, 

blow out prevention and oil and gas leakage in offshore plat- 

forms. In comparison, there had been practically no work 

(except a preliminary study by [10] ) reported in the litera- 

ture on application of QRA techniques (specifically FTA and 

FFTA) in subsea production systems. Whereas in other ap- 

plications a variety of fault trees have been considered, for 

subsea production systems, which constitute the mainstay of 

deepwater production, no generic or detailed fault tree struc- 

ture is either available or studied. This paper presents, for the 

first time, a comprehensive analysis of a generic fault tree of 

a subsea production system. In doing so, a variety of well 

known and widely used probabilistic risk assessment mea- 

sures are computed and in addition, a measure called ‘fuzzy 

weighted index’, which has rarely been used in the literature 

for systems in the oil and gas sector, is also computed for 

the chosen subsea production system. The spreads of fuzzy 

failure probabilities, arising out of uncertainties that are al- 

ways present in any expert elicitation model that is used in 

FFTA, both towards left (lower probability) and right (higher 

probability), affect the top or critical event in an asymmetric 

manner. This aspect, rarely used and reported in the literature 

for FFTA studies of oil and gas sector problems, has also 

been considered in the present work for the subsea produc- 

tion system. 

The problem statement, which follows in the next section, 

considers a generic fault tree model of a subsea system. Typ- 

ically, FTA of such systems are carried out. However, FFTA 

approach to this problem, that has not been reported in the lit- 

erature in a comprehensive way, yields new insight governed 

by the fuzzy weighted index (FWI) of BE s that contribute to 

failure, and such an importance measure can only be used if 

the fault tree probabilities are fuzzy in nature. Also, the spread 

of fuzzy probabilities, both to the left and to the right, affects 

the system failure in a fashion that has not been investigated 

for a system of this nature in the literature. 

2. Definition of the problem 

The fault tree of the subsea pipeline system with leakage 

as the top event ( TE ), built up through deduction, is 

shown in Fig. 1 . 

The leakage could be from 

(a) gas or oil well, OR 

(b) leakage in pipe, OR 

(c) leakage in key facilities such as connector, X-tree, man- 

ifold, pipeline end manifold (PLEM) and pipeline end 

termination (PLET), OR 

(d) third party damage. 

Leakage in gas or oil well requires 

(a) overpressure in well AND 

(b) failure of control in well. 

Leakage in pipe requires 

(a) defect in pipe AND 

(b) failure of leakage control in pipe. 

Leakage in key facilities could be from 

(a) connector leakage, OR 
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Fig. 1. Fault tree for leakage in subsea production system. 

(b) X-tree leakage, OR 

(c) manifold leakage, OR 

(d) PLEM leakage, OR 

(e) PLET leakage. 

Defect in pipe could be due to 

(a) defect in jumper, OR 

(b) defect in flow-line, OR 

(c) defect in pipeline, OR 

(d) defect in riser. 

Each one of these could be due to (a) puncture, OR (b) rup- 

ture. 

Connector leakage requires 

(a) defect in connector, AND 

(b) failure of connector leakage control. 

Similar argument holds for X-tree, manifold, PLEM and 

PLET leakages. 

Defect in connector could be due to 
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(a) defect in X-tree wellhead connector, OR 

(b) defect in pipe connector, OR 

(c) defect in pipe manifold connector, OR 

(d) defect in pipe PLEM connector, OR 

(e) defect in pipe PLET connector. 

From the above description, it is seen that the problem 

is a generic one and the deductive structure using OR and 

AND logic gates lends itself to adaptation for any practical 

leakage problem of a subsea oil and gas production system. 

The task is to quantify the failure probability of the leakage in 

the subsea pipeline system, which is the top event. The BE s 

that lead to the failure of the TE do not have well quantified 

probabilities. This, therefore, requires a fuzzy treatment of the 

FTA. Furthermore, the events that have major contribution to 

the failure of the TE are of interest. 

The fault tree in Fig. 1 has 26 basic events ( BE s) numbered 

X 1 , X 2 , …, X 26 ; 14 intermediate events numbered X 27 , X 28 , 

…, X 40 ; all leading to the top event ( TE ) which is numbered 

X 41 . The BE s are numbered first, the intermediate events next 

and the TE last. The intermediate events are numbered in 

such a way that the event number of an intermediate event is 

connected (downward) to events with smaller event numbers. 

3. FTA basics 

The fault tree presented in Fig. 1 is a combination of 

‘AND’ and ‘OR’ gates. The ‘AND’ gate implies that the out- 

put event will occur if all the input events occur, while the 

‘OR’ gate implies that the output event will occur if any one 

of the input events occur. Let a top event ( TE ), designated by 

T , be connected to the basic events ( BE s) X 1 to X N , where N 

is the number of BE s. The probability of failure of the event 

X i is P ( X i ). Then, the probability of failure of the TE , denoted 

P ( T ), for the cases when the connecting gate is either AND 

or OR is given by: 

P (T ) = 

⎧ 

⎪ 
⎪ 
⎨ 

⎪ 
⎪ 
⎩ 

N 
∏ 

i=1 

P ( X i ) for AND gate 

1 −
N 
∏ 

i=1 

{ 1 − P ( X i ) } for OR gate 

(1) 

The failure probability of the TE in a fault tree (as in 

Fig. 1 ) is assessed by obtaining its minimal cut sets ( MCS ) 

which are minimal, necessary and sufficient conditions for the 

occurrence of the TE . Once all the MCS s, denoted C i ( i = 1, 

2, …, N c ) where N c is the number of MCS , are determined, 

the failure probability of the TE , denoted P ( T ), is given by 

P (T ) = 1 −

N c 
∏ 

i=1 

{ 1 − P ( C i ) } (2) 

where P ( C i ) is the probability of failure of C i . As long as the 

failure probabilities of the BE s are small, (i.e. P ( X i ) < < 1), 

the above estimate of P ( T ) can be approximated well by 

P (T ) ≈

N c 
∑ 

i=1 

P ( C i ) (3) 

A typical MCS is a collection of the BE s and may be 

denoted as 

C j = X̄ 1 , X̄ 2 , ..., X̄ N j −1 , X̄ N j where X̄ i ∈ ( X 1 , X 2 , ..., X N ) (4) 

where N j is the number of BE s in C j , also called the order of 

the MCS . 

The determination of MCS s from the fault tree follows a 

well-established procedure, a detailed account of which may 

be found in Vesely et al. [32] . The cut sets are the unique 

combinations of component (i.e. BE ) failures that can cause 

system (i.e. TE ) failure. A cut set is minimal when any BE 

is removed from the set, the remaining BE s collectively are 

no longer a cut set. A longer MCS (i.e. consisting of more 

number of BE s, also called the order of the cut set) makes 

the TE less vulnerable to that MCS . In other words, a cut set 

of order one is more critical than a cut set of order two or 

higher. When a cut set has only one BE , the TE will occur 

as soon as this BE occurs. When a cut set has two BE s, both 

of these have to occur at the time to cause the TE to occur. 

Also, higher N c implies higher vulnerability. 

4. System data and analysis procedure 

4.1. Failure probabilities of the basic events 

In subsea oil production systems, there is a lack of ob- 

served data and yet, to carry out FTA, the occurrence proba- 

bilities of the BE s must be known. Expert elicitation or expert 

opinion provides information to compute the failure proba- 

bility of the BE s which includes interview, Delphi method, 

ranking and scaling, method of paired comparison [9] etc. 

Indirect interaction/interview is adopted in the present study. 

A definite advisory table is made and given to the experts. 

The experts give the opinions based on their experience. Ex- 

perts apply natural linguistic expressions such as ‘very low’, 

‘low’, ‘medium’, ‘high’ and ‘very high’ to describe the prob- 

ability of the BE s. Fuzzy set theory is used to handle these 

linguistic expressions using fuzzy set theory. 

Expert judgement models play a crucial role in quantita- 

tive risk assessment. Several models are available in the liter- 

ature [26] such as classical expert model and Bayesian expert 

model. Expert judgements can suffer from bias, dispersion 

and independency [2,4] . There are statistical tests that can 

restrict the judgement data from multiple experts from these 

deficiencies. Checks on variance and correlation may also be 

necessary. The choice of a model, however, must satisfy the 

need of the risk analyst and this is achieved, and in practice 

dictated, by the protocol followed by a particular industry. The 

expert judgement evaluation protocol followed by industry is 

achieved by ‘past experience’ and hence is usually reliable. In 

the present work, such a protocol has been used for analysis. 

4.2. Expert elicitation 

Experts from different fields are selected to give their as- 

sessment of the failure probabilities of the BE s in the form of 
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Table 1 

Weights for attributes. 

Attributes Weight 

Title/Designation Experience in years Education level Age in years 

Professor/Senior Manager > 30 Doctoral > 50 5 

Associate Professor Manager 20–30 Masters 40–50 4 

Asst. Professor Asst. Manager 10–20 Bachelors 30–40 3 

Lecturer/Sr. Officer 5–10 Technical 25–30 2 

Worker/Officer < 5 Graduate < 25 1 

Table 2 

Experts and their weighting factors. 

Expert No. Title Experience (years) Education level Age (years) Weighting score Weighting factor 

1 Professor > 30 Masters > 50 19 0.1202 

2 Manager 10–20 Masters 40–50 15 0.0949 

3 Associate Professor 10–20 Masters 30–40 14 0.0886 

4 Sr. Officer 20–30 Bachelors 40–50 13 0.0822 

5 Sr. Manager 20–30 Masters > 50 18 0.1139 

6 Worker > 30 Technical > 50 13 0.0822 

7 Professor 10–20 Doctoral 30–40 16 0.1012 

8 Manager 5–10 Masters 30–40 13 0.0822 

9 Sr. Manager > 30 Masters > 50 19 0.1202 

10 Professor > 30 Masters 40–50 18 0.1139 

Sum 158 1.0 

linguistic expressions based on their experience and knowl- 

edge about leakage in subsea pipeline systems. This has been 

carried out by designing an appropriate questionnaire. The ex- 

perts’ opinions are evaluated based on their respective weight- 

ing factors since experts differ in opinion and their levels of 

expertise. The weights are assigned for attributes such as (a) 

title or designation, (b) length of experience, (c) education 

level and (d) age in a scale of 1 to 5 as shown in Table 1 . 

The weighting score of an expert is the summation of these 

weights for attributes. The weighting factor for each expert is 

then computed by 

Weighting factor of the expert = 

Weighting score of the expert 

Sum of weighting scores of all experts 
(5) 

Table 2 gives the weighting scores and weighting factors 

computed for each of the ten experts consulted in this study. 

The data in Tables 1 and 2 closely follow the industry protocol 

of an offshore oil and gas industry. 

4.3. Linguistic expressions to fuzzy numbers 

A numerical approximation system was proposed by Chen 

and Hwang [1] to convert linguistic expressions to fuzzy num- 

bers. The linguistic expressions ‘very high’, ‘high’, ‘medium’, 

‘low’ and ‘very low’ are represented as VH, H, M, L and 

VL, respectively. These are related to the fuzzy membership 

functions as shown in Fig. 2 which consist of both triangular 

and trapezoidal fuzzy numbers. The triangular fuzzy numbers 

are converted into trapezoidal fuzzy numbers for the ease of 

computation. Each trapezoidal fuzzy number is represented 

by four values ( a, b, c, d ) for the five membership functions 

Table 3 

Expert opinions on failure of the basic events. 

BE Expert no. 

1 2 3 4 5 6 7 8 9 10 

1 VH VH H VH H VH VH H H VH 

2 VH VH M H VH VH M H VH VH 

3 M M M H H H M H M H 

4 M H M H M H M H M H 

5 H H H M M M L M M M 

6 M M M H M H H H M H 

7 M M M H H H M M M M 

8 H M H M M L H H H H 

9 VH H H M H M H H VH VH 

10 VH H H H H M H H VH VH 

11 VH VH H H VH VH H VH VH VH 

12 VH VH M VH H VH M H M H 

13 H H H H H H H H H H 

14 VH VH M VH H VH M H M H 

15 VH H H H H M H H H M 

16 H H H H H M H H H H 

17 VH H VH VH H VH VH VH H VH 

18 M H M VH M VH VH H VH H 

19 H VH H VH H VH H H H VH 

20 VH VH M H H VH M VH M H 

21 VH VH M H H M M VH VH H 

22 M VH M VH M H H H H VH 

23 VH H H H H M H H H H 

24 M VH M VH M H H H H VH 

25 VH H H H H M H H H H 

26 L M M M H M M L M M 

(VH, H, M, L and VL) of Fig. 2. The opinions of ten experts 

for all BE s are summarised in Table 3 . 
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Fig. 2. Fuzzy membership function for fuzzy numbers. 

4.4. Aggregation for deriving the estimates of the basic 

events 

Every BE is given a rating by the experts as shown in 

Table 3 . All the ratings for a single BE must be combined or 

aggregated to obtain a single opinion. One of the methods to 

obtain the aggregate is the linear opinion pool [3] given by 

M i = 

N e 
∑ 

j=1 

A i j w j (i = 1 , 2, ..., N ) (6) 

where N is the number of BE s ( = 26 in Fig. 1 ), N e is the 

number of experts ( = 10, see Table 4 ), w j is the weighting 

factor of the expert j (given in the last column of Table 2 ), 

A ij is the linguistic expression (either a , or b or c or d ) of 

the i th BE given by the expert j as given by Table 3 and 

M i is aggregated (resultant) trapezoidal fuzzy number of the 

BE X i . The values of M i are shown in the second column of 

Table 4 for all BE s. 

4.5. Defuzzification process 

The defuzzification process converts a fuzzy number to a 

single point value called fuzzy possibility score ( FPS ) which 

represents the possibility of the BE . The defuzzification pro- 

cess that has been used here is the left and right fuzzy ranking 

method proposed by Chen and Hwang [1] . The left and right 

utility score of a fuzzy number can be obtained with the help 

of Fig. 3 and the corresponding expressions are: 

µL = 
1 − a 

1 + b − a 
; µR = 

d 

1 + d − c 
(7) 

Table 4 

Data of the basic events. 

BE ( X i ) Aggregated fuzzy numbers ( M ) 

a, b, c, d 

FPS P ( X i ) Rank 

X 1 0.7190, 0.8392, 0.8987, 0.9595 0.8268 0.04303 3 

X 2 0.6722, 0.7994, 0.8639, 0.9266 0.7905 0.03329 4 

X 3 0.4424, 0.6187, 0.6187, 0.7949 0.6009 0.00983 17 

X 4 0.4367, 0.6139, 0.6139, 0.7911 0.5968 0.00957 19 

X 5 0.3709, 0.5506, 0.5506, 0.7304 0.5430 0.00672 21 

X 6 0.4386, 0.6155, 0.6155, 0.7924 0.5982 0.00966 18 

X 7 0.3835, 0.5696, 0.5696, 0.7557 0.5587 0.00747 20 

X 8 0.4715, 0.6361, 0.6361, 0.8006 0.6169 0.01089 16 

X 9 0.6215, 0.7620, 0.7975, 0.9025 0.7425 0.02418 7 

X 10 0.6462, 0.7826, 0.8180, 0.9190 0.7618 0.02742 6 

X 11 0.7456, 0.8592, 0.932, 0.9728 0.8532 0.05249 1 

X 12 0.5829, 0.7294, 0.7674, 0.8759 0.7133 0.02003 11 

X 13 0.6000, 0.7500, 0.7500, 0.9000 0.7175 0.02058 10 

X 14 0.5829, 0.7294, 0.7674, 0.8759 0.7133 0.02003 11 

X 15 0.5652, 0.7190, 0.7310, 0.8728 0.6939 0.01771 15 

X 16 0.5753, 0.7294,0.7294, 0.8835 0.6989 0.01828 13 

X 17 0.7342, 0.8506,0.9177, 0.9671 0.8418 0.04810 2 

X 18 0.5804, 0.7272, 0.7658, 0.8741 0.7115 0.01981 12 

X 19 0.6747, 0.8060,0.8434, 0.9373 0.7847 0.03197 5 

X 20 0.5829, 0.7294, 0.7674, 0.8759 0.7133 0.02003 11 

X 21 0.6019, 0.7446, 0.7864, 0.8873 0.7289 0.02214 8 

X 22 0.5614, 0.7130, 0.7421, 0.8646 0.6947 0.01781 14 

X 23 0.5994, 0.7475, 0.7595, 0.8956 0.7197 0.02088 9 

X 24 0.5614, 0.7130, 0.7421, 0.8646 0.6947 0.01781 14 

X 25 0.5994, 0.7475, 0.7595, 0.8956 0.7197 0.02088 9 

X 26 0.2937, 0.4778, 0.4778, 0.6620 0.4813 0.00437 22 

The FPS can be obtained by: 

F P S = 
µR + (1 − µL ) 

2 
(8) 
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Fig. 3. Representation of fuzzy number and its left and right utility score. 

The defuzzification of all BE s leads to their FPS values 

and these are given in the third column of Table 4 . 

4.6. Converting fuzzy possibility score to fuzzy failure 

probability 

The FPS of all BE s ( X i ) needs to be converted to their 

fuzzy failure probability, P ( X i ). The fuzzy failure probability, 

as defined by Onisawa [24] , is given by: 

P (X ) = 

⎧ 

⎨ 

⎩ 

1 

10 
k 

for F P S � = 0 

0 for F P S = 0 

k = 2. 301 

(

1 − F P S 

F P S 

)1 / 3 

(9) 

The failure probabilities of all BE s are given in the fourth 

column of Table 4 . 

5. Failure probability of the top event 

The failure probability of the top event is given by 

Eq. (2) and it can also be approximated by Eq. (3) . The MCS s 

of the TE are determined and these are listed in Table 5 . There 

are 19 minimal cut sets for the TE ( N c = 19). These sets con- 

tain no more than two BE s and thus the order of the MCS s 

is 2 ( = ̄N c ). The failure probability of the TE (i.e. for the 

leakage of oil and gas in the system) can be computed either 

using Eq. (2) , which is exact; or using Eq. (3) , which is an 

approximation. The difference between the exact and approx- 

imate estimates are of higher order and usually insignificant 

in practice. 

Table 5 

Importance measures of basic events and their rankings. 

BE (X i ) PI Rank 

(PI) 

CI Rank 

(CI) 

FWI Rank 

(FWI) 

X 1 0.03329 7 0.08037 5 0.00358 5 

X 2 0.04303 6 0.08037 5 0.00358 5 

X 3 0.05249 4 0.02894 13 0.00181 11 

X 4 0.05249 4 0.02818 15 0.00176 13 

X 5 0.05249 4 0.01979 19 0.00123 17 

X 6 0.05249 4 0.02844 14 0.00177 12 

X 7 0.05249 4 0.02199 17 0.00137 16 

X 8 0.05249 4 0.03206 12 0.00143 15 

X 9 0.05249 4 0.07118 6 0.00317 6 

X 10 0.05249 4 0.08075 4 0.00360 4 

X 11 0.10573 2 0.31133 1 0.01614 1 

X 12 0.04810 5 0.05405 8 0.00241 8 

X 13 0.04810 5 0.05552 7 0.00247 7 

X 14 0.04810 5 0.05405 8 0.00241 8 

X 15 0.04810 5 0.04779 10 0.00213 10 

X 16 0.04810 5 0.04933 9 0.00220 9 

X 17 0.09664 3 0.26075 2 0.01162 2 

X 18 0.03197 8 0.03553 11 0.00158 14 

X 19 0.01981 12 0.03553 11 0.00158 14 

X 20 0.02214 9 0.02488 16 0.00111 18 

X 21 0.02003 11 0.02488 16 0.00111 18 

X 22 0.02088 10 0.02086 18 0.00093 19 

X 23 0.01781 13 0.02086 18 0.00093 19 

X 24 0.02088 10 0.02086 18 0.00093 19 

X 25 0.01781 13 0.02086 18 0.00093 19 

X 26 1.00000 1 0.24542 3 0.00875 3 

The failure probabilities of the intermediate events are also 

calculated by first determining the MCS s corresponding to 

each intermediate event (by considering the intermediate event 

as the TE ) and then using Eq. (3) . 
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6. Importance measures 

6.1. Rationale 

There are various importance measures proposed in the 

literature that provide information on the contribution of the 

BE s to the occurrence of the TE . These measures help identify 

the weakest link in the system and also help evaluation of 

alternative design approaches. The measures discussed here 

are (a) cut sets importance, denoted CSI, (b) probabilistic 

importance, denoted PI , (c) critical importance, denoted CI 

and (d) fuzzy weighted index, denoted FWI . 

6.2. Probabilistic importance 

The probabilistic importance (also called the Birnbaum’s 

measure) is defined as the rate of change in total probability 

of the system with respect to changes in probabilities of the 

BE s [22] . It is the measure of the functional margin of the 

system design for the BE . The probabilistic importance ( PI ) 

is given by 

P I ( X i ) = 
∂P (T ) 

∂ X i 

(10) 

The values of PI of all BE s with their ranking are given 

in Table 5 . 

6.3. Critical importance 

The critical importance ( CI ) is given by 

CI ( X i ) = 
P ( X i ) 

P (T ) 

∂P (T ) 

∂ X i 

= 
P ( X i ) 

P (T ) 
P I ( X i ) (11) 

If it is given that the system has failed, the critical impor- 

tance of a BE X i is a measure that the failure is caused by 

this event [34] . In its definition, the probabilistic importance 

measure is adjusted to the failure probability of the BE as a 

fraction of the total failure probability of the whole system. 

Therefore, if the probabilistic importance of a BE is high, but 

the failure probability of the BE is low with respect to the 

total failure probability of the system, then the critical impor- 

tance will automatically adjust its estimate to a lower value 

[22] . The values of CI of all BE s with their ranking are given 

in Table 5 . 

6.4. Cut sets importance 

The relative contribution of the individual MCS s to the TE 

is given by a measure called the cut set importance ( CSI ), 

proposed by Fussel–Vesely [22] . It is given by 

CSI ( C i ) = 
P ( C i ) 

P (T ) 
(12) 

For higher ranked CSI (highest rank being 1), it is im- 

perative not to allow the long term average probabilities to 

increase further. This measure can also be interpreted as the 

amount of allowed degradation as a function of risk increase. 

The values and the ranking of CSI of all MCS s are given in 

Table 6 . 

7. Fuzzy weighted index of basic events 

A fuzzy weighted index ( FWI ) is another importance mea- 

sure where the contribution of each basic event to the failure 

of the top event is measured in terms of impact or weight 

[5] . This is estimated by eliminating each basic event from 

the fault tree and evaluating the total probability of the sys- 

tem. The difference between the total probability of the TE 

with all the basic events and the total probability of the TE 

by eliminating one basic event would be the fuzzy weighted 

index. This approach can only be followed when the basic 

events are fuzzy in nature. 

The FWI is calculated by first converting the deduced crisp 

probabilities of the BE s to fuzzy probabilities. This is done 

based on the guidelines given in Table 7 , and a triangular 

fuzzy number is obtained with the lower and upper bounds. 

The fuzzy probability of the TE is calculated by following 

the usual procedure through the minimal cut sets of the fault 

tree. The FWI of a particular BE is computed by calculating 

the distance between ‘the fuzzy probability of the TE with 

all basic events ( A 1 )’ and ‘the fuzzy probability of the TE 

by eliminating the particular basic event ( A 2 )’. The difference 

assists in understanding the contribution of the particular basic 

event to the failure of the top event. 

The FWI is the distance between the two triangular fuzzy 

numbers A 1 and A 2 . It is given by [7] 

F W I = δ( A 1 , A 2 ) = 0. 5 { max ( | a 1 − a 2 | , | c 1 − c 2 | ) + | b 1 − b 2 | } 

(13) 

where A 1 = ( a 1 , b 1 , c 1 ) and A 2 = ( a 2 , b 2 , c 2 ) are the triangular 

fuzzy numbers and δ is the distance between A 1 and A 2 . The 

values of FWI of all BE s with their ranking are given in 

Table 5 . 

8. Spreads of the fuzzy failure probability 

The fuzzy failure probability for each basic event is a crisp 

value, which has been computed from expert opinions. These 

computed values would have inevitable uncertainties involved 

in them, as they are purely based on the opinion, judgement 

and experience of the experts. The extent of uncertainty in 

the computed values is indicated by the ‘spread’ of the fuzzy 

failure probabilities. The width of the membership function is 

the spread of the crisp value [30] . This function consists of a 

monotonically increasing function L ( x ) and a monotonically 

decreasing function R ( x ) which intersect each other at the 

maximum (crisp) value. It has the form (see Fig. 4 ) 

µ(x) = 

{

L(x) for x ≤ m (Left spread) 

R(x) for x > m (Right spread) 

where L (x ) = 1 − (m − x ) /α, R(x ) = 1 − (x − m) /β with 

α > 0 and β > 0 (14) 

In the above, m is the crisp value of the fuzzy number 

and α and β are the measures of the left and right spreads, 

respectively. Thus, a fuzzy number is given by the triple ( m, 

α, β). The two algebraic operations on fuzzy numbers that 
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Table 6 

Minimum cut sets for the top event, their importance measures and ranking. 

MCS Events P ( C i ) CSI Rank MCS Events P ( C i ) CSI Rank 

C 1 X 1 .X 2 0.00143 0.08037 3 C 11 X 13 .X 17 0.00099 0.05552 5 

C 2 X 3 .X 11 0.00051 0.02894 11 C 12 X 14 .X 17 0.00096 0.05406 6 

C3 X 4 .X 11 0.00050 0.02818 13 C 13 X 15 .X 17 0.00085 0.04779 8 

C 4 X 5 .X 11 0.00038 0.01979 17 C 14 X 16 .X 17 0.00088 0.04933 7 

C 5 X 6 .X 11 0.00051 0.02844 12 C 15 X 18 .X 19 0.00063 0.03553 9 

C 6 X 7 .X 11 0.00039 0.02199 15 C 16 X 20 .X 21 0.00044 0.02488 14 

C 7 X 8 .X 11 0.00057 0.03206 10 C 17 X 22 .X 23 0.00037 0.02086 16 

C 8 X 9 .X 11 0.00127 0.07119 4 C 18 X 24 .X 25 0.00037 0.02086 16 

C 9 X 10 .X 11 0.00144 0.08075 2 C 19 X 26 0.00437 0.24542 1 

C 10 X 12 .X 17 0.00096 0.05406 6 

Table 7 

Lower and upper bounds to convert crisp probability to fuzzy probability. 

Failure rate Lower bound Upper bound 

0.01 < P i P i /5 2 P i 

0.001 < P i < 0.01 P i /3 3 P i 

P i < 0.001 P i /10 10 P i 

Fig. 4. Left and right spreads of the fuzzy failure probability. 

are required for a fault tree consisting of OR and AND gates 

are the addition and multiplication of two fuzzy numbers with 

spreads given by, say, by ( m 1 , α1 , β1 ) and ( m 2 , α2 , β2 ). These 

operations are given by 

( m 1 , α1 , β1 ) � ( m 2 , α2 , β2 ) = ( m 1 + m 2 , α1 + α2 , β1 + β2 ) 

( m 1 , α1 , β1 ) � ( m 2 , α2 , β2 ) = ( m 1 m 2 , m 1 α2 + m 2 α1 

−α1 α2 , m 1 β2 + m 2 α2 + β1 β2 ) 

(15) 

In Eq. (1) , the probabilities P ( X i ) are the crisp values m i 

( i = 1 to N), each associated with a left spread measure αi and 

a right spread measure β i . The expansion of P ( T ) requires 

addition and multiplication of P ( X i ) in various combinations 

and these are accomplished by the rules of Eq. (15) . 

Denoting α= C L m and β = C R m so that 

m −α = m (1 −C L ) and m −β= m (1 −C R ) and as a result 

100 C L and 100 C R are percentage measures of left and 

right spreads. The fuzzy failure probability of all BE s has 

been fuzzified by taking a left and right spread of 5% (i.e. 

C L = C R = 0.05) and 10% (i.e. C L = C R = 0.1). Considering 

these spreads, the top event probability has been calculated. 

The values obtained for all non-basic events, including the 

Table 8 

Left and right spread (in percentages) of non-basic events including the top 

event. 

Event MCS P ( X i ) 5% spread of BEs 10% spread of BEs 

100C L 100C R 100C L 100C R 

X 27 X 3 and X 4 0.01940 4.95 4.95 9.90 9.91 

X 28 X 5 and X 6 0.01638 4.96 4.96 9.92 9.92 

X 29 X 7 and X 8 0.01835 4.95 4.96 9.91 9.92 

X 30 X 9 and X 10 0.05160 4.87 4.87 9.73 9.76 

X 31 X 12 to X 16 0.09664 2.11 2.12 4.20 4.26 

X 32 X 18 and X 19 0.00063 9.75 10.25 18.96 21.01 

X 33 X 20 and X 21 0.00044 9.75 10.27 19.03 21.02 

X 34 X 22 and X 23 0.00037 9.76 10.24 19.01 20.99 

X 35 C 18 0.00037 9.76 10.24 19.01 20.99 

X 36 X 3 to X 10 0.10573 1.04 1.05 2.07 2.11 

X 37 C 10 to C 14 0.00465 4.30 4.11 8.82 7.98 

X 38 C 1 0.00143 9.77 10.26 18.98 21.00 

X 39 C 2 to C 9 0.00555 1.89 1.80 3.87 3.51 

X 40 C 10 to C 18 0.00620 3.11 2.95 6.35 5.77 

X 41 C 1 to C 19 0.01777 1.16 1.11 2.38 2.17 

top event, are listed in Table 8 with their spread measures 

in percentage. In Table 8 , the MCSs for the 14 intermediate 

events (X27 to X40) of the fault tree of Fig. 1 and their 

failure probabilities are also shown. The left and right spreads 

of the TE probability as functions of the equal left and right 

spreads of the probabilities of all the BE s are plotted in 

Fig. 5 . 

At this stage, it may be of interest to evaluate this depen- 

dence of the left and right spreads of the TE probability on 

the spreads of the probabilities of all the BE s in the case of 

conventional FTA as against fuzzy FTA. These plots for the 

conventional FTA are shown in Fig. 6 , which can be com- 

pared with those of Fig. 5 for fuzzy FTA. 

9. Discussion of results 

The fuzzy set theory has been used in the fault tree analy- 

sis of a subsea production system to quantify the ‘ probability 

of the leakage ’, which is the top event ( X 41 ) and this prob- 

ability is computed as 0.017825 using Eq. (2) and 0.01777 

(see Table 8 ) using Eq. (3) , showing negligible effect of the 

higher order terms. 
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Fig. 5. Spreads of the TE as functions of equal spreads of the BE s in FFTA (solid line: right spread; dashed line: left spread). 

Fig. 6. Spreads of the TE as functions of equal spreads of the BE s in conventional FTA (solid line: left spread; dashed line: right spread). 

The fault tree has only one first order MCS consisting of 

‘ third party damage ’ ( X 26 ) and the rest MCS s are of second 

order. As a result, X 26 has the highest rank (i.e. rank 1) of 

PI (see Table 5 ) and the corresponding MCS (i.e. C 19 ) also 

has the highest rank (see Table 6 ). Next in the order of im- 

portance of the BE s, the events ‘ failure of leakage control in 

pipe ’ ( X 11 ) and ‘ failure of connector leakage control ’ ( X 17 ) 

affect the overall system failure significantly since they have 

PI ranks of 2 and 3 respectively and CI (and FWI ) ranks of 

1 and 2 respectively (see Table 5 ). Next in the order of im- 

portance of the MCS s, C 9 and C 1 have CSI ranks of 2 and 3 

respectively (see Table 6 ). The MCS C 9 consists of ‘ rupture 

in riser ’ ( X 10 ) and ‘ failure of leakage control in pipe ’ ( X 11 ), 

whereas MCS C 1 consists of ‘ overpressure in well ’ ( X 1 ) and 

‘ failure of control in well ’ ( X 2 ) and therefore these events ( X 1 , 

X 2 and X 10 ) are next in order of importance after X 11 and X 17 . 
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From Table 8 and Fig. 5 , it is seen that the left and right 

spreads of the TE (i.e. X 41 ) are less than 25% of that of the 

BE s (e.g. 2.38% left spread of TE vs . 10% left spread of all 

BE s). This is encouraging for the overall system because it 

means that the uncertainty of the fuzzy crisp value of the 

TE will be significantly less that the uncertainty of BE s. In 

other words, the crisp value of the TE probability is robust. 

The opposite is true for conventional FTA as can be seen 

from Fig. 6 . The uncertainty of the evaluated TE probability 

is almost 100% more than the uncertainty of BE s. In other 

words, the left and right spreads, which represent the uncer- 

tainty band of the probability of the BE s, leads to a much 

larger (about 100% more) uncertainty band of the probability 

of the TE in conventional FTA, whereas it leads to a much 

smaller (about 75% less) uncertainty band of the probability 

of the TE in fuzzy FTA. This underscores the inherent de- 

sirability of a fuzzy description of the BE probabilities, and 

hence the fuzzy route to FTA. 

Leakage of oil or gas in any offshore, onshore or subsea 

production systems may result in serious accidents such as fire 

and explosion which may involve serious economic as well as 

personnel losses. This paper deals with FTA of a subsea sys- 

tem. The FTA only evaluates the probability of occurrence of 

the leakage event. This must be followed up with event tree 

analysis (ETA) which establishes the variety of consequences 

that may follow this leakage event established by FTA. A 

combined FTA-ETA is called ‘bow-tie’ analysis (e.g. [28] ). 

At the end of ETA, one obtains the risk measures of various 

consequences and hence the risk profile of the entire system. 

This risk profile can be used to draw up managerial decisions 

regarding inspection and monitoring strategies of various sys- 

tem components. The fuzzy ETA does not seem to have been 

used for any subsea production system and work in that di- 

rection is needed to draw up integrity management of such 

systems based on the fuzzy approach to risk analysis. 

10. Conclusion 

A probabilistic failure analysis of the leakage of the gas 

and oil in a subsea oil and gas production system has been 

carried out using fuzzy fault tree analysis that requires ex- 

pert elicitation of the failure probabilities of the basic events 

in a fuzzy framework. A number of importance measures 

have been evaluated and discussed which helps to identify 

the weakest links that may cause leakage in the system. Es- 

pecially, the fuzzy weighted index measure, that is relatively 

less used in the literature, has been obtained in this work. The 

analysis is extended to evaluate the uncertainty involved in the 

failure probability of the top as well as intermediate events 

due to the assumed uncertainty levels of the basic events us- 

ing a left and a right spread of errors. It has been found that 

a large error band of the basic events yields a much smaller 

error band of the top event failure probability making it ro- 

bust to the variations of the basic events. It is shown that the 

opposite is true for conventional fault tree analysis and hence 

a fuzzy route to the fault tree analysis is more desirable. 

The application of FTA to large subsea production systems 

that include production platforms as well as export pipelines 

to onshore infrastructure in a complex oil and gas field can 

be attempted by extending the methodology presented in the 

present work. 
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