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Abstract: Two type of numerical approach namely, Radial

Basis Function and Spline approximation, used to analyse

the free vibration of anti-symmetric angle-ply laminated

plates under clampedboundary conditions. The equations

of motion are derived using YNS theory under first or-

der shear deformation. By assuming the solution in sep-

arable form, coupled differential equations obtained in

term of mid-plane displacement and rotational functions.

The coupleddifferential is thenapproximatedusingSpline

function and radial basis function to obtain the generalize

eigenvalueproblemandparametric studies aremade to in-

vestigate the effect of aspect ratio, length-to-thickness ra-

tio, number of layers, fibre orientation and material prop-

erties with respect to the frequency parameter. Some re-

sults are compared with the existing literature and other

new results are given in tables and graphs.

Keywords: Free vibration; laminated plate; anti-

symmetric; angle-ply; splines; radial basis function

1 Introduction

The application of composite materials increases drasti-

cally in civil, aerospace, automobile and aeronautic fields.

In designing structures, the stability and vibration plays

an important role especially when comes to thin and it

subjected to high dynamic loads. In case the structure de-

signed with high natural frequency, the adjustment has
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made to the material used, thickness or the boundary

conditions to reduce the free vibration frequencies. Thus,

many researcher showsmore interest to study themechan-

ical behavior of these composite materials.

The plate studies initiate by Kirchoff [1], where his

study produce an inaccurate results for Mindlin plate [2]

due to ignorance of shear deformation. Stavsky [3] has

come out with shear deformation theory for isotropic

plates and generalised to laminated anisotropic plates by

Yang et al. [4], and there are numerous numerical ap-

proaches approached by many researchers to study the

plate’s mechanical behaviour under first order shear de-

formation theory using various boundary conditions.

Radial basis function is scattered data approxima-

tion where it depends on Euclidian distance between col-

location points. Kansa [5, 6] worked on partial differ-

ential equations using RBF method, where this method

was adopted here to approximate the ordinary differential

equations. Apart from this Kansa, few other researchers,

Ferreira [7, 8] worked on plates using RBF method.

Liew et al., Rodrigues et al., and Liu et al. [9ś11] show

some interest on buckling analysis using radial basis func-

tion for laminated plates. The plates is not only anal-

ysed under first order shear deformation theory but, Fer-

reira [12ś14] and his group produced numerous research

on plates using RBF under higher order shear deformation

theories since last few years, and Liu et al. [15] also in-

vestigated laminated composite plates with samemethod.

Meanwhile, Sanyasiraju [16], also used this technique to

solve some problems

Spline is another type of approximation involves scat-

tereddata interpolation,where it usedwidely in numerical

analysation. This method introduced by Schoenberg for a

special study, then developed by Bickley [17] for two point

boundary problems. Viswanathan and Navaneethakrish-

nan [18, 19], Viswanathan and Kim [20], and Viswanathan

and Lee [21] showed their interest in plate study, and they

used spline technique to solve various problems involving

plates and shells. Irie et al. [22], Irie and Yamada [23] also

had done some studies on free vibration of rotating non-
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uniform discs and annular plate with variable thickness

respectively.

Tornabene et al. [24] applied the radial basis function

method todoubly-curved laminated composite shells. This

work followed by Fantuzzi et al. [25, 26], where they re-

searches deals with Radial Basis Functionmethod for lam-

inated composite arbitrarily shaped plates. Recently few

researcher shows significant interest in applyingmesh free

methods in their research [27ś30]. Sahu [31] have done

some work on static and free vibration analysis of lami-

nated composited skew plate with and without cutout us-

ing finite element method.

The objective of this study is to analyse the free vibra-

tion of anti-symmetry angle-ply laminated plates includ-

ing shear deformation under clamped-clamped boundary

condition using two different numerical methods, Spline

and Radial Basis Function. The problem is formulated us-

ing YNS (Yang, Norris and Stavsky) theory, where the sec-

ond order differential equation obtained in term of mid-

plane displacements and rotational function, and the so-

lutions is assumed in separable form and ordinary differ-

ential equations is obtained. Then, for the first case, the

displacements and rotational functions are approximated

using spline, for second case the differential functions are

approximated usingRadial Basis Function. The final equa-

tion becomes generalized eigenvalue problem for both the

cases. The frequency parameter is analysedwith respect to

aspect ratio, length-to-thickness ratio and number of lay-

ers by considering different type of materials.

2 Problem formulation

A rectangular plate with length a, width b and constant

thickness h, which made up of even number of thin layers

is given in Fig. 1 with angle orientation θ and −θ. Based on

YNS theory, the displacement components are consider as

u = u0(x, y, t) + zψx(x, y, t),

v = v0(x, y, t) + zψy(x, y, t),

w = w(x, y, t) (1)

where u, v, and w is displacement component in x, y and

z directions respectively. u0 and v0 are the displacements

at middle surface of the plate and ψx and ψy are shear ro-

tation in middle surface of plate at any point and t is time.

Figure 1: Laminated plate with constant thickness.

Using strain-displacement and stress-strain relations,

the stress and moment resultant written as
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The stiffness coefficients are define as Aij, Bij and Dij
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where k is shear correction factor and the quantitiesQij are

given in Appendix A.
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The displacement and rotational functions are as-

sumed as,

u0(x, y, t) = u(x, y)e
iωt ,

v0(x, y, t) = v(x, y)e
iωt ,

w(x, y, t) = w(x, y)eiωt ,

ψx(x, y, t) = ψx(x, y)e
iωt ,

ψy(x, y, t) = ψy(x, y)e
iωt . (2)

where ω is the angular frequency of the plate and t is the

time.

By substituting the Eq. (2) into stress-strain and strain-

displacement relations, we get the following equations,
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The displacement and rotation functions are assumed

in separable form as

u(x, y, t) = U(x) cos
(︀

nπy/b
)︀

,

v(x, y, t) = V(x) sin
(︀

nπy/b
)︀

,

w(x, y, t) = W(x) sin
(︀

nπy/b
)︀

,

ψx(x, y, t) = ψx(x) sin
(︀

nπy/b
)︀

,

ψy(x, y, t) = ψy(x) cos
(︀

nπy/b
)︀

. (4)

This means that the plates are simply supported along

y = 0 and y = b and the non-dimensional parameters are

introduce as follows

λ = ωa
√︁

(︀

I0/A11

)︀

, frequency parameter

ϕ = a/b, aspect ratio

X = x/a, distance coordinate

H* = a/h length-to-thickness ratio (5)

where A11 is standard extensional rigidity coefficient. For

the case of anti-symmetric angle-ply lamination plates the

coefficients A16, A26, A45, B11, B12, B22, B66, D16 and D26

is assumed identically zero. By substituting Eqs (4) and (5)

into Eq. (3) the following matrix obtained,
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where Lij (ij = 1, 2, 3, 4, 5) are the differential opera-

tors, given in Appendix B.

3 Method of solution

Two types of approximations are used in this study. One

is the Spline approximation and another is the radial ba-

sis function approximation. Clamped-clamped boundary

condition are applied in both cases.

3.1 Spline Formulation

Spline function is a lower order approximation and fast

convergence with high accuracy. The displacement U(X),
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V(X) and W(X) and rotation functions ΨX(X) and ΨY (X)

are approximated by using cubic spline functions.

U(X) = a0 + a1X + a2X
2 +

N−1
∑︁

j=0

bj(X − Xj)
3
H(X − Xj),

V(X) = c0 + c1X + c2X
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∑︁

j=0

dj(X − Xj)
3
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3
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3
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j=0

qj(X − Xj)
3
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where H
(︀

X − Xj
)︀

is Heaviside function and N in the num-

ber of interval between [0,1]. The collocationpoints chosen

from X = Xs = s/Nwhere s = 0, 1, 2, . . . , N, and the spline

produce (5N + 15) coefficients for (5N + 5) homogeneous

equation.

Here, clamped-clamped (C-C) boundary condition is

considered at x-axis, to get tenmore equations andmaking

a total of (5N + 15) homogeneous equations, to obtain the

generalized eigenvalue problem. The resulting equations

can be written in form of

[M]{q} = λ2[P]{q} (8)

Here [M] and [P] are square matrices and {q} is column

matrix also known as eigenvector and λ is the eigenparam-

eter.

3.2 Radial Basis Function Formulation

Radial basis function is one of themesh freemethodwhich

depends on distance of points from center. The distance

from the center represent as g(||X − Xj , c||), Xj is center

point, c is shape parameter, and ||X − Xj , c|| is the Euclid-

ian norm. Multiquadrics radial basis function is one of ap-

proach to solve differential equations. The RBF interpolant

is represented as
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N
∑︁
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⃦

⃦ , c
)︀

(9)

The procedure of estimating the parameter is on se-

lecting the basis function centres by using input vector ei-

ther algorithmically or at random and setting them to be

centres [32, 33]. The parameter is fixed as randomly as 1.

The differential functions U(X), V(X), andW(X) and rota-

tion functionsΨX andΨY were approximatedbyusingRBF

interpolant as
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By substitute Eq. (10) into equilibriumequation, Radial ba-

sis function produce 5N parameter. The generalized eigen-

value problem of resulting equations can be written simi-

lar form as Eq. (8).

4 Numerical results

Before proceeding to the study, comparative studies have

been carried out to validate the obtained results. Table 1

shows the results obtained by both methods and com-

pared with Patel et al. [34]. The values are considered as

follows:

El = 3.58 GPa, Et = 0.00909 GPa,

G12 = G13 = 0.0037 GPa, G23 = 0.0029 GPa,

υ12 = 0.416.

The fundamental frequency parameter, λ, calculated

for bimodular material laminated plate with aspect ratio

(a/b = 2) and thickness, h = 1/10 with angle orien-

tation 15∘ and 30∘ for 2 layers and 4 layers plate. From

the table, the Splinemethod gives higher frequency values

compared to the RBF method for the plates with ply angle

15∘. The differences between Spline andRBF technique are

0.521 and 0.151 for the plates with 2 and 4 layers respec-

tively. For the plates with ply angle 30∘, the RBF method

gives higher values compared to the Spline function. The

difference between both the methods is 0.977 and 0.171 for

the two and four layered plates respectively. The present

results shown in the table gives close agreement with the

Patel et al.

In this study the effect of frequency parameter with re-

spect to the plate aspect ratio (a/b), length-to-thickness
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Table 1: Comparison of non-dimensional frequency λ =

ωa(ρ/E2h
2)1/2 for different angle θ with a/b = 2 and h = 1/10.

Present Patel et al.

θ Layers Spline RBF [34]

15 2 6.247 5.726 6.4128

4 7.966 7.815 6.6739

30 2 8.854 9.831 10.793

4 10.33 10.501 12.949

Table 2: The effect of plate aspect ratio (a/b) on the frequency pa-

rameter of a clamped-clamped two layered rectangle plate with θ =

45∘/−45∘ with material arranged as KGE-KGE.

method

a/b Spline RBF

0.2 0.4241 0.4014

0.4 0.4437 0.4206

0.6 0.4759 0.4463

0.8 0.5199 0.4953

1 0.5751 0.6030

1.2 0.6406 0.6653

1.4 0.7157 0.7428

1.6 0.7998 0.8164

1.8 0.8921 0.9072

2 0.9920 1.1160

ratio (a/h) with different angle and different number of

layers for anti-symmetric plates with shear correction fac-

tor, K is fixed as 5/6 and analysed. The plates are assumed

to be two and four layered, which made of materials (KGE)

and (AGE) [20]. The results are shown in tables and graphs

for both the methods using Spline and Radial Basis Func-

tion.

Table 2 and 3 shows the effect of aspect ratio on

fundamental frequency parameter, λ = ωa
√︀

ρ/A11, for

clamped-clamped two layered rectangle plates with ply

angle 45∘/−45∘ using material KGE and AGE respectively.

Table 4 and 5depict the free vibrationof four layeredplates

with respect to aspect ratio under clamped boundary con-

ditions with material arrangement as KGE-AGE-AGE-KGE

and AGE-KGE-KGE-AGEwith ply angle 45∘/−45∘/45∘/−45∘.

The aspect ratio of the plates varies from 0.2 to 2.

The values of the fundamental frequency parameter

increases with the increase in the aspect ratio, and the dif-

ference between the corresponding values is very small.

The vibration value which calculated using RBF is lower

than the Spline in the range −0.2 ≤ a/b ≤ 0.6 and vice

versa from1.0 ≤ a/b ≤ 2.0 for two layeredplates. Themax-

imum difference between set of values of Table 2 is 0.1240

Table 3: The effect of plate aspect ratio (a/b) on the frequency pa-

rameter of a clamped-clamped two layered rectangle plate with θ =

45∘/−45∘ with material arranged as AGE-AGE.

method

a/b Spline RBF

0.2 0.4249 0.4115

0.4 0.4443 0.4309

0.6 0.4762 0.457

0.8 0.5199 0.5526

1 0.5749 0.6210

1.2 0.6404 0.6838

1.4 0.7156 0.7647

1.6 0.7999 0.8475

1.8 0.8927 0.9968

2 0.9933 1.1538

Table 4: Comparison of two methods for effect of plate aspect ra-

tio (a/b) on the frequency parameter of a clamped-clamped four

layered rectangle plate with θ = 45∘/−45∘/45∘/−45∘ with material

arranged as KGE-AGE-AGE-KGE.

method

a/b Spline RBF

0.2 0.4905 0.5021

0.4 0.5156 0.5279

0.6 0.5559 0.5687

0.8 0.6102 0.6291

1 0.6769 0.7019

1.2 0.7549 0.7816

1.4 0.8431 0.8728

1.6 0.9407 0.9721

1.8 1.0469 1.0516

2 1.1697 1.2215

and the minimum difference is 0.0151, with mean value of

0.03354, and for Table 3, the maximum and minimum dif-

ference is 0.1605 and 0.0134 respectively. Whereas for four

layered plates, the Spline approximation produce higher

values compared to RBF technique for the material ar-

ranged as KGE-AGE-AGE-KGE, and formaterial arranged as

AGE-KGE-KGE-AGE the Spline approximation gives lower

results compared RBF results from range 0.2 ≤ a/b ≤ 1.0,

and vice versa from a/h > 1.0. From Table 4, the differ-

ence percentage between the corresponding values varies

between 2.0898% and 23.40325%. The differences for cor-

responding values in Table 5 varies from0.0116 and 0.0605

with the mean 0.0234. The frequency value shows sudden

hike when the number of layers increase from two to four,

and for two layered, material arrangements KGE-KGE and
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Table 5: Comparison of two methods for effect of plate aspect ra-

tio (a/b) on the frequency parameter of a clamped-clamped four

layered rectangle plate with θ = 45∘/−45∘/45∘/−45∘ with material

arranged as AGE-KGE-KGE-AGE.

method

a/b Spline RBF

0.2 0.5260 0.5178

0.4 0.5513 0.5433

0.6 0.5923 0.5826

0.8 0.6478 0.6454

1 0.7365 0.7311

1.2 0.7971 0.8107

1.4 0.8886 0.9034

1.6 0.9899 1.0016

1.8 1.1002 1.1382

2 1.2184 1.2849

Table 6: The effect of ply angle (θ)) on the frequency parameter of a

clamped-clamped two layered rectangle plate with a/b = 1.

method

θ Spline RBF

0 0.4237 0.4213

10 0.4031 0.3999

20 0.3986 0.3925

30 0.4327 0.4109

40 0.5064 0.5991

50 0.6303 0.6600

60 0.8115 0.8288

for four layered plates withmaterial arranged as KGE-AGE-

AGE-KGE has lower frequency.

Fig. 2 shows effect of plate length-to-thickness ratio

(a/h) on the frequency parameter calculated using Spline

approximations and RBF. Here three different cases of a/b

is considered as, a/b = 1.0, 1.5, and 2.0 and a/h is varies

from 10 to 60. Fig. 2(a) shows that, the frequency parame-

ter values obtained using RBF is slightly higher compared

to the value obtained by spline methods for a/h = 10, 20

and 30, the results are vice versa for other values of a/h. In

Fig. 2(b) the frequency parameter obtained by using both

the method are almost same. In Fig. 2(c), the frequency

parameter values obtained using Radial Basis Function

method is higher compared to the value obtained from

Spline. For a/b = 1.0 the highest difference between these

two sets of values are 0.0419 and 0.0004 is the smallest

difference with mean of difference 0.02. Whereas 0.0444

and 0.0033 will be the greatest and smallest difference for

the set of data of a/b = 1.5, and the mean for this data is

Table 7: The effect of ply angle (θ) on the frequency parameter of a

clamped-clamped two layered rectangle plate a/b = 1.5.

method

θ Spline RBF

0 0.4447 0.4213

10 0.4391 0.3999

20 0.4566 0.3925

30 0.5218 0.4109

40 0.6465 0.5991

50 0.8543 0.6600

60 1.1654 0.8288

Table 8: The effect of ply angle (θ) on the frequency parameter of a

clamped-clamped two layered rectangle plate a/b = 2.

method

θ Spline RBF

0 0.4917 0.4898

10 0.4979 0.4906

20 0.5396 0.5336

30 0.6421 0.6375

40 0.8292 0.7037

50 1.1411 1.3022

60 1.6129 1.8416

0.0181. For a/b = 2.0 the mean difference of two data is

0.06633 with the range of differences between the data is

0.1495 and 0.0157.

Table 6ś8 represent the comparison of the value cal-

culated using Spline and RBF approximation for effect of

ply angle (θ) and aspect ratio (a/b) on the frequency pa-

rameter using material KGE. The frequency is evaluated

for θ from 0∘ to 60∘ with increase of 10∘ and the mate-

rial arrange as KGE-KGE. The frequency of the plate in-

creases when θ increases from 0∘ to 60∘ for all cases of

a/b, (a/b = 1, a/b = 1.5, and a/b = 2). The mean value

of the differences between the two set of data for Table 6

is 0.02474 with greatest difference value of 0.1732 and the

minimum difference value is 0.0024. For Table 7 the great-

est difference value is 0.1825 and the minimum value is

0.0022 with 0.05166 mean value. The difference of the fre-

quency value for Table 8 is vary from 0.0019 to 0.2287 with

mean=0.07644. From thedata obtained, the frequencypa-

rameter is smaller for lower aspect ratio and ply angle.

The frequency parameter has been analysed with re-

spect to ply angle which vary from 0∘ to 60∘, with a/b = 1,

1.5, and 2, and a/h fixed as 10. The results are delineated

in Fig. 3(a), 3(b) and 3(c). In this study, the free vibration

of plate increases rapidly from angle 20∘ and onwards,
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Figure 2: Comparison of two methods for effect of plate length-to-thickness ratio (a/h) on the frequency parameter of a clamped-clamped

two layered rectangle plate.

whereas for the range of angle between 0∘ ≤ θ < 20∘,

the frequency parameter values increases slowly. Both the

Spline and RBF methods gives similar shape of graph and

the frequency values obtained using both the methods

varied in small range. For a/b = 1, the greatest differ-

ence between both the method’s corresponding value is,

0.0064, and the smallest difference is 0.0024 with mean

value 0.0035. Whereas, for a/b = 1.5, the range of dif-

ference is varied from 0.0021 to 0.0106, and the mean is

0.0045. The difference varied from 0.0013 to 0.0276 with

mean difference 0.00721 for a/b = 2. The aspect ratio with
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Figure 3: Comparison of two methods for effect of plate angle (θ) on the frequency parameter of a clamped-clamped four layered rectangle

plate.

lower value produce lower frequency parameter compared

to those higher values.

Figure 4 depict the free vibration of four layered plates

with respect to ply angles with length-to-thickness ratio

fixed as 1/10. For this case, the plates are arranged as

AGE-KGE-KGE-AGE and aspect ratio, a/b fixed as 1.0, 1.5,

and 2.0. From the figure, the frequency parameter increase

slowly from ply angle 0∘ to 20∘, and it increase rapidly

from angle 20∘ and onwards. The values obtain by Spline

and RBF differ in small range and the maximum differ-
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Figure 4: Comparison of two methods for effect of plate angle (θ) on the frequency parameter of a clamped-clamped four layered rectangle

plate.

ence for Fig. 4(a) is 0.0246 and the minimum difference is

0.0003. For the Fig. 4(b) the range of difference between

the corresponding values is 0.0183 and 0.0002, and the

spline and RBF values differ within the range of 0.0015

to 0.0786 for Fig. 4(c). By comparing all these three figure

Fig. 4(a), 4(b) and 4(c), Fig. 3(a) gives the lowest frequency

values.
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5 Conclusion

The frequency parameters for laminated angle-ply plates

including first order shear deformation theory under

clamped- clamped boundary conditions are analysed. The

displacement and rotational functions are approximated

by two different approximations namely Spline function

and Radial Basis function. The results are analysed with

respect to the side-to-thickness ratio, aspect ratio ply-

angles and number of layers using two methods. The re-

sult’s pattern for two layered and four layered plates are

discussed and the results obtained by both the methods

are significant.
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Appendix A

Q11 = Q11cos
4θ + Q44 sin

4 θ + 2 (Q12 + 2Q66) sin
2 θcos2θ

Q22 = Q11 sin
4 θ + Q44cos

4θ + 2 (Q12 + 2Q66) θcos
2θ

Q12 = (Q11 + Q22 − Q66) sin
2 θcos2θ

+ Q12

(︁

cos4θ + sin4 θ
)︁

Q16 = (Q11 − Q22 − 2Q66) cos
3θ sin θ

− (Q22 − Q12 − 2Q66) sin
3 θ cos θ

Q26 = (Q11 − Q12 − 2Q66) sin
3 θ cos θ

− (Q22 − Q12 − 2Q66) cos
3θsinθ

Q66 = (Q11 + Q22 − 2Q12 − 2Q66) sin
2 θcos2θ

+ Q66

(︁

cos4θ + sin4 θ
)︁

Q44 = Q55 sin
2 θ + Q44cos

2θ

Q55 = Q55cos
2θ + Q44 sin

2 θ

Q45 = (Q55 − Q44) cos θ sin θ

where,

Q11 =
Ex

1 − vxyvyx
, Q12 =

vxyEy
1 − vxyvyx

=
vyxEx

1 − vxyvyx
,

Q22 =
Ey

1 − vxyvyx
, Q66 = Gxy , Q44 = Gyz , Q55 = Gxz

Appendix B

L11 =
d2

dX2
− β2S10 + λ

2, L12 = β (S2 + S10)
d

dX
,

L13 = −L31 = 2βS15
d

dX
,

L14 = L41 = S15
d2

dX2
− β2S16,

L21 = −β (S2 + S10)
d

dX
,

L22 = S10
d2

dX2
− β2S3 + λ

2,

L23 = L32 = S15
d2

dX2
− β2S16,

L24 = −L42 = −2βS16,

L33 = S7
d2

dX2
− β2S12 − KS14 +

I1
I0a2

λ2,

L34 = −L43 = −β (S8 + S12)
d

dX
,

L35 = −L53 = −KS14
d

dX
,

L44 = S12
d2

dX2
− β2S9 − KS13 +

I1
I0a2

λ2,

L45 = L54 = −KβS13,

L55 = KS14
d2

dX2
− Kβ2S13 + λ

2,

L15 = L25 = L51 = L52 = 0 and β = nϕ
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