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Abstract

Motivation: Protein engineering methods are commonly employed to decipher the folding mech-

anism of proteins and enzymes. However, such experiments are exceedingly time and resource in-

tensive. It would therefore be advantageous to develop a simple computational tool to predict

changes in folding rates upon mutations. Such a method should be able to rapidly provide the se-

quence position and chemical nature to modulate through mutation, to effect a particular change

in rate. This can be of importance in protein folding, function or mechanistic studies.

Results: We have developed a robust knowledge-based methodology to predict the changes in

folding rates upon mutations formulated from amino and acid properties using multiple linear re-

gression approach. We benchmarked this method against an experimental database of 790 point

mutations from 26 two-state proteins. Mutants were first classified according to secondary struc-

ture, accessible surface area and position along the primary sequence. Three prime amino acid fea-

tures eliciting the best relationship with folding rates change were then shortlisted for each class

along with an optimized window length. We obtained a self-consistent mean absolute error of

0.36 s�1 and a mean Pearson correlation coefficient (PCC) of 0.81. Jack-knife test resulted in a MAE

of 0.42 s�1 and a PCC of 0.73. Moreover, our method highlights the importance of outlier(s) detec-

tion and studying their implications in the folding mechanism.

Availability and implementation: A web server ‘Folding RaCe’ has been developed and is available

at http://www.iitm.ac.in/bioinfo/proteinfolding/foldingrace.html.

Contact: gromiha@iitm.ac.in

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Understanding protein folding mechanisms involves identifying the

series of steps taken by a polypeptide chain at a high structural and

temporal resolution during the folding process. Though the tem-

poral aspects are challenging to decipher, the sequential and struc-

tural features have been relatively easier to address through protein

engineering methodologies (Fersht et al., 1992). This involves the

measurement of both the folding rates and stability for a series of

carefully designed point mutations along the entire protein

sequence. The effects of point mutations on rates and stability are

then compared to the wild type to obtain a dimensionless number,

the phi-value (U) that is generally considered as a proxy for the de-

gree of structure at the transition state and hence shedding light on

the mechanism of folding.

Though site-directed mutagenesis experiments have been suc-

cessfully applied to more than 40 different proteins, the downside is

that measuring the stability and folding rates for the series of mu-

tants is exceedingly time and resource-intensive. An alternative to
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this approach would involve the computational prediction of

changes in rates and stability upon point mutations. In this regard,

predicting the changes in thermodynamic stability upon point muta-

tions are already well established through sequence-based features

(Huang et al., 2007), structure-based parameters (Dehouck et al.,

2011; Parthiban et al., 2006), force-field based approaches

(Schymkowitz et al., 2005; Yin et al., 2007) and statistical-mechan-

ical methods (Naganathan, 2013).

Remarkably, despite the structural complexity of proteins, the

absolute folding rates are nowadays easy to predict either from

topological/structural considerations (Gromiha, 2009; Gromiha and

Selvaraj, 2001; Makarov et al., 2002; Micheletti, 2003; Plaxco

et al., 1998; Zhou and Zhou, 2002), protein length (De Sancho

et al., 2009; Naganathan and Muñoz, 2004; Thirumalai, 1995),

protein length combined with the secondary structure content

(Ivankov and Finkelstein, 2004), statistical mechanical approaches

(Henry and Eaton, 2004; Muñoz and Eaton, 1999) and simply even

from the primary sequence information combining statistical and

machine-learning approaches (Capriotti and Casadio, 2007; Cheng

et al., 2013; Gromiha et al., 2006; Huang and Gromiha, 2008;

Huang and Gromiha, 2010; Lin et al., 2010; Ouyang and Liang,

2008; Punta and Rost, 2005).

However, the development of models for predicting the effects of

point mutations on changes in folding rates is still at an infant stage.

This is important as the availability of a computational tool could sig-

nificantly reduce the time taken in experimental approaches. More

relevantly, it could serve as a first exploratory step to design muta-

tions of interest that could then be experimentally tested. Moreover, it

might aid in synthetic designing of protein mutants with known effect

on folding rate, for even therapeutic purposes. Till date, Prediction of

protein FOlding RAte change upon point mutation (FORA) is the

only available web server for real value prediction of folding rates

upon point mutations based on a quadratic regression model (Huang

and Gromiha, 2012). The major pitfalls in this approach include the

small training dataset of 467 mutants, moderate performance, encom-

passing both two-state and multistate proteins, less diversity in nature

of mutants as well as amino acid feature dataset.

In this work, we have developed a rigorous, knowledge-based

model for the prediction of folding rates employing a large database

of 790 single-site point mutants specifically from 26 two-state pro-

teins. A triple-order classification scheme together with a multiple

linear regression model incorporating three descriptors was able to

predict the changes in folding rates with a mean Pearson correlation

coefficient (PCC) of 0.73, mean absolute error (MAE) of 0.42 s�1

and prediction accuracy of 81.20% after jack-knife validation. The

structural implications of the outlying mutants have been exclusively

discussed. Web server named ‘Folding RaCe’ has been developed for

prediction purpose.

2 Materials and Methods

2.1 Dataset
We have constructed a set of 790 mutants from two-state proteins

using the data available in Single-Point Mutants Protein Folding

Database (Naganathan and Muñoz, 2010) (Supplementary Table

S1a). They encompass 26 proteins from all structural classes and se-

quence lengths varying from 37 to 107 amino acid residues. The dis-

tribution of mutants based on experimental Dln kf is shown in

Supplementary Figure S1a. The Dln kf values are in the range of

�5.23 s�1 to 2.60 s�1. Among the 790 mutants, 180 are accelerating

with an average Dln kf of 0.40 s�1 and the rest are decelerating with

an average Dln kf of �0.90 s�1.

Further, we have used a non-redundant test set of 59 mutants

from FORA (Huang and Gromiha, 2012) (Supplementary Table

S1b). The Dln kf values in the test set varies from �3.73 to 1.13 s�1

and the average values of 9 accelerating and 50 decelerating mutants

are 0.42 and �0.92 s�1, respectively (Supplementary Fig. S1b).

2.2 Amino acid properties
We have utilized a comprehensive collection of 593 diverse amino

acid features that includes physicochemical, conformational,

thermodynamic and evolutionary properties in this study. It

contains 544 descriptors from Amino Acid Index Database

(Kawashima and Kanehisa, 2000) and 49 properties from the lit-

erature (Gromiha, 2005). These properties were normalized be-

tween 0 and 1 to employ a common scale. Further, we have

eliminated the redundant and nonrelevant descriptors, and

reduced them to 103 using the following procedure (Step 1 in Fig.

1): (i) removed 14 properties in which the values are missing for

any of the amino acid residues, (ii) removed 101 properties in

which more than two amino acid residues have the same value,

which have no effect on mutation, (iii) for avoiding redundancy,

we have eliminated 236 properties in such a way that no two prop-

erties have the absolute correlation coefficient of more than 0.85

and (iv) utilized an ensemble of attribute selection methods (six at-

tribute evaluators along with four search methods) available in

Waikato Environment for Knowledge Analysis (WEKA) (Hall

et al., 2009) for reducing the features (Supplementary Table S2).

For each method, we detected the important features using all the

790 mutants as well as the ones selected in more than 50% of the

cross-validated datasets. The selection criteria for each method

have been explained in Witten and Frank (2005). Then, we chose

the features, which are identified to be important in at least two of

the methods. This procedure along with the inclusion of relevant

properties for protein folding such as unfolding entropy

change of hydration, surrounding hydrophobicity etc. by manual

inspection reduced the number of features to 103 (Supplementary

Table S3).

Fig. 1. Steps involved during model development
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2.3 Computational procedures
The change in folding rate upon point mutations Dln kf, is calculated

as:

Dln kf ¼ ln kmutant
f � ln kwild

f (1)

where ln kf
mutant and ln kf

wild are natural logarithms of folding rates

for mutant and wild-type amino acid residues, respectively. The

change in folding rates has been related with the change in proper-

ties using correlation coefficient.

2.4 Dataset classification
We observed that none of the shortlisted 103 features exhibited an

absolute PCC greater than 0.36 with Dln kf for the entire set of 790

mutants taken together (Supplementary Fig. S2). Hence, we classi-

fied the mutants based on secondary structure (helix, strand, coil),

normalized Accessible Surface Area (ASA) (buried, ASA<12%, par-

tially buried, 12<ASA�36% and exposed, ASA>36%) and

sequence position (N-terminal, �33%, Middle, 33–67% and C-

terminal, �67%) of the wild-type residues so that each class con-

tains uniform distribution of data and minimum redundancy (Step 2

in Fig. 1). ASA and secondary structure of mutants were assigned

using Dictionary of Protein Secondary Structure (DSSP) (Kabsch

and Sander, 1983).

2.5 Multiple linear regression and selection of prime

three features
For each class prime three features were selected (Step 3 in Fig. 1),

which elicit the best relationship with the folding rate change using

multiple linear regression technique (Grewal, 1987). The model

with the same features has been subjected to leave-one-out cross-

validation (Jack-Knife test) with n iterations, where n is the total

number of data (trained with n�1 data and tested the omitted one;

see Section 2.6.2). The method was also tested with 10-fold cross-

validation. Further, the same model has been used for evaluating its

performance on a blind test set. We noticed that some features have

been selected in different models and hence we have used a total of

51 features in all the models.

The contribution of neighboring residues (DPseq) has been

included in the method using the equation:

DPseq ¼ PmutðiÞ �
�X j¼ iþk

j¼ i�k
Pj ðiÞ=ð2kþ 1Þ

�h i
(2)

where k varies from 0 to 9 residues on both directions.

2.6 Model evaluation and validation
2.6.1 Model performance

Two measures viz. PCC and MAE (mean of absolute difference be-

tween experimental and predicted values of the logarithmic change

in folding rates) were employed to evaluate the performance of the

present method for each class. We have also examined the signifi-

cance of prediction using R2 statistic, the F statistic, P value and

mean squared error. In addition, the method was tested with mean

absolute percentage error (MAPE) and symmetric mean absolute

percentage error (sMAPE), which are defined as follows:

MAPE ¼
X jPredicted Dln kf � Experimental Dln kf j

j Experimental Dln kf j
� 100

(3)

sMAPE ¼
P
jPredicted Dln kf � Experimental Dln kf jP
jPredicted Dln kf þ Experimental Dln kf j

� 100

(4)

2.6.2 Model validation

i. Jack-Knife/Leave-One-Out cross validation: Each mutant from

the dataset is left out and the prediction is performed by train-

ing n�1 dataset for the omitted mutant. Likewise, the proced-

ure is iterated for the entire dataset to obtain the mean measure.

ii. n-fold cross validation: “n” percentage of entire data is elimi-

nated from the training set and is used as a validation set for

testing the model, constituted by the rest of the database. 5-,

10-, 20-, -30 and 40-fold cross validation tests were performed

with 107 iterations each for model validation.

iii. Blind Test: An independent test dataset of change in folding

rates of 59 protein mutants from the FORA dataset.

3 Results and Discussion

3.1 Model training
The first-order classification of mutants based on secondary struc-

ture, ASA and sequential position using three features showed a

mean PCC of 0.42 (Fig. 2). On the other hand, the mean PCC rose

to 0.55 and 0.81, respectively, in second and third-order classifica-

tion (simultaneously considering secondary structure, ASA and se-

quence position together for the relationship with Dln kf). Similarly,

there was a marked decrease in mean absolute error from 0.73 to

0.36 s�1 from first to third-order classification. Hence, the predictive

power of the method drastically enhanced upon incorporating third-

order classification.

We have developed specific models pertaining to each of the 27

classes using simple and multiple linear regression approach (max-

imum of up to three descriptors). The enhancement in PCC values

with increase in the number of descriptors is not significant in single

(Supplementary Table S4; Supplementary Fig. S3a) and double-

order classification (Supplementary Table S5; Supplementary Fig.

S3b). However, in the triple-order classification (Supplementary

Table S6; Supplementary Fig. S3c) scheme adopted in the current

study, we observed that there was a drastic improvement in PCC

upon increase in the number of associated features during multiple

linear regression analyses.

3.1.1 Class-wise self-consistency performance of model

We observed that the PCC lies in the range of 0.61–0.98 (mean:

0.81) (Supplementary Fig. S4a) in the considered 27 classes of

third-order model. The MAE ranges from 0.10 to 0.58 s�1

Fig. 2. Influence of increase in the order of classification on model perform-

ance along with error bars. SS, Secondary Structure (Strand, Helix, Others);

ASA, accessible surface area (Buried, Partially Buried, Exposed); POS, se-

quence position (N-Terminal, Middle, C-Terminal)
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(Mean: 0.36 s�1). The MAE for accelerating and decelerating mu-

tants are 0.43 and 0.38 s�1, respectively, which have the average Dln

kf of 0.40 and �0.90 s�1. It is important to note that value of PCC is

largely dependent on the number and variance of the data in a given

dataset. Hence, the class with minimum MAE (0.10 s�1) was identi-

fied as the best performing class (i.e. class index 8 in Supplementary

Fig. S4b and Supplementary Table S7 in which the mutants belong

to ‘Strand’, ‘Exposed’ and ‘Middle’ of the protein sequence).

Accuracy (Gromiha and Huang, 2011) of our model (i.e. the model’s

performance in discriminating between the accelerating and deceler-

ating mutants), ranges from 60 to 100% (Mean: 83.80%). Hence,

our model depicts a dual performance of prediction as well as dis-

crimination by adopting a single protocol. For improving the preci-

sion of performance, we fine-tuned the prediction using an

optimized sequence window length for each class. We noticed that

the inclusion of window-lengths improved the mean PCC from 0.75

to 0.81. This indicates the variable influence of neighboring residues

in determining the folding rate change of different classes of mutants

and accentuates the variable role of short and long range

interactions.

We have assessed the statistical significance of the present model

and the P value ranges between 10�3 and 10�11. Other parameters

testifying the significance of prediction are presented in

Supplementary Table S8.

3.1.2 Global self-consistency and discriminatory performance

A unified model was developed by combining the prediction results

of all the classes for the entire global dataset of 790 mutations. We

obtained the PCC of 0.81, which is the same as the mean PCC for

class-wise prediction. Further, we have analyzed the performance

using iterative elimination of different sets of data with 107 iter-

ations and obtained the same average PCC of 0.81 (Supplementary

Fig. S5). MAE marginally changed to 0.39 s�1 for the equivalent

model developed for global dataset as compared to the class wise

prediction. This attests to the robustness and flexibility of the cumu-

lative effect of class wise generated models on the entire dataset. The

model is also able to discriminate well between accelerating and

decelerating mutants with 83% accuracy.

3.2 Model validation
3.2.1 Jack-Knife cross validation

We have evaluated the performance of our method using Jack-Knife

test for all the 27 classes. We observed that the PCC is in the range

of 0.50–0.97 (mean: 0.73) (Fig. 3), MAE ranges from 0.14 to

0.68 s�1 (mean: 0.42 s�1) and accuracy ranges from 60 to 97%

(mean: 81.20%) for all 27 classes, which varies slightly from self-

consistent mean PCC of 0.81, mean MAE of 0.36 s�1 and mean ac-

curacy of 83.80%. The MAE for accelerating and decelerating mu-

tants are 0.51 and 0.44 s�1, respectively, which have the average Dln

kf of 0.40 and �0.90 s�1. The minuscule deviation in the perform-

ance before and after Jack-Knife test confirms the robustness of the

model as seen in Figure 4a and b, respectively.

3.2.2 n-fold cross validation

Models developed from the global dataset have been examined with

10, 20, 30 and 40-fold cross validation with 107 iterations. We ob-

tained a mean PCC of 0.71, which is similar to that obtained in the

Jack-Knife test.

Fig. 3. Class-wise regression plots between the experimental and predicted folding rates change after Jack-Knife cross validation. Dotted line is reference and

solid line is regression line. Refer to Supplementary Table S6 for details of each class index

Fig. 4. Unified regression plots for the global dataset of 790 mutants using (a)

self-consistency and (b) Jack-Knife test. The dotted- and solid-lines corres-

pond to the expected 1:1 correlation and the regression lines with 95% confi-

dence interval, respectively. The lines parallel to the regression line are

drawn with a deviation of 1.39 s�1. Filled squares outside these lines corres-

pond to the outliers
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3.2.3 Blind set test

The robustness of this model is also evident from the fact that it pre-

dicts the changes in folding rates from the FORA dataset (Huang

and Gromiha, 2012) comprising of 59 mutants, with a MAE of

0.78 s�1. We noticed that three of them are outliers and their re-

moval reduced the MAE to 0.62 s�1. The higher MAE compared

with cross-validation dataset may be attributed with the nature of

the proteins in the FORA dataset including a-lactalbumin that has

four disulphide bonds in its native structure and tenascin, which is a

fibrous protein with a curved Chevron plot. Removal of mutants in

these proteins showed a MAE of 0.46 s�1. The comparison with

FORA showed a better performance of our method with respect of

PCC and MAE despite of the fact that these mutants were a part of

training set of FORA (Supplementary Table S9a).

3.2.4 Comparison of the method with FORA

FORA showed a mean PCC of 0.53, MAE of 0.50 s�1 and accuracy

of 81.54% after cross-validation in a set of 467 mutants

(Supplementary Table S9b). However, it did not perform equally

well in a blind assessment carried out on a non-redundant dataset of

568 mutants (PCC: 0.20, MAE: 0.75 s�1 and accuracy: 75.22%)

(Supplementary Table S9c). It clearly shows that the performance of

the present method is better than the only available other method,

FORA.

3.2.5 Prediction performance in different proteins

We have evaluated the performance of the present method in all

the 26 proteins and the results are presented in Supplementary

Table S10. We observed that the MAE is in the range of 0.27 to

0.76 s�1. This result reveals that the present method is not depend-

ing on a specific protein instead it can be applied to all the two-state

proteins.

3.3 Feature set description
3.3.1 Sequence-based amino acid feature set

We found that the changes in folding rates upon point mutations are

primarily affected by the following order of amino acid features: hydro-

phobicity� secondary structure propensity�physicochemical>

thermodynamic> conformational� evolutionary, emphasizing the

dominant influence of hydrophobic effect during the folding process.

The list of properties, which are identified as important in multiple re-

gression equations are highlighted in italics in Supplementary Table S3.

Further, the properties, which have the single correlation of more

than 0.6 with experimental change in folding rates within a class,

are highlighted in bold. These include unfolding hydration heat capacity

change (Oobatake and Ooi, 1993), equilibrium constant with reference

to the ionization property of COOH group (Zimmerman et al., 1968),

residue volume (Bigelow, 1967), SWEIG index (Cornette et al., 1987),

normalized frequency of coil (Nagano, 1973), unfolding entropy

change of chain (Oobatake and Ooi, 1993) and long range nonbonded

energy per atom (Oobatake and Ooi, 1977), which belong to physical,

chemical, energetic and conformational categories, and highlights

the necessity of combining properties for predicting the changes in

folding rates.

3.3.2 Structure-based amino acid feature set

The structures of all the 790 point mutants were modeled employing

homology modeling with the aid of MODELLER v9.7 (Šali and

Blundell, 1993), fold recognition with Phyre2 (Kelley and Sternberg,

2009) and ab initio with I-Tasser (Zhang, 2008) protocols.

However, the mutant structure were minimally different from the

wild type (all atom RMSD<1 Å). All relevant structural descriptors

such as contact order, long range order, number of hydrogen bonds,

total contact index, multiple contact index and surrounding hydro-

phobicity for different spatial and sequence separations, exhibited

only minor variations between wild type and mutant structures.

None of the combinations of structural features exhibited PCC

greater than 0.63 in any classification.

3.4 Interpretation of outliers
We find that the classes with a correlation coefficient below 0.75

were profoundly affected by some outlying data points. We opted

for Tukey’s box plot approach (McGill et al., 1978) to identify out-

liers as it is less sensitive to extremities of the data. In order to de-

cipher the biological relevance of such mutants, we performed

rigorous analysis of outliers at two levels: (i) global dataset and (ii)

protein wise.

3.4.1 Outliers in the global dataset

Twelve of the 27 classes were found to be affected by the outliers in

class wise analysis (Supplementary Fig. S6). In class index 7, we ob-

serve that PCC is highly affected by the outliers despite exhibiting

only minimal changes in the mean absolute deviation. This is an-

other reason for giving preeminence to MAE than PCC in analyzing

the model’s relative performance. Similar analysis, performed on

global dataset led to the detection of 20 statistically significant out-

liers out of total 27. MAE between their experimental and predicted

change in folding rates after Jack-Knife test was greater than

1.39 s�1. The PCC markedly improved to 0.83 from 0.73 and MAE

dropped to 0.35 from 0.42 s�1 after removal of all the outliers (and

after Jack-Knife test) confirming the authenticity of detected out-

liers. The MAPE value is 194.23 and 166.05% as well as sMAPE

value is 31.16 and 24.87%, respectively, with and without outliers.

In the test set, the MAPE value is 205.89 and 201.65% as well as

sMAPE value is 49.08 and 40.78%, respectively with and without

outliers. The high MAPE is attributed with the low value of Dln kf in

which a small deviation would cause a high MAPE (Equation 3).

The outlying mutants belonged to three categories: (i) aromatic to

aliphatic mutations (e.g. Phe to Val), i.e. truncation of the aromatic

ring, creating a void and severely affecting local packing, (ii) muta-

tions involving glycine (e.g. Gly to Arg): significantly affecting the

backbone flexibility, (iii) large side chain truncations in aliphatic

residues (e.g. Ile to Ser) (Supplementary Table S11).

3.4.2 Protein-wise identification of outliers

For all of the 26 single domain proteins, the outlying mutations

identified using an absolute deviation cut-off of 1.39 s�1 were

scrutinized at the tertiary structure level to gain a physical insight

into the origins of this behavior (Supplementary Table S12;

Supplementary Fig. S7). We observed that the structural and en-

ergetic factors are dominant for accounting the folding rates of

these mutants.

In colicin E9 immunity protein Im9, the mutant F15A is identi-

fied as a potential outlier (Fig. 5a). The exclusion of this mutant

drastically increased the PCC from 0.78 to 0.87 and decreased MAE

from 0.47 to 0.35 s�1.

One of the striking observations with such aromatic outliers was

their role as a mediator in forming an aromatic core triad or dyad in

their respective proteins. For example in Im9 protein, a phenylalan-

ine triad is observed in the protein core comprising of three phenyl-

alanine residues (F15, F40 and F83) from three different regions,

N-terminal, middle and C-terminal, respectively (Fig. 5b);
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the experimental mutation position F15 (outlier), seems to act as a

bridge between the F40 and F83, thereby bringing the distant re-

gions of the sequence close in space and hence packing the structure.

Other aromatic outliers were also found to form such triads in acyl

coenzyme A binding protein (PDB ID: 2ABD), fyn tyrosine kinase

SH3 (PDB ID: 1SHF) and acylphosphatase (PDB ID: 1APS) and

an aromatic dyad in protein L (PDB ID: 1HZ6) (Supplementary

Table S12). These observations suggest the prediction of rates upon

mutations involving these regions is complicated by the presence of

multiple structural and energetic factors that is challenging to be

taken into account by the simple model developed in this work.

3.5 Limitations of this model
Though we have presented a simple procedure to predict the changes

in rates upon mutations, it still has some deficiencies due to the know-

ledge-based approach. First, the training dataset mainly comprises of

only specific types of mutations and hence the prediction will be less

accurate upon some uncommon mutations. Second, only 22% of the

total dataset comprise of accelerating mutants due to which the model

is intrinsically less sensitive to such effects. Finally, the detailed nature

of the model led to an increase in the number of parameters, as both

events are mutually exclusive. Hence, in order to increase the predic-

tion accuracy despite of various constraints imposed by the experi-

mental dataset, we had to compromise with the parameter count.

3.6 Web server development
A web server named ‘Folding RaCe’ has been developed for the pre-

diction of change in folding rates upon point mutations. The user is

required to provide the PDB ID or protein structure file in PDB for-

mat, chain ID, the position and the mutation to be introduced (e.g.

F15A). The output includes the change in folding rate upon the mu-

tation along with the details of secondary structure, ASA and

sequential position of the mutant. It is freely available at http://

www.iitm.ac.in/bioinfo/proteinfolding/foldingrace.html.

3.7 Conclusion
We present a multiple linear regression approach to predict the

changes in folding rates upon point mutations in two-state proteins.

It involves a combination of rigorous classification of mutations

incorporating both structural (secondary structure and ASA) and se-

quence-based aspects of proteins, and heuristic and knowledge

based feature selection of amino acid descriptors. The model could

predict with a correlation coefficient of 0.73, an absolute error of

0.42 s�1 and an accuracy of 81.2% with the experimental changes

in rates after cross validation and outperforms the only available

method FORA. The symmetric mean absolute percentage error rates

(sMAPE) for the cross-validation and test datasets is 31.16 and

49.08%, respectively. We have developed a web server named

‘Folding RaCe’ that incorporates the features discussed. The struc-

tural implications of outliers have also been discussed. We expect

this method and server to be of importance to experimentalists in

identifying the position and nature of mutations that change the

rates to the desired extent that can have both folding-mechanistic

and functional implications.
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