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The traction on the surface of a spherical active colloid in a thermally fluctuating Stokesian
fluid contains passive, active, and Brownian contributions. Here we derive these three parts
systematically, by “projecting out” the fluid using the boundary-domain integral representation
of slow viscous flow. We find an exact relation between the statistics of the Brownian traction
and the thermal forces in the fluid and derive, thereby, fluctuation-dissipation relations for every
irreducible tensorial harmonic traction mode. The first two modes give the Brownian force and
torque, from which we construct the Langevin and Smoluchowski equations for the position and
orientation of the colloid. We emphasize the activity-induced breakdown of detailed balance and
provide a prescription for computing the configuration-dependent variances of the Brownian force
and torque. We apply these general results to an active colloid near a plane wall, the simplest
geometry with configuration-dependent variances, and show that the stationary distribution is
non-Gibbsian. We derive a regularization of the translational and rotational friction tensors,
necessary for Brownian dynamics simulations, that ensures positive variances at all distances from
the wall. The many-body generalization of these results is indicated.
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I. INTRODUCTION

There has been a renewal of interest in the study of colloids with “active” boundaries, on which the usual no-
slip boundary condition is replaced by one involving a “slip velocity”. This slip is the macroscopic manifestation of
microscopic non-equilibrium processes in a thin boundary layer surrounding the colloid. Classic examples of slip-driven
motion are the multitude of phoretic phenomena including electro-, thermo- and diffusio-phoresis and the motion of
ciliated microorganisms [1, 2]. More recently, the slip model has been adapted to provide an effective description of
flagellated microorganisms [3]. It provides a very general framework for the dynamics of phenomena where colloidal
motion occurs without external influence.

The traction, that is the force per unit area, on the surface of an active colloid has three components: the Stokes
drag proportional to the rigid body motion, the active thrust proportional to the slip velocity and the Brownian stress
proportional to the temperature and the viscosity of the fluid. When the inertia of the colloid is negligible, its rigid
body motion is obtained by setting the net force and net torque due to these tractions to zero. A central problem,
then, is to derive explicit expressions for each part of the traction and to obtain, thereby, the force, the torque and
its remaining moments.

At low Reynolds number and at finite temperature the Cauchy stress in the fluid obeys the fluctuating Stokes
equation, a linear stochastic partial differential equation containing zero-mean Gaussian random fluxes with variances
determined by the fluctuation-dissipation relation. These represent thermal fluctuations in the fluid. The solenoidal
fluid velocity obeys the slip boundary condition at the colloid-fluid boundary. For a given rigid body motion and slip,
the solution of the fluctuating Stokes equation provides the Cauchy stress in the fluid and, hence, the traction on the
boundary. This solution for the traction only contains the boundary condition and the random fluxes; the fluid is,
therefore, “projected out”. The Brownian forces and torques on the colloid are the first and second antisymmetric
moments of the stochastic part of the traction. Their variance, by linearity of the governing equations, is proportional
to the variance of the random fluxes. The Langevin equations for the position and orientation of the colloid follow
straightforwardly by inserting the expressions for the net force and torque in the corresponding Newton’s equation.

Fox and Uhlenbeck were the first to derive the Langevin equation for the position of a passive spherical colloid
from the fluctuating hydrodynamic equations for the fluid [4]. The fluid was taken to satisfy the no-slip boundary
condition on the surface of the colloid and to be quiescent at the remote boundaries. The Lorentz reciprocal identity
was used to relate the deterministic (Stokes) and stochastic (Einstein) parts of the force and to derive, thereby, the
fluctuation-dissipation relation for the Brownian force from that of the random fluxes in the fluid. This approach was
extended by several authors to include fluid inertia, particle inertia, Brownian fluxes at the colloid-fluid boundary
and to many colloidal particles [5–9]. Zwanzig, in an earlier contribution, derived the variance of the Brownian force
on a spherical colloid in an unbounded fluid using the Faxén relation. The use of this variance in the Green-Kubo
relation for the transport coefficient recovered the correct value of the Stokes friction [10].

In this contribution, we derive the traction on the surface of an active colloidal particle near a plane wall by
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projecting out the fluid degrees of freedom. Our derivation differs in three important ways from previous work.
First, we derive the complete distribution of the Brownian traction, and not just its first two moments as has been
customary. This provides, in addition to the Brownian force and torque, the Brownian stresslet, a quantity important
in suspension rheology. Second, the no-slip boundary condition at the colloid-fluid boundary is replaced by the slip
boundary condition. This introduces an additional uncompensated source of dissipation and is the source, as we shall
see, of the breakdown of detailed balance in the Langevin equations. Third, a no-slip boundary condition is introduced

at the plane wall. This results in Stokes drags and active thrusts that depend on the distance of the colloid from the
wall. The configuration-dependent friction requires, by the fluctuation-dissipation relation, configuration-dependent
Brownian forces and torques and necessitates a “prescription” to render the Langevin equations mathematically
meaningful. The solution to this old chestnut, the so-called Itô-Stratonovich dilemma, has been provided by multiple
authors on multiple occasions but tends to be forgotten [11–14]. The procedure is to adiabatically eliminate the
momentum, considered as a fast variable, from underdamped Langevin equations (where no such dilemma exists).
The interpretation of the Brownian forces and torques in the overdamped Langevin equations is then unambiguous,
though not necessarily conforming to either the Itô or Stratonovich prescriptions [15–19]. Due to the linearity of
the governing equations, this method of imputing meaning to configuration-dependent Brownian forces and torques
remains valid in the presence of activity, as we show below. To the best of our knowledge, ours is the first systematic
derivation of the Langevin equations for an active (and, as a special case, of a passive) colloid when the Stokes friction
is configuration-dependent.

The remainder of the paper is organized as follows. In section II, we transform the fluctuating Stokes equation
to its boundary-domain integral representation and hence obtain a linear integral equation for the traction on the
colloid-fluid boundary. A formal solution, expressed in terms of the inverse of the single-layer operator of the integral
equation (see below), clearly identifies the passive, active and Brownian parts of the traction. In section III, we
consider a spherical colloid and provide an explicit solution to the boundary-domain integral equation. We derive,
through a Galerkin discretization, an equivalent linear algebraic system for the coefficients of the expansion of the
traction in a complete orthogonal basis of tensorial spherical harmonics. The solution of the linear system shows that
the each tensorial coefficient of the Brownian traction is a zero-mean Gaussian random variable and provides their
variances in terms of the variance of the stochastic term in the fluctuating Stokes equation. Variances of the Brownian
force, torque and stresslet follow immediately. In section IV, we use the previous results to construct the overdamped
Langevin equations for the position and orientation of the colloid. The Smoluchowski equations, corresponding to the
prescription for the Brownian forces and torques provided by the adiabatic elimination procedure, are then presented
and the activity-induced breakdown of the fluctuation-dissipation relation is pointed out. In section V, we specialize
to the case of Stokes flow bounded by a plane wall and provide a leading order solution in terms of the Green’s function
first identified by Lorentz and subsequently derived systematically by Blake [20]. We show that the usual barometric
distribution of height is no longer the stationary solution, a consequence of the breakdown of detailed balance. We
also provide a regularization of the friction tensors, for what would correspond to heights in which the sphere overlaps
with the wall. This ensures positive variances and is a necessary ingredient in Brownian dynamics simulations of
spheres without hard steric potentials. Finally, the extension of the above results to many active colloids is indicated.

II. BOUNDARY-DOMAIN INTEGRAL REPRESENTATION OF FLUCTUATING STOKES FLOW

We consider, in this section, the motion of an active colloid of arbitrary shape in an incompressible fluid of viscosity
η at a temperature kBT . The boundary condition induces a local force per unit area f = ρ̂ ·σ on the colloid boundary,
where σ is the Cauchy stress in the fluid and ρ̂ is the unit surface normal [21]. We shall henceforth refer to f as the
traction. In addition, the colloid may also be acted upon by body forces FP and body torques TP . In the absence of
inertia of both particle and fluid, Newton’s equations for the colloid reduces to instantaneous balance of the surface
forces (and torques) with the body forces (and torques):

∫

f dS + FP = 0,

∫

ρ× f dS +TP = 0. (1)

These are overdamped Langevin equations when f contains Brownian contributions.
To obtain the traction f it is necessary to know the flow field u. At low-Reynolds number this satisfies the Stokes

equation [22]

∇ · u = 0, ∇ · σ + ξ = 0, in V, (2a)

u = v, on S, (2b)
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where σ = −pI + η(∇u + (∇u)T ) is the Cauchy stress, p is the fluid pressure, ξ is the thermal force acting on the
fluid, v is the boundary velocity and S is the surface of the colloid and V is the domain of flow. The thermal force is
a zero-mean Gaussian random field whose variance is given by the fluctuation-dissipation relation

〈∫

uD(r) · ξ(r, t) dV

∫

uD(r′) · ξ(r′, t′) dV ′

〉

= 2kBT Ė(uD)δ(t− t′), (3)

where uD is any flow field that satisfies the rigid body boundary condition on S and Ė , the rate of dissipation of the
fluid kinetic energy due to rigid body motion, is given by

Ė(uD) = η

∫
[
∇uD +

(
∇uD

)
T
]
2dV. (4)

This manner of describing the thermally fluctuating fluid, due to Hauge and Martin-Löf [5], is specially suited for
flows with boundaries. The addition of a random flux, the more conventional manner of description first introduced
by Landau and Lifshitz [21], contains ambiguities in the presence of boundaries and is best used, therefore, when the
fluid is unbounded in all directions [5].

The key property of the above problem, which makes it possible to eliminate the fluid degrees of freedom exactly,
is linearity. It is most clearly expressed in terms of the boundary-domain integral representation of slow viscous flow
which provides the fluid flow in the bulk in terms of the boundary condition and the thermal force. The traction f

is obtained as a solution of the boundary-domain integral equation

1

2
vα(r) =

∫

Gαβ(r, r
′) ξβ(r

′) dV ′ −

∫

Gαβ(r, r
′)fβ(r

′) dS′ +

∫

Kβαγ(r, r
′)ρ̂′γvβ(r

′) dS′, (5)

where Gαβ(r, r
′) is a Green’s function of the Stokes equation and Kαβγ(r, r

′) is the associated stress tensor. These
kernels satisfy the Stokes system

∇αGαβ(r, r
′) = 0, −∇αPβ(r, r

′) + η∇2Gαβ(r, r
′) = −δ (r− r′) δαβ , (6a)

Kαβγ(r, r
′) = −δαγPβ(r, r

′) + η (∇γGαβ(r, r
′) +∇αGβγ(r, r

′)) , (6b)

where Pα(r, r′) is the pressure vector. Implicit in the above is a choice of Green’s function that satisfies no-slip
boundary conditions at any boundary of the fluid that is not part of S.

Defining the single-layer and double-layer integral operators G and K, which act, respectively, on tractions and
velocities, as

G · f =

∫

G(r, r′) · f(r′) dS′, K · v =

∫

ρ̂′ ·K(r, r′) · v(r′) dS′, (7)

and a Brownian velocity field w as

w =

∫

G(r, r′) · ξ(r′) dV ′, (8)

the solution of the boundary-domain integral equation can be expressed formally in terms of the inverse of the
single-layer integral operator as

f =G−1 ·w +G−1 ·
(
− 1

2I +K
)
· v. (9)

This formal solution shows that: (i) the traction is a sum of a Brownian contribution f̂ = G−1 ·w from the fluctuations
in the fluid and a deterministic contribution from the boundary condition, containing both the rigid body motion
fD = −G−1 · vD and the active slip fA = G−1 ·

(
− 1

2I +K
)
· vA (ii) the Brownian traction is a zero-mean Gaussian

random variable whose variance is linearly related to the variance of the thermal force ξ and (iii) the variance of
the Brownian traction can be determined from the inverse of the single-layer operator and the fluctuation-dissipation
relation for the thermal force. In the next section, we provide a solution for the boundary-domain integral equation
in a basis adapted for a spherical active colloid and, thereby, derive the explicit form of the traction in terms of
generalized friction tensors.
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III. TRACTION ON A SPHERICAL ACTIVE COLLOID

We now consider a spherical colloid of radius b whose center is at R and whose orientation is specified by the unit
vector p. A point on the boundary is r = R+ ρ, where ρ is the radius vector. The boundary velocity, v = vD + vA,
is the sum of its rigid body motion vD = V + Ω × ρ, specified by the velocity V and angular velocity Ω, and the
active slip velocity vA. The only restriction on the active slip is that its integral over the surface of the sphere is zero.
This ensures conservation of mass in the fluid.

We choose the tensorial spherical harmonics Y(l)(ρ̂) = (−1)lρl+1∇(l)ρ−1, where ∇(l) = ∇α1
. . .∇αl

, as complete
orthogonal basis functions on the sphere. In this basis, the active slip is expanded as

vA =

∞∑

l=1

1

(l − 1)!(2l − 3)!!
V(l) ·Y(l−1)(ρ̂). (10)

The coefficients V(l) are reducible Cartesian tensors of rank l, with three irreducible parts of ranks l, l − 1, and
l − 2, corresponding to symmetric traceless, antisymmetric and pure trace combinations of the reducible indices.
These irreducible parts are V(lσ) = P(lσ) · V(l), where the index σ = s, a and t, labels the symmetric irreducible,
antisymmetric and pure trace parts of the reducible tensors [3, 23–27]. The operator P(ls) = ∆(l) extracts the

symmetric irreducible part, P(la) = ∆(l−1)ε the antisymmetric part and P(lt) = δ the trace of the operand. Here
∆(l) is a tensor of rank 2l, projecting any l-th order tensor to its symmetric irreducible form [28], ε is the Levi-Civita
tensor and δ is the Kronecker delta.

The traction can be similarly expanded in the tensorial harmonic basis as

f =
∞∑

l=1

2l − 1

4πb2
F(l) ·Y(l−1)(ρ̂). (11)

and, as with the velocity coefficients, each traction coefficient at order l has three irreducible parts indexed by σ. The
net force and the torque are given by first two irreducible coefficients

∫

f dS = F(1s),

∫

ρ× f dS = bF(2a). (12)

Note that each V(l) and F(l) have the dimension of velocity and force respectively.
It is convenient to express the traction as a sum of rigid body, active and Brownian contributions,

f = fD + fA + f̂ , (13)

with corresponding expansion coefficients FD(l), FA(l) and F̂(l). By linearity, the three parts of the traction satisfy
independent boundary integral equations. Recalling that rigid body motion is an eigenvector of the double-layer
integral operator, these are

Vα + ǫαβγΩβργ = −
∫
Gαβ(r, r

′)fD
β (r′) dS′, (rigid body) (14a)

1

2
vAα (r) = −

∫

Gαβ(r, r
′)fA

β (r′) dS′ +
∫
Kβαγ(r, r

′)ρ̂′γv
A
β (r′) dS′, (active) (14b)

0 =

∫

Gαβ(r, r
′) ξβ(r

′) dV ′ −
∫
Gαβ(r, r′) f̂β( r

′) dS′. (Brownian) (14c)

Addition of the above three equations recovers the boundary integral equation, Eq. (5), for the net traction.
The first integral equation for the Stokes drag has been well-studied in the literature on suspension mechanics. The

second integral equation for the active thrust has been studied recently in the context of active colloids in an athermal
fluid [25–27]. The third integral equation for the fluctuating traction is studied here for the first time. Physically, the
fluctuating traction corresponds to the distribution of surface forces necessary to keep the sphere stationary in the
incident Brownian velocity field w(r). From this, it is particularly clear that the Brownian traction is a zero-mean
Gaussian random variable whose variance is related to that of ξ. We now present explicit solutions for each of the
integral equations using Galerkin’s method of discretization. Linear algebraic systems are derived by inserting the
basis expansions on each side of the integral equations, weighting the result by another basis function and integrating
over the boundary. We refer the reader to [25–27] where the procedure is explained in detail.
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A. Rigid body traction

The linear algebraic system for the rigid body contribution to the traction, with the summation convention for
repeated indices, is

−G(l, l′)(R) · FD(l′) = VD(l). (15)

Here the matrix elements of the single-layer operator G(R) in the tensorial harmonic basis are

G(l, l′)(R) =
2l − 1

4πb2
2l′ − 1

4πb2

∫

Y(l−1)(ρ̂)G(R+ ρ, R+ ρ′)Y(l′−1)(ρ̂′) dS dS′, (16)

and l-th tensorial harmonic coefficients of the rigid body motion and the traction are, respectively, VD(l) and FD(l).
Clearly, the only non-zero coefficients of VD(l) are V and Ω, corresponding to lσ = 1s and lσ = 2a respectively. The
solution of the linear system is

FD(lσ) =− γ(lσ, 1s) ·V − γ(lσ, 2a) ·Ω, (17)

and the friction tensors γ(lσ, 1s) and γ(lσ, 2a) are given by

γ(lσ, 1s) = P(lσ) ·
[
G−1(R)

](l, 1)
·P(1s), γ(lσ, 2a) = P(lσ) ·

[
G−1(R)

](l, 2)
·P(2a). (18)

The friction tensors above give the contribution to the traction from rigid body motion [29, 30]. The traction modes
lσ = 1s and lσ = 2a correspond to the forces and torques

FD = −γTT ·V − γTR ·Ω, (19a)

TD = −γRT ·V − γRR ·Ω. (19b)

where we have introduced the indices T,R = 1s, 2a to make contact with the usual notation. The inverse of the
single-layer operator can be computed in several ways both analytically and numerically. The Jacobi iteration used
in [26, 27] is convenient for analytical expressions.

The fluid flow uD for a rigid body motion of the sphere has the integral representation uD(r) = −G(l)(R, r) ·FD(l)

where the boundary integral

G(l)(r,R) =
2l − 1

4πb2

∫

G(r, R+ ρ)Y(l−1)(ρ̂) dS, (20)

is the contribution to the external flow from the l-th tensorial coefficient of the traction. The double layer has no
contribution from rigid body motion to the external flow. This result will be used below in deriving a key identity
necessary for deriving the variance of the Brownian traction.

B. Active traction

The linear algebraic system for the active contribution to the traction is

−G(l, l′)(R) · FA(l′) +K(l, l′)(R) ·V(l′) = 1
2V

(l), (21)

where the matrix elements of the double-layer operator K(R) in the tensorial harmonic basis are

K(l, l′)(R) =
2l − 1

4πb2
1

(l′ − 1)!(2l′ − 3)!!

∫

Y(l−1)(ρ̂)K(R+ ρ, R+ ρ′) · ρ̂′ Y(l′−1)(ρ̂′) dS dS′. (22)

The irreducible parts of the slip coefficients are V(lσ). The first two modes, V(1s) ≡ −VA and V(2a) ≡ −bΩA are
given by the integrals

4πa2 VA = −

∫

vA(ρ)dS, 4πa2 ΩA = −
3

2a2

∫

ρ× vA(ρ)dS, (23)
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and are equal to the self-propulsion velocity and self-rotation angular velocity of an isolated active colloid in unbounded
flow [1, 3]. The solution of the linear system is

F
A(lσ) = −

∞∑

l′σ′=1s

γ(lσ, l′σ′) ·V(l′σ′). (24)

The generalized friction tensors γ(lσ, l′σ′) give the active contribution to the traction. These tensors were first intro-
duced in [26] and are given by

γ(lσ, l′σ′) = P(lσ) ·
[
G−1 ·

(
1
2I−K

)](l, l′)
·P(l′σ′). (25)

They can be interpreted as Onsager coefficients of the linear response of the traction to the surface slip. The above
expression is identical to Eq. (18) for l′σ′ = 1s, 2a since rigid body motion is an eigenvector of the double layer
operator. Therefore, both active and passive friction tensors can be recovered from the general expression above.

The active force and torque on the colloid are the lσ = 1s and 2a coefficients of the traction. These are given as

FA = −

∞∑

l′σ′=1s

γ(T, l′σ′) ·V(l′σ′), (26a)

TA = −

∞∑

l′σ′=1s

γ(R, l′σ′) ·V(l′σ′). (26b)

The active forces and torques depend on all modes of the slip. In contrast to passive colloids, where only four friction
tensors determine the force and torque, there are, in general, infinitely many friction tensors for active colloids,
corresponding to the infinitely many modes of the slip. These infinitely many friction tensors account for the diversity
of phenomenon seen in active suspensions.

C. Brownian traction

The linear algebraic system for the Brownian contribution to the traction is

G(l, l′)(R) · F̂(l′)(t) = W (l)(R, t), (27)

where W (l) are coefficients of the irreducible tensor expansion

w(r) =

∞∑

l=1

1

(l − 1)!(2l − 3)!!
W (l) ·Y(l−1)(ρ̂), on S, (28)

of the Brownian velocity field incident on the surface of the colloid. From the definition of the Brownian velocity field,
Eq.(8), these coefficients are given by

W (l) =

∫

G(l) · ξ(r′) dV ′. (29)

The solution of the linear system for the Brownian traction is

F̂(l)(t) =
[
G−1(R)

](l, l′)
·W (l′)(R, t). (30)

The coefficients of the Brownian traction are proportional to the coefficients of the Brownian velocity field incident
on the surface of the colloid and, by Eq. (8), to the thermal force in the fluctuating Stokes equation. It is clear,
then, that the traction coefficients are zero-mean Gaussian random variables and to fully specify their distribution it
is necessary, then, to only determine their variance. By the previous equation, their variance is related to that of the
Brownian velocity coefficients as

〈F̂(l)(t)F̂(l′)(t′)〉 =
[
G−1(R)

](l, k) 〈
W (k)(R, t′)W (k′)(R, t′)〉

[
G−1(R)

](l′, k′)
. (31)
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To determine the variance of Brownian velocity coefficients we use the boundary integral representation of uD given
above (see also [25, 26]). Inserting this on the left of the fluctuation-dissipation relation for the thermal force, Eq.
(3), gives

〈∫

uD(r) · ξ(r, t) dV

∫

uD(r′) · ξ(r′, t′) dV ′
〉

= FD(l) ·
〈

W (l)(R, t′)W (l′)(R, t′)
〉

· FD(l′). (32)

On the other hand, the power dissipated by the rigid body motion, on the right of the fluctuation-dissipation relation
can be expressed as

Ė(uD) = −

∫

fD(R+ ρ) · uD(R+ ρ)dS = −FD(l) ·VD(l) = FD(l) ·G(l, l′)(R) · FD(l′). (33)

The first equality is obtained by using the divergence theorem to reduce the volume integral of the quadratic form in
Eq. (4) to the boundary of the colloid and then using the constitutive relation between the stress and the strain rate
in Stokes flow [21]. The second equality is an elementary consequence of the orthogonality of the tensorial spherical
harmonics [25, 26]. The third equality is obtained by eliminating the velocity using the linear algebraic system,
Eq.(15) for rigid body motion. Comparing the above two equations, we obtain the key identity for the variance of the
Brownian velocity coefficients,

〈W (l)(R, t′)W (l′)(R, t′)〉 = 2kBT G(l, l′)(R) δ(t− t′). (34)

This expression when used in Eq. (31) yields the variance of Brownian traction coefficients

〈F̂(l)(t)F̂(l′)(t′)〉 = 2kBT
[
G−1(R)

](l, l′)
δ(t− t′). (35)

These are an infinite number of fluctuation-dissipation relations between the variance of the tensorial harmonic modes
of the fluctuating traction and the matrix elements, in the irreducible tensorial harmonic basis, of the inverse of the
single-layer operator. To the best of our knowledge, the complete statistics of the Brownian traction is derived here
for the first time and is the central result of this paper.

The variance of the irreducible parts of the fluctuating traction follow straightforwardly as

〈F̂(lσ)(t)F̂(l′σ′)(t′)〉 = 2kBT P(lσ) ·
[
G−1(R)

](l, l′)
·P(l′σ′) δ(t− t′). (36)

The first two coefficients of the fluctuating traction are the force and torque, and choosing lσ = 1s, 2a we obtain

〈F̂〉 = 0, 〈F̂(t) F̂(t′)〉 = 2kBT γTT δ(t− t′), 〈F̂(t) T̂(t′)〉 = 2kBT γTRδ(t− t′), (37a)

〈T̂〉 = 0, 〈T̂(t) F̂(t′)〉 = 2kBT γRT δ(t− t′), 〈T̂(t) T̂(t′)〉 = 2kBT γRRδ(t− t′). (37b)

where γαβ , with α, β = T,R, are the one-particle friction tensor and are (lσ = 1s, 2a) elements of P(lσ) ·
[
G−1(R)

](l, l′)
·

P(l′σ′). The fluctuation-dissipation relation for the Brownian force and torque are, thus, derived from the fluctuation-
dissipation relation for the thermal force on the fluid.

We make the following remarks about the above derivation. First, the explicit form of the inverse of the single-
layer operator is is not necessary to obtain Eq. (35); it is sufficient to know that the inverse exists. Therefore, the
fluctuation-dissipation relation for the irreducible coefficients, Eq. (36), is valid for any geometry bounding the fluid,
provided the flow vanishes there. In particular, it holds for a colloid near a plane wall. Second, our derivation provides
the fluctuation-dissipation relation for all modes of the Brownian traction. Earlier derivations have focused on only
the force and torque. Therefore, our derivation provides the fluctuating stresslet (lσ = 2s) which is needed to compute
the Brownian contribution to the suspension stress. Third, the configuration-dependence of both the fluctuation, Eq.
(27), and the dissipation, Eq. (36), is made explicit in our derivation. The configuration-dependent “noise” variance
follows from this automatically. The interpretation of the resulting multiplicative noise in the Langevin equation that
we derive below is obtained by recalling that the momentum and angular momentum of the colloid are fast variables
that have, implicitly, been adiabatically eliminated [31]. The form of the Smoluchowski equation for this problem is
well-known and is used below to consistently interpret the multiplicative noise in the Langevin equation [32–34].
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IV. LANGEVIN EQUATIONS FOR A SPHERICAL ACTIVE COLLOID

In this section we derive the Langevin and Smoluchowski equations for the Brownian motion of an active colloid.
We use the results derived above for three kinds of forces and torques acting on the colloid. With these, the balance
conditions, Eq. (1), become

−γTT ·V − γTR·Ω−

∞∑

lσ=1s

γ(T, lσ) ·V(lσ) + F̂+ FP = 0, (38a)

−γRT ·V − γRR·Ω−

∞∑

lσ=1s

γ(R, lσ) ·V(lσ) + T̂+TP = 0. (38b)

The above can be inverted to obtain the rigid body motion of the colloid in explicit form. This gives the Langevin
equations for a Brownian active colloid with hydrodynamic interactions, first derived heuristically in [35],

V = µTT · FP + µTR ·TP +
√

2kBTµTT · ηT +
√

2kBTµTR · ζR +

∞∑

lσ=2s

π(T, lσ) ·V(lσ) +VA, (39a)

Ω = µRT · FP + µRR ·TP

︸ ︷︷ ︸

Passive

+
√

2kBTµRT · ζT +
√

2kBTµRR · ηR

︸ ︷︷ ︸

Brownian

+

∞∑

lσ=2s

π(R, lσ) ·V(lσ) +ΩA

︸ ︷︷ ︸

Active

. (39b)

Here ηα, and ζα are Gaussian white noises with zero-mean and variances 1 and 1/b respectively. The matrix square
roots are to be interpreted as Cholesky factors. The mobility matrices µαβ are inverses of the friction matrices γαβ

[22, 36–44]. The propulsion tensors π(α, lσ), first introduced in [25], relate the rigid body motion to modes of the
active velocity. They are related to the generalized friction tensors, introduced in [26], by

−π(T, lσ) = µTT · γ(T, lσ) + µTR · γ(R, lσ), (40a)

−π(R, lσ) = µRT · γ(T, lσ) + µRR · γ(R, lσ). (40b)

The translational propulsion tensors π(T, lσ) are dimensionless while the rotational propulsion tensors π(R, lσ) have
dimensions of inverse length. Stochastic trajectories of motion can be obtained from the kinematic equations

Ṙ = V, ṗ = Ω× p, (41)

using the standard Ermak-McCammon integrator [45]. In this integrator, the noise variances are computed using
mobilities in the configuration at time t but a “spurious” drift, proportional to the configurational divergence of the
mobilities, is added to to arrive at the configuration at time t+∆t. There is nothing particularly spurious about this
drift; it is simply the residual effect of the adiabatically eliminated degrees of freedom.

The Smoluchowski equation for the distribution function Ψ(R; p) of positions and orientations follows immediately
from the Langevin equations. We write it in the form of a conservation law in configuration space

∂Ψ

∂t
= LΨ = − (∇R · VR + p×∇p · Vp)Ψ, (42)

where the “velocities” VR and Vp are

VR = µTT ·
(
FP − kBT ∇R

)
+ µTR ·

(
TP − kBT p×∇p

)
+

∞∑

lσ=2s

π(T, lσ) ·V(lσ) +VA, (43a)

Vp = µRT ·
(
FP − kBT ∇R

)
+ µRR ·

(
TP − kBT p×∇p

)
+

∞∑

lσ=2s

π(R, lσ) ·V(lσ) +ΩA. (43b)

Here FP = −∇RU , TP = −p ×∇pU , and U is a potential that contains both positional and orientational interac-
tions. Note the position of the mobility in the second derivative terms: the ∇µ∇ order (in contrast with two other
inequivalent permutations) is provided unambiguously by the adiabatic elimination of momenta.

In the absence of activity, the drift and diffusion coefficients in the Smoluchowski equation obey the fluctuation-
dissipation relation and the Gibbs distribution Ψ ∼ exp(−U/kBT ) is the stationary solution. However, the Gibbsian
form is not a stationary solution in the presence of the active terms, as can easily be verified by substitution. This
applies, a fortiori, to an active colloid near a plane wall discussed in the next section, where the barometric distribution
of a passive suspension is no longer the stationary distribution.



9

Figure 1. Fluid flow due to rigid body motion and spectral properties of friction tensors for a spherical colloid near a plane
wall. The first two figures in the top panel show the flow due to translation perpendicular and parallel to the wall. The next
two figures show the flow due to rotation perpendicular and parallel to the wall. The first figure in the bottom panel shows
eigenvalues, normalized by γT

0 , of the 6×6 grand friction tensor assembled out of the 3×3 blocks in Table (I). The dashed lines
show the eigenvalues of the unregularised tensor and its loss of positive-definiteness for h < b. The next two figures show the
condition number of the grand friction tensor and its pseudo-spectrum in the complex plane when h = 1.3b. Here γT

0
= 6πηb

and γR
0
= 8πηb3 are, respectively, the friction for translation and rotation in an unbounded fluid.

V. BROWNIAN ACTIVE COLLOID NEAR A PLANE WALL

We now apply the preceding general results to the specific case of an active colloid near a plane wall. The Green’s
function for the problem, denoted by Gw, is taken to vanish at the location of the wall, z = 0. The form of the
Green’s function, first derived by Lorentz [46], can be written in the following form due to Blake [20]

Gw

αβ(R
′, R) = G0

αβ(R
′ −R) +G∗

αβ(R
′, R∗), (44)

where G0
αβ(r) = (∇2δαβ − ∇α∇β)(r/8πη) is the Oseen tensor and the correction necessary to satisfy the boundary

condition is

G∗
αβ =

1

8πη

[

−
δαβ
r∗

−
r∗αr

∗
β

r∗3
+ 2h2

(
δαν
r∗3

−
3rαrν
r∗5

)

Mνβ − 2h

(
r∗3δαν + δν3r

∗
α − δα3r

∗
ν

r∗3
−

3rαrνr
∗
3

r∗5

)

Mνβ

]

. (45)

The correction is interpreted as a sum of three images, a Stokeslet, a dipole, and a degenerate quadrupole, located at
R∗ = M ·R, where M = I − 2ẑẑ is the mirror operator with respect to the wall [27, 47–51]. Here h is the height of
the colloid from the wall and r∗ = R′ −R∗. The correction has no singularities in the domain of flow and the only
singular contribution there is from the Oseen tensor. The flows produced by a sphere translating or rotating near the
wall are shown in the top panels of Fig. (1).

The leading terms of the inverse of the single-layer operator are obtained here using Jacobi’s iterative method [26].
The results for the friction tensors γαβ are given in the left column of Table (I). The grand resistance tensor, formed
out each of the 3×3 blocks, is manifestly symmetric and, for h > b, positive-definite. This is established by an explicit
computation of the eigenvalues, shown in the first figure of the bottom panel of Fig. (1). Thus positive-definiteness
is ensured for all configurations in which the colloid does not overlap with the wall.

In Brownian dynamics simulations, however, it is convenient to avoid hard-sphere potentials as these require special
integrators. In the absence of such potentials, it is no longer possible to maintain the constraint h > b during
integration, and the colloid may substantially overlap with the wall. For such configurations, a naive continuation of
the friction tensors to the domain h < b is untenable: as the dashed lines in the eigenvalue plot in Fig. (1) show,
the grand resistance tensor has negative eigenvalues in this region. This implies negative entropy production and is
clearly unphysical. The cure, first proposed by Rotne and Prager in the context of bead-spring models of polymers
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h > b (Jacobi iteration) h ≤ b (Regularized)

γTT
= γT

0

(

I − γT
0 F

1
F

1
G

∗
)

γTT
= γT

0

[

(

1 +
9r∗

32b

)

I − 3r
∗
r
∗

32br∗

]

γRR
= γR

0

(

I −
γR

0

4
∇R ×∇R ×G

∗
)

γRR
= γR

0

[

(

1 +
27r∗

32b
− 27r∗

3

64b3

)

I −
(

9r
32b

− 3r∗
3

64b3

)

r
∗
r
∗

r∗2

]

γRT
= −

γR

0
γT

0

2
∇R ×G

∗ γRT
= −γR

0

(

2

b2
− 3r∗

4b3

)

ε · r
∗

Table I. Expressions for the 3× 3 friction tensors at a height h from a plane wall, using the result of the first Jacobi iteration

[26] for h > b and its regularized form for h ≤ b. Here F
1
= 1 +

b2

6
∇

2

R is an operator encoding the finite size of the colloid.

[52], is to regularize the matrix elements of the single-layer, by computing the surface integrals in their definition,
over the union of overlapping surfaces. In this case, the integral is to be computed over the union of the surface of
the colloid and its image. Such overlap integrals have been computed recently [53] and we use those results to obtain
the regularized forms of the friction in the right column of Table (I). The use of the regularized form provides friction
tensors that are positive-definite for all heights, as can be seen from the solid curves for h < b in the eigenvalue plot
in Fig. (1). Their use results in positive-definite variances for the Brownian force and torque at all heights above the
wall.

In the second and third figures of the bottom panel, we plot the condition number of the grand resistance tensor as
a function of height and its pseudo-spectrum at h = 1.3b. The condition number remains small for all heights and the
pseudo-spectrum shows no sign of non-normality. Thus, computing the “square-root” Cholesky factors of the grand
friction tensor (or, its inverse, the grand mobility tensor) poses no problem and iterative methods are expected to
converge rapidly. Brownian dynamics simulations of active colloids near a plane wall can then be efficiently performed
using the above results.

VI. DISCUSSION

We have shown how to obtain the three parts of the traction, due to rigid body motion, activity and thermal
fluctuations, on a spherical colloid in a fluctuating Stokesian fluid. We then applied the general results to the specific
case of an active colloid near a plane wall. We provided a regularization of the friction tensors to enable Brownian
dynamics simulations in which the spheres can overlap with the walls. We conclude with three remarks about our
results.

The first is that expressions in the left column of Table (I) are valid not only for the Lorentz-Blake Green’s function,
but for any Green’s function that can be expressed as G0+G∗, where G0 is the Oseen tensor and G∗ is the correction
necessary to satisfy the boundary conditions. A variety of Green’s function can be expressed in this form, including
those for flow between parallel walls and in periodic domains. As mentioned before, the correction term does not
contain singularities in the domain of flow and, therefore, the boundary integrals in the definition of the matrix
elements can be expressed in terms of derivatives of the correction. Singular terms from the Oseen tensor can be
calculated explicitly using well-known results for integrals of Bessel functions. Therefore, our results for h > b are of
broader validity than might have been anticipated.

The second is that active colloids show fascinating behaviour in the proximity of a wall [54, 55]. While Brownian
motion appears to be negligible in comparison to activity-induced motion for a large class of these colloids, there is
considerable theoretical interest in understanding the interplay between passive friction, thermal fluctuations, and
activity, especially when the friction is configuration-dependent. Brownian dynamics, with the regularized frictions
provided here, will be a powerful tool to study such interplays.

Finally, the extension of the method presented here to determine the tractions on the surface of many active colloids
is straightforward in principle but tedious in practice. The result for the active traction has been obtained recently
[26] and a heuristic argument has been provided to determine the first two moments of the Brownian traction. It will
be instructive to obtain all moments and, in particular, the symmetric second moment to determine their contribution
to the stress in a non-dilute active Brownian suspension.
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