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Abstract.
The dynamics of a flexible flapping wing is investigated by modelling it as a coupled nonlinear

fluid-structure interaction (FSI) system in the low Reynolds number flow regime in accordance
to the flight of flapping wing micro air vehicles (MAVs). A bifurcation analysis, by varying
the free-stream wind velocity (U∞) as the control parameter, revealed the presence of a new
dynamics in the form of a quasi-periodic attractor in the flapping wing motion. The structural
and aerodynamic nonlinearities present in the system cause a supercritical Hopf bifurcation,
where stable limit cycle oscillation emerges from fixed point response beyond a critical value of
the free-stream velocity. Further increasing the control parameter, another bifurcation named
Neimark-Sacker bifurcation takes place and as a result, the flapping wing exhibits quasi-periodic
motion. The presence of Neimark-Sacker bifurcation in the flapping flow-field dynamics is an
interesting find and the present work focuses on it’s associated dynamical behaviour. Various
dynamical system tools like frequency spectra, phase space, Poincaré section, first return map
have been implemented successfully to confirm the presence of quasi-periodicity.

1. Introduction
The amazing flying capability of insects has fascinated the researchers from the beginning of the
twentieth century to investigate the unsteady aerodynamics of the flapping flight. The need for
designing advanced flapping wing Micro Air Vehicles (MAVs) has boosted the research efforts
in this direction. The combination of small dimensional size and slow speeds result in a low
Reynolds number flight regime (10, 000 to 30, 000) which is well below the flight of conventional
aircrafts. Hence at low Re, the viscous boundary layer is thicker and can result in a high drag and
also there is deterioration of performance due to laminar boundary layer separation [1]. MAVs
also experience highly unsteady flows in their environment and there is a need to overcome the
additional drag and loss of lift without an increase in the size [2]. Thus, the natural flyers exploit
the coupling between the unsteady flow and the wing deformation to enhance their aerodynamic
performance in these adverse conditions.

With the change of kinematic, structural or aerodynamic parameters in a flapping flight, the
wing-wake interaction can lead to an abrupt transition from periodicity to aperiodicity in the
wake topology as well as in the aerodynamic loads which can indeed lead to an unpredictable
body motion due to very low body inertia of extremely light weight flapping wing MAVs. This
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underlines the need for specialized control algorithms. The aperiodic wake topology has been
reported in recent literature in the flow past a rigid airfoil with forced flapping [3, 4, 5]. But
unfortunately, there is no conclusive depiction of the transition from periodic to aperiodic
regime from a dynamical systems point of view. Ashraf et. al. [5] has mentioned about
the quasi-periodic transition to aperiodicity in the flow past a plunging airfoil based on the
frequency spectra of the thrust coefficients. Although they have observed multiple peaks in
the frequency spectra, no evidence in support of the existence of incommensurate frequencies
was presented. Moreover, they have neglected the effect of flexibility and the subsequent fluid
structure interaction effects, which is not realistic, especially when very light weight MAVs are
involved.

As most of the earlier reported works discussing the dynamics of flapping wing MAVs such
as Ashraf et al. [5] assumed the wing to be rigid, there is a crucial need to understand the
role of structural flexibility on the overall dynamical performance. Further, most of the earlier
works are either based on inviscid potential flows without considering any separations [6] or
simplified point vortex models for leading edge vortices [7]. As such simplified models limit the
understanding, we propose to use a full fidelity N-S solver in the present work. To summarize,
the present work investigates the dynamics of flexible flapping systems in terms of the wing
motion for comparable fluid-solid mass values (light weight MAVs) using a high fidelity flow
solver.

The present FSI framework is comprised of a high fidelity Navier-Stokes based viscous
aerodynamic solver and a structural model with cubic nonlinearity in the pitching motion,
coupled by a weak coupling method. Bifurcation analysis considering Free stream velocity (U∞)
as the control parameter brings a new dynamics into light. It reveals that the flapping wing
undergoes quasi-periodic motion in the presence of two incommensurate frequencies beyond a
critical threshold of the control parameter. Nonlinear time series analysis has been carried out
to categorize the dynamics.

This paper is organized as follows: Section 2 provides computational methodology, section 3
discusses the bifurcation analysis and the nonlinear time series analysis and finally this paper
ends with the concluding remarks in section 4.

2. Computational methodology

2.1. Governing Equations and the Flow solver
The flow is governed by the incompressible Navier-Stokes (N-S) equation as follows,

∇.~u = 0,
∂~u

∂t
+ [~u.∇]~u = −∇p/ρ+ ν∇2~u. (1)

Here, ~u is the velocity of the flow, p is the pressure, ν is the kinematic viscosity, ρ is the fluid
density, ∇ = ∂

∂x
~i + ∂

∂y
~j, is the two dimensional gradient vector and t is time. The simulations

are performed in OpenFOAM R©, an open source finite-volume based CFD solver. The arbitrary
Lagrangian Eulerian (ALE) formulation has been used for discretizing the N-S equation on a
deformed flow mesh using radial basis function (RBF) interpolation scheme. The pressure-
velocity coupling is achieved through PISO algorithm [9] with three PISO corrector loops. The
algorithms used here for solving the pressure, velocity and mesh motion have been discussed in
detail by Bos [10]. A rectangular computational domain shown in Fig.1 was used for the analysis.
The computational domain is discretized using a combination of structured and unstructured
grids as shown in Fig. 2. The grid independent study and the flow solver validation have been
discussed in details in [11].
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Figure 1. Computa-
tional domain

Figure 2. Close-up view
of the mesh

Figure 3. Schematic of a symmetric
airfoil in pitch and plunge degrees of
freedom

2.2. Structural solver
The structural part is comprised of an airfoil with pitch-plunge degrees of freedom as shown in
Fig. 3. The airfoil is restrained by non-linear springs. The directions of positive lift and moment
are indicated in the figure. The equations of motion are given by [6],

mḧ+ Sα̈+ Chḣ+Kh(h) = L(t), Kh(h) = Kh1h+Kh2h
3; (2)

Sḧ+ Iα̈+ Cαḣ+Kα(α) = M(t), Kα(α) = Kα1α+Kα2α
3. (3)

In the above equations, h and α are the plunge and pitch displacements respectively, m is the
mass of the airfoil, S is the first moment of inertia, I is the second moment of inertia, Kh1,
Kh2, Kα1 and Kα2 are the spring stiffness coefficients, Ch and Cα are the damping coefficients,
L(t) is the unsteady lift and M(t) is the moment about the quarter chord. Lift and moment
are calculated by the flow solver at each time step. The structural response (Eq. 2-3) is solved
using an explicit fourth-order Runge-Kutta method. The time step for integration is equal to
that of the flow solver. A partitioned approach based weak coupling method has been used in
the present investigation to couple the flow solver and the structural solver. In the partitioned
approach, two separate solvers for fluid and structure are used jointly by exchanging information
from one time step to another in an alternating fashion explicitly [12]. The coupling methodology
has been discussed in details in [11].

3. Results and discussions
3.1. Bifurcation Analysis
Bifurcation analysis helps us to investigate the qualitative changes in the system behaviour by
changing a control parameter. It is essential for the design of flexible flapping devices to define a
stable operation regime. The flexible flapping wing studied here is inherently a coupled nonlinear
dynamical system. In the present study, the flapping motion is limited to two degrees of freedom
with pitch and plunge motion. The non-dimensionalised free-stream velocity (U∗ = U∞

b ωα
) has

been chosen as the bifurcation parameter to investigate its effect on the system dynamics. A
schematic plot of the bifurcation diagram is presented in Fig. 4.

A summary of the dynamics of the FSI system in response to the change of the bifurcation
parameter, U∗ can be seen in Fig. 5. The value of the solid to fluid mass ratio is kept low at 5,
in order to keep the focus on the light weight MAV wings. As we gradually increase the control
parameter, a rich dynamics is revealed and multiple bifurcations take place with the dramatic
qualitative change in the system behaviour. In order to investigate those changes, the pitch
response is chosen to plot the bifurcation diagram. Corresponding to every U∗, the amplitudes
of the local maxima in the computed time series of pitch response is plotted to get the upper
branch of the bifurcation diagram. The number of local maxima, at a given parameter, gives
the period of oscillations: a single local maximum indicates a limit cycle oscillation, two local
maxima values suggest period two oscillations and so on.
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Figure 4. Schematic of the bifurcation
diagram

Figure 5. Bifurcation diagram of the FSI
system

The first qualitative change takes place in the system at U∗ = 1.1 where a supercritical
Hopf-bifurcation takes place and as a result, a stable fixed point response becomes unstable
and gives way to a stable self-excited limit cycle oscillation. The point at which the bifurcation
occurs is called the “Hopf point”. The amplitude of the single frequency LCO increases with
the increase of bifurcation parameter. Further increasing the control parameter, beyond U∗

= 1.7, another change in the dynamics is observed: a second Hopf bifurcation of the periodic
solution occurs, introducing a new frequency which is incommensurate with the first one in
the bifurcating solution. This kind of bifurcation is called a secondary Hopf or Neimark-Sacker
bifurcation [13]. It occurs when two complex conjugate eigenvalues exit the unit circle away from
the real axis. As a result, the system behaviour changes from limit cycle oscillation to quasi-
periodic oscillation with two incommensurate frequencies. The local maxima in the oscillations
no longer have a constant amplitude as additional frequencies appear in the response which are
not harmonics of the earlier existing fundamental frequency. The regions of fixed point response,
limit cycle oscillations and quasi-periodic oscillations are shown as the region of ‘FP’, ‘LCO’ and
‘QP’ respectively in Fig. 5.

3.2. Nonlinear time series analysis
For a better understanding of the dynamics and to confirm the type of bifurcations involved,
nonlinear time series analysis tools such as time histories, state-space plots, Poincaré sections,
first return maps and the frequency spectra are implemented in the present study. Nonlinear
time series analysis techniques provide tools for systematic analysis and identification of specific
signatures of time series data generated by a complex nonlinear system.

The time histories of the pitch response at different values of U∗ are shown in Fig. 6 and
the frequency spectra of the pitch response at U∗ = 2.6 are presented in Fig. 7. The time
history prior to the supercritical Hopf bifurcation shows a damped response where the response
settles down to a stable equilibrium point beyond the transient motion. The time history of
limit cycle oscillations has the appearance of a uniform trace as shown in Fig. 6(b) and the
corresponding frequency spectra have one fundamental frequency in the form of a dominant
peak. The envelope of time history for quasi-periodic response given in Fig. 6(c) looks different
from that of Fig. 6(b) and shows uneven peaks. The corresponding frequency spectra of a
two frequency quasi-periodic time history contain two fundamental peaks with an irrational
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Figure 6. Time histories pitch response

frequency ratio attributing to two incommensurate frequencies. The other non-harmonic peaks
occur as linear combinations of the two fundamental incommensurate frequencies. In case of
U∗ = 2.6, the frequency spectra clearly shows two incommensurate frequencies ‘f1’ and ‘f2’ and
the other frequencies are ‘f1+f2’, ‘2f1+f2’, ‘2f1’, ‘3f1’, ‘4f1’ and ‘5f1’ which clearly indicate
the linear combination of the mentioned incommensurate frequencies, f1 & f2 as shown in Fig. 7.
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Figure 7. FFT of pitch response at U∗ = 2.6

The space defined by the inde-
pendent coordinates required to de-
scribe a motion is called a state
space and the independent coordi-
nates are called state variables [13].
In the present work, the physical
state-space, projected in two dimen-
sions, is constructed by the state
variables (α, α̇). Phase space pro-
vides us a qualitative picture of
the evolution of the trajectories and
presence of the attractor of the sys-
tem. The phase portraits for the
pitch response at different U∗ are
presented in Fig. 8(a), 8(d) & 8(g).
The phase portrait corresponding to
the damped response of the wing is
a stable spiral in the phase space as

shown in Fig. 8(a), whereas the phase portrait of the limit cycle oscillation represents a unique
closed one-dimensional attractor which depicts the periodic nature of the flapping motion as
shown in Fig. 8(d). However, with the introduction of a new incommensurate frequency due
to Neimark-Sacker bifurcation, the single loop turns into a dense toroidal structure. A toroidal
structure in the phase space is an indication of quasi-periodic oscillations. Due to the presence
of the incommensurate frequencies, the phase space trajectory evolves on the surface of a torus,
never closing itself [14]. Among the three, the phase portrait corresponding to U∗ = 2.6 is
quasi-periodic and represents a shape of T 2 torus as shown in Fig. 8(g). The deformed shape of
the attractor can be attributed to the fact that the quasi-periodic attractor is a superposition
of two incommensurate fundamental frequencies and their harmonics [15].

A Poincaré section converts a continuous time evolution into a discrete time mapping. Thus,
it is a very useful tool to characterize the time series whose phase space dimension is high
(> 3). The reduced attractor is not identical to the original attractor but it preserves the
topological properties of the original attractor [16]. In this present work, the Poincaré sections
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have been constructed in a stroboscopic manner with the known time period of the limit cycle
oscillation. Hence, the Poincaré section acts like a stroboscope, freezing the components of the
motion commensurate with the limit cycle time period (say T ). So, we will get a single point
corresponding to the limit cycle oscillation, whereas if we get a collection of k (say) discrete
points on the Poincaré section, the corresponding motion is periodic with the period kT . When
the ratio of the added frequency and the limit cycle frequency is not a rational number, it denotes
two frequency quasi-periodic motion and the points on the corresponding Poincaré section will
fill up a closed smooth curve densely [13]. The Poincaré sections for the pitch response have
been plotted for U∗ = 1, 1.3, 2.6 in Fig. 8(b), 8(e) & 8(h) respectively. As discussed above, they
correspond to the damped, periodic and quasi-periodic dynamics.
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Figure 8. Phase portraits (left), Poincaré sections (middle) & first return maps (right)

To analyze the dynamics further, we have implemented 1D mapping technique of first return
map which is essentially constructed from the Poincaré sections as discussed before. Using the
first return map, we investigate the evolution of the discretized version of the system derived
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from the continuous evolution. In the first return map, the points on the phase space frozen
by the stroboscopic Poincaré section (xn) are collected and they are plotted against the next
iterates (xn+1) that occur and a 2D plot (xn) vs (xn+1) is obtained. For a periodic attractor,
the successive iterates are equal, hence mapping lies on the x = y diagonal, else it moves away
from the diagonal. Thus, a first return map can be utilized to explore the evolution of the phase
space trajectories in a lower dimensional space preserving the same properties. Fig. 8(c), Fig.
8(f) & Fig. 8(i) present first return maps for damped response, limit cycle oscillation and quasi-
periodic attractor respectively. The first return map for a limit cycle oscillation is represented
by a diagonal line along x = y line, whereas it is a loop in the case of a quasi-periodic state.
Further, the cobweb diagrams are constructed to understand the evolution of the iterates of the
return map.

4. Conclusion
A new dynamics of quasi-periodicity is observed in the motion of a flexible flapping wing in
the bifurcation analysis considering the non-dimensional free-stream velocity as the control
parameter. It has been observed that with the increase of the control parameter, at first, a
supercritical Hopf bifurcation takes place at a critical value of the parameter due to which
the flapping motion undergoes a self-sustained LCO. Thereafter, further increasing the control
parameter, a Neimark-Sacker bifurcation occurs over the LCO making the flapping motion
quasi-periodic. The time series of pitch response has been categorized using nonlinear time
series analysis tools. The existence of the incommensurate frequencies in the frequency spectra
of the pitch response at U∗ = 2.6 is evidently shown in the present study. Further, the toroidal
phase space along with the closed Poincaré section and a loop structure in the first return map
confirm the quasi-periodic nature of the pitch response at U∗ = 2.6. For the future work, the
authors are working to understand the dynamics of the flapping wing at the higher control
parameter values beyond quasi-periodic dynamics.
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