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We consider a mortal random walker on a family of hierarchical graphs in the

presence of some trap sites. The configuration comprising the graph, the starting

point of the walk, and the locations of the trap sites is taken to be exactly self-

similar as one goes from one generation of the family to the next. Under these

circumstances, the total probability that the walker hits a trap is determined exactly

as a function of the single-step survival probability q of the mortal walker. On the

nth generation graph of the family, this probability is shown to be given by the nth

iterate of a certain scaling function or map q → f(q). The properties of the map

then determine, in each case, the behavior of the trapping probability, the mean

time to trapping, the temporal scaling factor governing the random walk dimension

http://arxiv.org/abs/1901.10226v1


2

on the graph, and other related properties. The formalism is illustrated for the

cases of a linear hierarchical lattice and the Sierpinski graphs in 2 and 3 Euclidean

dimensions. We find an effective reduction of the random walk dimensionality due to

the ballistic behavior of the surviving particles induced by the mortality constraint.

The relevance of this finding for experiments involving travel times of particles in

diffusion-decay systems is discussed.

Keywords: Mortal random walks, hierarchical graph, trapping probability, mean first-passage

time.

I. INTRODUCTION

Theories of diffusion-reaction processes have, almost universally, been based on the as-

sumption that the medium on or within which transformation(s) take place is homogeneous,

free of imperfections. This is the case for continuum diffusion theories based on Fick’s laws,

where the theory of (linear or non-linear) partial differential equations can be mobilized [1].

It is also the case for lattice-based theories in which translational invariance is assumed;

here, for instance, the generating functions technique can be used to obtain analytic or

asymptotically-exact results [2–7]. If spatial imperfections are present in the system, or if

there are (uniformly or randomly dispersed) competing reaction centers, analytical results

using the foregoing continuum or lattice approaches are more difficult to obtain. However,

considerable progress has been made in recent years in characterizing space exploration and

first-passage properties of random walkers subject to such constraints. This applies both

to systems of standard random walkers and to systems of mortal walkers, i.e., walkers that

may die as they walk. Analytic results for both types of walkers have been obtained via

different techniques [2–41], e.g., the theory of Markov processes [8–11, 30–37] and generating

function approaches [2–7, 12–16, 27, 38]. With the development of the theory of random

walks on fractals [42–51], results in the exact analysis of dynamical processes taking place
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in inhomogeneous media have emerged. The presence of lacunary regions allowed an explo-

ration of the consequences of breaking the translational symmetry of the host medium on

the reaction efficiency. For example, previous works coauthored by two of us took advantage

of fractal self-similarity to obtain an exact analytic expression for the mean walk length (or

the mean number of time steps to absorption) of a random walker on the Sierpinski gasket

[11] and on the Sierpinski tower embedded in an arbitrary number d of Euclidean dimensions

[33]. These results were obtained for the case where the diffusing species undertook only

nearest-neighbor (NN) displacements. Later, it was shown that analytic results could be

obtained for Sierpinski graphs embedded in d ≥ 2 Euclidean dimensions when both nearest-

neighbor and next-nearest-neighbor (NNN) jumps are considered [35]. Also of importance

for the understanding of the reaction dynamics on Sierpinski graphs is the fact that analytic

expressions can be obtained for recurrence relations among the eigenvalues of the operator

involved in the underlying master equation [51]. In this study, we show that scaling relations

can be obtained for the reaction efficiency (as gauged by the mean time to absorption) for

the Sierpinski gasket and tower (thus considering explicitly lacunary regions) for the case of

mortal walkers, i.e., the case where the diffusing reactant can be deactivated with a certain

probability before it encounters a reaction site (represented by a deep trap). This premature

deactivation can be thought of, for instance, as arising from the action of additional reac-

tion centers competing with the reaction site. Among the examples of processes in which

understanding this competition is of importance is light-energy conversion in the photosyn-

thetic antenna system, first studied analytically by Montroll [12]. As will be brought out

in Section VI, a description in terms of mortal walkers may also be relevant for another

system where light-energy conversion to chemical energy takes place, namely crystalline,

luminescent nanofibers of poly(di-n-hexylfluorene) (PDHF) in which exciton diffusion is ob-

served. A similar description may also be applicable to the study of valley diffusion currents

in TDMC quantum heterostructures. For both of these systems, our results suggest that a

device that is able to detect travel times of the generated excitations would measure values

that are significantly smaller than those expected from normal diffusion. This is due to the

fact that the excitation decay penalizes long trajectories and therefore long travel times. As

a result of this, the effective random walk dimension is strongly reduced. One of our main

goals will be to quantify this reduction in terms of suitable scaling functions.

The plan of the rest of this paper is as follows. In Sec. II, we give a general formulation of
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the mortal random walk problem. We start with the case of diffusion on a line, and show that

mortality merely introduces an attenuating factor in the form of a decaying exponential. We

then consider the backward Kolmogorov equation (BKE) on a graph in the presence of deep

traps, and show how the trapping probabilities of standard and mortal walkers are related

to each other. Finally, we illustrate the formalism by an application to a linear lattice with

a trap at one end, by deriving an explicit solution for the conditional mean first passage

time (MFPT) to the trap (also termed ‘conditional walk length’ in what follows). In Sec.

III, we extend the formalism to hierarchical lattices, and explicitly deal with the cases of a

hierarchical linear lattice, the Sierpinski gasket, and the Sierpinski tower. In Sec. IV, we

extend the theory to the computation of the unconditional walk length, i.e., the length of

a mortal walk which is terminated either by absorption at a deep trap or by a premature

death of the walker before this happens. The specific case we consider here is that of a

Sierpinski gasket (SG) with a deep trap at a corner site. In Sec. V, comparative results

between conditional and unconditional walk lengths are given for more complex situations,

involving the Sierpinski gasket with two deep traps and the Sierpinski tower with three deep

traps. Finally, in Sec. VI, we discuss the main implications of our findings for experimental

systems.

II. GENERAL FORMULATION

A ‘mortal’ random walker has a probability q (where 0 < q < 1) of surviving at each time

step, and therefore a non-zero probability s = 1 − q of demise at each time step. Standard

random walks correspond to the limiting case q = 1. We consider a mortal walker executing

a discrete-time Markovian random walk via equal-probability jumps to nearest-neighbor

(NN) sites on a finite connected graph, on which a specified set of sites comprise so-called

deep traps. Once the walker hits any member of the latter set for the first time, the walk is

over. The crucial difference between this situation and the standard random walk is that the

total probability Pj(q) of the trapping of a walker starting from an arbitrary non-trap site

j is now less than unity, in general. Moreover, Pj(q) serves as a basic quantity that carries

essential information regarding the random walk. As we shall see, interesting features ensue

from this fact.
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A. The continuum limit

Before turning to the main theme of this work, we may quickly dispose of the continuum

or diffusion limit of a mortal random walk, if only to point out that this limiting case runs

along lines that may be expected intuitively. The exercise does, however, yield some pointers

to some features of a general nature. For definiteness, consider a mortal random walker on an

infinite linear lattice with its sites labeled by the integers. Let a and τ denote, respectively,

the lattice constant and time step. Then, if pj(n) is the probability that the walker is at the

site j at time nτ , we have

pj(n+ 1) = 1
2
q [pj−1(n) + pj+1(n)]. (1)

The only consistent continuum limit of this difference equation is obtained by letting a→ 0

and τ → 0, as usual, as well as q → 1, such that

lim qa2/(2τ) = D, lim (1− q)/τ = σ, (2)

whereD and σ are finite, non-zero constants. Replacing ja by x and nτ by t in the customary

manner, and retaining the symbol p(x, t) for the positional probability density, we obtain

from Eq. (1) a diffusion equation with a linear death term:

∂p

∂t
= D

∂2p

∂x2
− σ p. (3)

The fundamental solution of Eq. (3) satisfying the initial condition p(x, 0) = δ(x − x0) is

given by

p(x, t) = e−σt(4πDt)−1/2 e−(x−x0)2/(4Dt). (4)

This is just the standard Gaussian solution with the extra exponentially decaying factor

e−σt. It may be noted that the pre-factor in the solution is now determined from the

initial condition, i.e., the requirement that p(x, t) → δ(x − x0) as t → 0, rather than the

normalization of p(x, t) to unity—which is no longer the case, because
∫∞

−∞
dx p(x, t) = e−σt.

As we shall be interested in trapping probabilities and mean first-passage times, we con-

sider a first passage from the starting point x0 to an arbitrary point x (> x0, for definiteness).

Let q(t, x|x0) be the corresponding first-passage-time density. This quantity is conveniently

determined from the Markovian renewal equation

p(x1, t | x0) =

∫ t

0

dt′ q(t′, x | x0) p(x1, t− t′ | x), (5)
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where x0 < x < x1. With the help of Laplace transforms, we find

q(t, x | x0) =
e−σt

(4πDt3)1/2
(x− x0) e

−(x−x0)2/(4Dt). (6)

Once again, this is just the standard expression (a stable or Lévy distribution in t with

exponent 1
2
), multiplied by the attenuation factor e−σt. Owing to this factor, the first

moment of q(t, x | x0) is finite, rather than divergent. The mortality of the walker makes

the random walk non-recurrent, even in one dimension. The total probability that a first

passage from x0 to x occurs at all is given by
∫ ∞

0

dt q(t, x | x0) = exp [−(σ/D)1/2 (x− x0)], (7)

which decreases exponentially as the distance (x − x0) increases. Although the probability

of a first passage to x is less than unity, a mean first-passage time (MFPT) may still be

defined. We find

T (x | x0) =

∫∞

0
dt t q(t, x | x0)∫∞

0
dt q(t, x | x0)

=
(x− x0)

(4Dσ)1/2
. (8)

The mean time is therefore directly proportional to the distance to be covered, as in ballistic

motion, with an effective speed (4Dσ)1/2. It must be remembered, however, that the MFPT

is an average over only that fraction of the realizations of the diffusion process in which a

first passage from x0 to x occurs at all, and that this fraction decreases exponentially as the

distance (x− x0) increases.

B. Random walk on a graph with traps

Turning now to Markovian random walks on graphs in discrete time in the presence of

trap sites, it is helpful to begin with the standard case (q = 1), in order to bring out more

clearly the differences that arise when q < 1. Let φj(t) be the probability that a walker

starting from any non-trap site j hits any of the traps for the first time at discrete time

t, i.e., the first-passage time distribution for the site j. Then the backward Kolmogorov

equation (BKE) for φj(t) is

φj(t + 1) = (1/νj)
∑

k

δ〈jk〉 φk(t), (9)

where νj is the number of nearest neighbors of the site j. The symbol δ〈jk〉 is equal to 1 if

j and k are NN sites, and is equal to 0 otherwise. By definition, φj(t) = δt,0 for each trap
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site j (the ‘boundary conditions’). Likewise, when j is a non-trap site, φj(0) = 0 (the initial

conditions). Let Φj =
∑∞

t=0 φj(t) be the total probability that a walker starting at site j

ever reaches a trap. Summing over t, Eq. (9) gives

Φj = (1/νj)
∑

k

δ〈jk〉Φk. (10)

But if k is a trap site, then Φk =
∑∞

t=0 δt,0 = 1. Because of this fact, (10) becomes an

inhomogeneous equation whenever j has a nearest-neighbor trap site. Equation (10), written

down for every value of j, yields a set of linear simultaneous equations with a non-vanishing

discriminant. Hence there is a unique solution set, deduced by inspection to be simply

Φj = 1 for every j. In other words, trapping is a sure event for random walks on all the

finite connected structures in which we are interested, i.e., the first-passage time distribution

φj(t) is properly normalized:

Φj =

∞∑

t=0

φj(t) = 1. (11)

(In the case of fractal graphs, this remains true in the infinite generation limit, since we only

consider cases in which the the spectral dimension < 2.)

The ‘local mean value’ nature of φj(t) is evident in Eq. (9). This may be made more

manifest by re-writing it in the form

φj(t+ 1)− φj(t) =
∑

k

∆jk φk(t), (12)

where

∆jk = ν−1
j δ〈jk〉 − δjk (13)

is (a component of) the discrete Laplacian. The MFPT, or the mean time to trapping for

walks originating from any given site i, is the first moment of φj(t), and is defined as

Tj =

∞∑

t=0

t φj(t)
/ ∞∑

t=0

φj(t) =

∞∑

t=0

t φj(t), (14)

in view of the normalization in Eq. (11). Multiplying both sides of Eq. (9) by (t + 1) and

summing over t leads to the set of linear simultaneous equations for {Tj} given by

∑

k

∆jk Tk = −1. (15)

It is important to bear in mind (for what follows) that such a linear relationship among

the MFPTs from different sites is only possible because the distribution φj(t) is normalized
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to unity for every j. Depending on the structure of the hierarchical and/or fractal graph

concerned, and its symmetries in the presence of the deep traps, various scaling relations for

partial sums of the MFPTs arise from the appropriate application of Eq. (15). These are

relatively simple additive and multiplicative relations, again because of the linearity of Eq.

(15). In particular, they help answer a basic question related to random walks on hierarchical

graphs: if the spatial scaling factor of the graph that takes us from one generation to the

next is λ, say, what is the corresponding temporal scaling factor µ? The ratio

dw = (ln µ)/(ln λ) (16)

is then the random walk dimension of the hierarchical graph or fractal. Thus, the fact that,

on the average, “it takes four times as long to go twice as far” in conventional diffusion implies

that dw = 2 in this case. On the Sierpinski gasket, in contrast, it is well known that “it takes

(on the average) five times as long to go twice as far”, implying that dw = (ln 5)/(ln 2) on

this graph. One of the objectives of the present work is to examine how the effective random

walk dimension is affected by the fact that the walker is mortal, i.e., q < 1.

C. Mortal random walker

We now consider the case of a mortal random walker, with any specified value of q ∈ (0, 1).

Let Fj(t, q) be the probability that a walker starting from the site i hits any of the traps for

the first time at time t. (This notation helps us keep track of the fact that the first-passage

time distribution is q-dependent). Since the first jump of the walker from the site j to any

of the NN sites of j occurs with probability q/νj , the BKE for Fj(t, q) is now given by

Fj(t+ 1, q) =
q

νj

∑

k

δ〈jk〉 Fk(t, q). (17)

The boundary conditions and initial conditions on Fj(t, q) are the same as those satisfied

by φj(t): namely, Fj(t, q) = δt,0 when j is a trap site, and Fj(0, q) = 0 when j is a non-trap

site. Equation (17) differs from the BKE (9) solely by the extra factor of q on the right-hand

side. As the respective time arguments on the left and right-hand sides of Eq. (17) are t+1

and t, the presence of this factor implies at once that Fj(t, q) must necessarily be of the

form qt φj(t), where φj(t) is the first-passage-time distribution in the case q = 1, as already

defined. The total probability of the trapping of a mortal walker starting from i is therefore
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given by

Pj(q) =

∞∑

t=0

Fj(t, q) =

∞∑

t=0

qtφj(t) < 1, (18)

because φj(t) is already normalized to unity (Pj(1) ≡ Φj = 1), and 0 < q < 1. The trapping

of a walker starting from an arbitrary initial site is therefore no longer a sure event, and

first passage to a trap from an arbitrary initial site is not a proper random variable. The

total probability of reaching a trap depends on the starting point j. But we can still define

a mean first-passage time (MFPT) or mean time to trapping, Tj(q), by averaging over the

set of realizations of the walk starting from j in which trapping does occur. This requires

the first moment of Fj(t, q) to be divided by the total trapping probability Pj(q). As this

denominator is different for different sites, one can no longer expect any linear relation

between the MFPTs, in general. Further, simple multiplicative scaling relations will no

longer hold for MFPTs on hierarchical graphs. But, as will be seen in the sequel, the self-

similarity of such graphs does lead to more intricate scaling relations, involving in each case

the iterates of a scaling function. It will also become clear that the case q = 1 is in a separate

class by itself, in a certain specific sense.

It is evident from Eq. (18) that Pj(q) is the generating function (or ‘partition function’)

for the probability distribution φj(t), while q plays the role of a fugacity parameter. This

fact proves to be of great help in the analysis that follows. The mean time to trapping for

walks originating at j is defined as

Tj(q) =

∞∑

t=0

t Fj(t, q)
/ ∞∑

t=0

Fj(t, q). (19)

Using the fact that Fj(t, q) = qt φj(t), Eq. (19) can be re-written as

Tj(q) = q
d

dq
ln Pj(q). (20)

Other such formulas can be written down for the higher moments of the time to trapping

from any initial site j, in terms of the higher derivatives of Pj(q) with respect to q. It

remains to find an equation for the set of trapping probabilities {Pj(q)}. Summing over t in

Eq. (17) yields the equation sought. We find

Pj(q) =
q

νj

∑

k

δ〈jk〉 Pk(q). (21)

While this is a trivial relation in the case q = 1 (with the solution Pj(1) = 1 for every j), it is

far from being so for q 6= 1. In particular, it immediately precludes the possibility that Pj(q)



10

could be independent of j when q < 1. Once again, the ‘boundary condition’ Pk(q) = 1

when k is any trap site makes (21) an inhomogeneous set of linear equations, guaranteed to

have a unique and non-trivial solution set.

D. Mortal walker on a linear lattice

As a simple illustration of the effects of mortality (q < 1), consider a Markovian random

walk via nearest-neighbor jumps on a linear lattice with sites labeled 0, 1, . . . , N , with a trap

at N . The total probability that a walker starting at the site j hits the trap is given by

Pj(q). The set of equations (21) reads, in this instance,

P0(q) = qP1(s) (22)

and, for 1 ≤ j ≤ N − 1,

Pj(q) =
1
2
q[Pj−1(q) + Pj+1(q)], (23)

with the boundary condition PN(q) = 1. The last equation of the set is therefore

PN−1(q) =
1
2
q[PN−2(q) + 1], (24)

which is an inhomogeneous equation. Hence, there is a unique non-trivial solution set for

{Pj(q)}. As we know already, in the case q = 1 this is just the uniform solution Pj(1) = 1 for

every i, but this is no longer true for any q < 1. In fact, Eq. (23) is precisely the recursion

relation satisfied by the Chebyshev polynomials of the first and second kinds, with argument

1/q. The conditions (i) PN(q) = 1 and (ii) 0 ≤ Pj(q) < 1 suffice to identify the unique

normalized solution to be

Pj(q) =
Tj(1/q)

TN(1/q)
, (25)

where Tj(x) is the Chebyshev polynomial of the first kind and of order j. Since 1/q ≥ 1, we

have the representation

Tj(1/q) = cosh
(
j cosh−1 (1/q)

)
, (26)

showing that Pj(q) < Pj′(q) when j < j′. This is just what is expected on physical grounds:

the trapping probability increases as the starting point of the walk gets closer to the trap. In

the limit q = 1, Eq. (25) yields Pj(1) = 1, as required. At the other extreme (q → 0), Pj(q)

vanishes exponentially with the distance to the trap, like qN−j = exp [−(N − j) ln (1/q)].
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Using the formula of Eq. (20), the mean time taken by a mortal random walker starting

at the site j to reach the trap at N works out to

Tj(q) =

{
N tanh (N tanh−1

√
1− q2 )− j tanh (j tanh−1

√
1− q2 )

}
√
1− q2

. (27)

Again, in the limit q = 1, we recover the well-known result Tj(1) = N2 − j2 (standard

diffusive behavior). In the limit q → 0, we have Tj(q) → N − j, which suggests ‘ballistic’

motion— the mean time taken to reach the trap is proportional to the distance to be covered.

This turns out to be a general feature that has a straightforward explanation, as we shall

see. For the moment, it suffices to bear in mind that the average involved in this MFPT is

over the vanishingly small number of realizations of the walk in which a first passage to the

trap does occur.

III. SCALING OF TRAPPING PROBABILITY ON A HIERARCHICAL

LATTICE

A. Hierarchical linear lattice

We turn now to the application of the foregoing to a mortal random walker on a hier-

archical lattice. It is helpful to illustrate the manner in which the probability of trapping

scales on going from one generation to the next on a family of hierarchical graphs compris-

ing a suitable subset of the set of linear lattices. By ‘scaling’, we mean here a sequence of

renormalizations of the original survival probability q. More than one transformation of this

type can be envisaged, originating from the nesting property of the Chebyshev polynomials,

namely,

Trj(x) = Tr

(
Tj(x)

)
, (28)

where r = 0, 1, 2, . . . . The first nontrivial transformation in this regard corresponds to

r = 2, which we now proceed to consider in a specific form.

Consider the subset {Gn |n = 0, 1, 2, . . .} of linear lattices, where the sites of the nth

generation graph Gn are labeled from 0 to 2n. The generation-0 graph G0 comprises just

two sites, 0 and 1. This is decorated with a site in the middle of the bond, and the length

scale doubled, to obtain the generation-1 graph G1. The procedure is repeated to obtain the
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family {Gn} of hierarchical graphs. We consider, specifically, the probability P
(n)
0 (q) that a

mortal walker starting from 0 on Gn hits the trap located at the other end of the lattice, at

site 2n. The superscript (n) is meant to keep track of the fact that the random walk occurs

on Gn. It is important to note that no new traps are added in going from one member of the

hierarchy to the next. The distance to be covered by the walker doubles from one generation

to the next. P
(n)
0 (q) has already been determined in the preceding section: setting j = 0

and N = 2n in Eqs. (25) and (27), we have

P
(n)
0 (q) =

1

T2n(q)
= sech

(
2n sech−1 q

)
, (29)

while the corresponding mean time to trapping is

T
(n)
0 (q) =

2n tanh
(
2n tanh−1

√
1− q2

)
√

1− q2
. (30)

The exact, explicit expressions in Eqs. (29) and (30) enable us to see precisely how

the probability of trapping and the corresponding mean time to trapping vary as func-

tions of the survival probability q of a mortal random walker on the hierarchical linear

lattice. As q increases from 0 to 1, P0(q) stays close to 0 and rises very slowly, and

then rapidly rises up to the value 1 at q = 1. The MFPT T
(n)
0 (q), too, exhibits a

similar-shaped variation, as it rises from its lower limiting value 2n at q = 0 to its upper

limiting value (2n)2 = 22n at q = 1. We will return, subsequently, to the change in the

behavior of the MFPT (and hence that of the temporal scaling factor µ) for a mortal walker.

At the moment, however, we are interested in deducing the foregoing solution for P
(n)
0 (q)

on the basis of a scaling argument that can be generalized to other hierarchical graphs.

On G0 we have, trivially, P
(0)
0 (q) = q and T

(0)
0 (q) = 1. Finding P

(1)
0 (q) for G1 requires, in

principle, the enumeration of all walks between the sites 0 and 1 before the walker hits 2 for

the first time. This is quite easy, but it is even easier to solve Eqs. (22)–(24) explicitly in

this case. We find

P
(1)
0 (q) =

q2

(2− q2)
. (31)

Similarly, Eqs. (22)–(24) can be solved explicitly on G2 and G3 to arrive at the solutions

P
(2)
0 (q) =

q4

(8− 8q2 + q4)
(32)
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and

P
(3)
0 (q) =

q8

(128− 256q2 + 160q4 − 32q6 + q8)
. (33)

The number of equations in (23) increases exponentially with increasing n, making a brute-

force solution of the set of equations (22)–(24) intractable. But we note that, in going from

G0 to G1, the probability of survival of the walker till it reaches the trap decreases, from

the value q on G0 to the value q2/(2 − q2) on G1. In other words, as the distance between

the starting point and the trap is doubled, the survival parameter q is effectively rescaled to

a new value according to the map

q → f(q) =
q2

(2− q2)
. (34)

We therefore expect the solutions in Eqs. (32) and (33) to be the iterates f(f(q)) and

f(f(f(q))) of the map f(q), and it is readily verified that this is indeed so. Owing to the

exact hierarchical nature of the set {Gn} and of the locations of the initial and final sites

of the random walk, the probability of a walker on Gn starting at the site 0 and hitting the

trap at site 2n should then be given by

P
(n)
0 (q) = f

(
P

(n−1)
0 (q)

)
= f (n)(q), (35)

where f (n)(q) is the nth iterate of the map f(q) (with f (0)(q) ≡ q). But this is exactly what

we have already proved: noting that f(q) = 1/T2(1/q), we have

f (2)(q) = f
(
1
/
T2(1/q)

)
=

1

T2

(
T2(1/q)

) =
1

T4(1/q)
= P

(2)
0 (q), (36)

and so on, successively. The assertion that P
(n)
0 (q) = f

(
P

(n−1)
0 (q)

)
follows from the nesting

property of the Chebyshev polynomials (Eq. (28)), i.e., from the fact that T2

(
T2n−1(1/q)

)
=

T2n(1/q).

With this ‘scaling solution’ at hand, the focus shifts to the analysis of the map f(q). In

the particular example of the linear hierarchical lattice, we already have the explicit form

of f (n)(q) as a function of q for an arbitrary value of n. But such a form is not available for

an arbitrary hierarchical lattice. It is therefore necessary to work out a general formalism

that enables deductions to be made even in the absence of an explicit solution, as we now

proceed to show. The exact solution (29) (pertaining to the hierarchical linear lattice) and

its properties will then serve to corroborate the results to be deduced on general grounds.
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In the unit interval [0, 1] in q (the physical region), the map f(q) in Eq. (34) is onto,

monotone and convex, with a superstable fixed point at q = 0 and an unstable fixed point

at q = 1. Thus, if n < m, then f (n)(q) > f (m)(q) for every 0 < q < 1. As the generation

number n increases, any initial s < 1 flows into the fixed point at q = 0. Correspondingly,

P
(n)
0 (q) becomes flatter and flatter over the interval, with a leading behavior

P
(n)
0 (q) ∼ 2 (q/2)2

n

(37)

near q = 0, and rises steeply as q → 1 to reach the value 1 at the fixed point q = 1. This

is also the leading large-n behavior of P
(n)
0 (q) for any q < 1, because of the flow toward the

stable fixed point with increasing n. The only exception to this behavior corresponds, of

course, to the case q = 1, which remains fixed at that value under iteration. It is in this

sense that this case remains distinct from that of a mortal walker with any value of q less

than unity. For a mortal walker, the probability of reaching the trap decreases exponentially

with increasing distance from the origin, since the distance from the origin to the trap is 2n.

The characteristic length scale of this exponential decay is 1/ ln (1/q).

The iterative form of P
(n)
0 (q) in Eq. (35) also leads to a useful expression for the mean

time to trapping for a random walk starting at the site 0. From Eq. (20), we have in this

case

T
(n)
0 (q) = q

d

dq
ln f (n)(q). (38)

Let the sequence q0
f
−→ q1

f
−→ q2 · · ·

f
−→ qn denote the orbit of the point q0 ≡ q under the map

f , i.e.,

qα ≡ f (α)(q), α = 0, 1, . . . , n. (39)

Equation (38) can then be written, for n ≥ 1, as

T
(n)
0 (q) =

q0
qn

dqn
dq0

=
q0
qn

dqn
dqn−1

dqn−1

dqn−2
· · ·

dq1
dq0

. (40)

Since dqα+1/dqα = f ′(qα) (where the prime denotes the derivative), we get

T
(n)
0 (q) =

q0
qn

n−1∏

α=0

f ′(qα), n ≥ 1. (41)

The time to trapping can thus be expressed in terms of a product of the local contraction

factors pertaining to the map, evaluated at the successive points on the orbit of q0. The



15

MFPT T
(n)
0 (q) also provides us with a natural choice for the temporal scaling factor char-

acterizing a mortal random walker on a family of hierarchical graphs, as we go from one

generation to the next. We define

µ =
T

(n)
0 (q)

T
(n−1)
0 (q)

. (42)

Using the expression in Eq. (41) in this definition, we get the very convenient formula

µ =
[
q
d

dq
ln f(q)

]
q=qn−1

. (43)

The formulas in Eqs. (35), (38)–(43) are of general applicability to mortal random walks on

hierarchical lattices with the appropriate scaling function f(q) in each case. They provide

the basis for what follows in the sequel.

Applying the formula of Eq. (41) to the map (34) corresponding to the hierarchical linear

lattice, we have

T
(n)
0 (q) =

4n q0
qn

n−1∏

α=0

qα
(2− q2α)

2
. (44)

In the case q = 1 we have qα = 1 for every α, and the standard random walk result

T
(n)
0 (1) = (2n)2 is recovered: the MFPT to traverse a distance 2n is just the square of that

distance. But this is no longer true for any q < 1. The respective spatial and temporal

scaling factors λ and µ for a mortal random walker on the family of hierarchical linear

lattices are deduced readily. In going from Gn−1 to Gn, the length of the lattice is simply

doubled, so that λ = 2. Using Eq. (43), the corresponding temporal factor is

µ =
4

2− q2n−1

. (45)

For q = 1, of course, we have qα = 1 for every α, so that µ = 4, and we recover the

familiar result dw = (ln µ)/(ln λ) = 2 (independent of n). But for any q < 1, the ratio µ

as given by Eq. (45) is still n-dependent, in keeping with the fact that the scaling is not

a simple multiplicative one in the case of a mortal walker. µ starts at the value 4/(2− q2)

for n = 1, and decreases as n increases. In the large-n limit, since any initial q < 1 flows

toward q = 0, we find that µ → 2. This would imply a walk dimension dw → 1, which is

characteristic of deterministic (ballistic) motion, rather than diffusive motion. But there is

a simple explanation for this behavior. The leading contribution to P
(n)
0 (q) for large n, as

given by Eq. (37), corresponds precisely to the realization of a random walk from 0 to the
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trap at 2n in which the walker never jumps back, but moves in a directed path from start

to finish. There is only one such walk. Each of the 2n steps occurs with a probability 1
2
q,

except the first step from 0 to 1 which occurs with a probability q. Hence, the probability

of this walk is 2(q/2)2
n

, and the time taken to execute it is equal to the number of steps in

it, namely, 2n.

A final remark concerning the family of linear hierarchical lattices: Equation (29) is an

explicit functional form for the trapping probability P
(n)
0 (q). The latter is the nth iterate

f (n)(q) of the map f(q). It is therefore clear that the specific recursion relation in this case,

namely,

qα+1 = f(qα) =
q2α

(2− q2α)
, (46)

must actually be solvable in terms of elementary functions. Setting qα = sech θα, we have

cosh θα+1 = 2 cosh2 θα − 1 = cosh 2θα, so that θα = 2α θ0. It follows at once that qn =

sech
(
2n sech−1 q

)
, which is precisely Eq. (29).

B. Mortal walker on the Sierpinski gasket

We turn, now, to the case of a mortal random walker on a prototypical hierarchical

lattice, the family of Sierpinski graphs embedded in d = 2 dimensions. The procedure

for constructing the family {Gn} in this case is well known. G0 comprises 3 sites forming

an equilateral triangle with sides of unit length: the apex site A, and the sites L and R

on the base of the triangle. G1 is generated by decorating each side with a site at its

midpoint, joining it to its four nearest-neighbor sites with bonds, and doubling the length

scale. Repeating this process of decorating each bond with a fresh site and doubling the

length scale generates the family of planar Sierpinski graphs. The nth generation graph Gn

has Nn = 3
2
(3n + 1) sites, with A,L and R as the vertices of the outermost triangle whose

side length is 2n. It is convenient to number the sites from A (i = 1) downwards, and from

left to right in each horizontal row. Thus A,L and R correspond respectively to i = 1, 2 and

3 on G0, and to i = 1, 4 and 6 on G1, and so on (see Fig. 1 for a representation of G2).

As already stated, our primary objective here is to analyze how the survival parameter

q of a mortal walker is transformed in going from one generation of Gn to the next, leading

to a solution for an appropriate trapping probability on Gn in the form of the nth iterate of

a certain scaling function. The simplest way to do so is to consider the first-passage time
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FIG. 1: Sierpinski Gasket N ≡ N2 = 15

distribution for a walk that starts at A and ends at traps located at L and R. Thus the

configuration comprising the starting site of the random walk, the locations of the traps, and

of course the graph itself, is exactly self-similar as we go from one generation to the next.

It remains to find the precise scaling function whose iterates yield the trapping probability

as a function of q. The notation we use parallels that in the preceding sections.

A very brief recollection of the standard case q = 1 is again helpful. Since in this case first

passage to L or R is a sure event for a walker starting at any i on Gn, the corresponding FPT

distribution φ
(n)
i (t) is normalized to unity (Φ

(n)
i = 1), and we may work with the MFPTs

directly, using ∆ij T
(n)
j = −1 (Eq. (15)). On G0, we have T

(0)
A ≡ T

(0)
1 = 1

2
+ 1

2
= 1, since L

and R are traps. On G1, (15) is a set of three equations for T
(1)
i , i = 1, 2, 5 (since T

(1)
2 = T

(1)
3

by an obvious symmetry). These equations are easily solved to give T
(1)
A ≡ T

(1)
1 = 5. Owing

to the exact self-similarity of the configuration, this suffices to enable the assertion that

T
(n)
A = 5n. Hence µ = 5, while λ = 2, yielding the well-known result that the random walk

dimension is dw = (ln 5)/(ln 2) for the family of Sierpinski gaskets in d = 2.

We turn now to the case of a mortal random walker on {Gn}. We must now first compute

the total probability P
(n)
A (q) ≡ P

(n)
1 (q) that a walker starting at A hits one of the traps at L

and R, using the corresponding BKE, Eq. (21). OnG0, this is given by P
(0)
A (q) = 1

2
q+ 1

2
q = q.
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On G1 we have, omitting (for notational simplicity) the supercripts and q-dependence for a

moment, and using the obvious symmetry P2 = P3, the relations P1 = qP2, P2 = 1
4
q(P1 +

P2 + P5 + 1), P5 =
1
2
q(P2 + 1). Solving for P1, we have

P
(1)
A (q) =

q2

(4− 3q)
. (47)

Going on to solve the corresponding equations on G2 and G3 we find, after some algebra,

P
(2)
A (q) =

q4

(4− 3q)(16− 12q − 3q2)
(48)

and

P
(3)
A (q) = q8

/[
(64− 96q + 24q2 + 9q3)×

× (256− 384q + 96q2 + 36q3 − 3q4)
]
. (49)

Equations (47)-(49) are the analogs of Eqs. (31)-(33) derived earlier for the hierarchical

linear lattice. Once again, we note that these expressions are, respectively, precisely the

iterates f (2)(q) and f (3)(q) of the map

q → f(q) =
q2

(4− 3q)
, (50)

as we may anticipate from the results derived in the case of the hierarchical linear lattice.

The probability that a mortal walker starting from A on the nth generation Sierpinski gasket

eventually hits one of the traps at the vertices L and R is given by

P
(n)
A (q) = f (n)(q), (51)

where f (n) stands for the nth iterate of the map f in Eq. (50).

Solving the recursion relation

qα+1 = f(qα) =
q2α

(4− 3qα)
(52)

does not seem possible, as opposed to the case of the recursion relation (46) for the hi-

erarchical linear lattice, which allowed one to obtain qα explicitly as a function of q0 in

terms of elementary functions. In spite of this, a good deal can be said about the behavior

of the iterates of f for large generation number n. In the unit interval [0, 1] of q, the map

f(q) = q2/(4−3q) has essentially the same qualitative behavior as the map f(q) = q2/(2−q2)
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characterizing the hierarchical linear lattice. Once again, we have an onto, monotone, con-

vex map with a superstable attractor at q = 0 (because f ′(0) = 0) and a repellor at q = 1.

Any initial value q0 = q < 1 flows into 0 with increasing generation number n. Since the

Taylor expansion of f(q) about q = 0 starts with a term that is of order q2, Böttcher’s

Theorem guarantees the existence of a function ψ(q) that is analytic in a neighborhood of

q = 0, vanishes at q = 0, and satisfies the functional equation

ψ
(
f(q)

)
= ψ

(
q2/(4− 3q)

)
=

(
ψ(q)

)2
. (53)

It follows immediately that P
(n)
A (q) = f (n)(q) ≡ qn is of the form

P
(n)
A (q) = ψ−1

[(
ψ(q)

)2n]
, (54)

where ψ−1
(
ψ(q)

)
≡ q. As before, P

(n)
A (q) rises very slowly from 0 with increasing q, and

then rapidly increases to unity as q approaches 1 from below. Its asymptotic behavior near

q = 0, and equivalently its leading large-n behavior for any q < 1, may be deduced from

Eqs. (53) and (54). We find, in the neighborhood of q = 0,

ψ(q) = 1
4
q + 3

32
q2 +O(q3). (55)

The corresponding inverse function is

ψ−1(q) = 4q − 6q2 +O(q3). (56)

The trapping probability on Gn is then given by

P
(n)
A (q) = 4

(q
4

)2n [
1 + (3× 2n−3) q +O(q2)

]
. (57)

The decay of the trapping probability P
(n)
A (q) with the distance to the traps is again expo-

nential in the distance, with a characteristic length scale 1/(ln q−1). The case q = 1 is an

exception, of course, as it is a fixed point of the map f(q).

The mean time to trapping (at L or R) of a mortal random walker starting at the apex

A of the Sierpinski graph Gn can also be evaluated, since the general formula in Eq. (41)

is immediately applicable to the case at hand, with f(q) = q2/(4 − 3q). We obtain the

expression

T
(n)
A (q) =

q0
qn

n−1∏

α=0

qα (8− 3qα)

(4− 3qα)2
, (58)
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where qα = f (α)(q). The formula (43) yields, for the temporal scaling factor µ for a mortal

walker on the Sierpinski graph,

µ =
T

(n)
A (q)

T
(n−1)
A (q)

=
8− 3qn−1

4− 3qn−1
. (59)

It follows at once that, in the standard case q = 1 (in which every qα = 1), we recover the

value µ = 5, and hence the customary result dw = (ln 5)/(ln 2) for the Sierpinski gasket.

On the other hand, for any mortal walker (q < 1), the temporal scaling factor depends on

the generation number n as well as on the single-step survival probability q. It starts at

the value (8 − 3q)/(4− 3q) for n = 1, and decreases as n increases. Once again, any initial

q < 1 flows into the attractor at q = 0 in the large-n limit, we see that µ → 2, and hence

dw → 1 in this regime. The explanation, as in the preceding instance, lies in the leading

behavior of P
(n)
A (q) for large n: this probability is dominated by that of a random walk in

which the walker starts at A and proceeds in a straight line along the sites on the outermost

triangle of Gn, without jumping back or moving to any internal site on the graph, till the

walker reaches either L or R. There are only 2 such walks, from A to L and from A to R,

respectively. On either of them, the probability of the first step out of A is 1
2
q, while the

probability of each of the remaining 2n − 1 steps is 1
4
q. Hence the total probability of this

pair of paths is 2 × (q/2) × (q/4)2
n−1 = 4(q/4)2

n

, as in Eq. (57). The length of each path

(= 2n) is equal to the number of time steps taken to traverse it, which is why dw formally

tends to unity in this limit.

C. Mortal walker on the Sierpinski tower

It is interesting, from the theoretical point of view as well as that of applications, to

extend the analysis in the foregoing to a fractal graph embedded in d = 3 dimensions. The

natural choice is the so-called Sierpinski tower, constructed in a hierarchical manner similar

to that used for the Sierpinski gasket in d = 2. We begin with G0, a tetrahedron of unit

side length, its vertices being labeled A (the apex) and B,C,D (the vertices on the basal

triangle). Each bond is then decorated with a site at its mid-point, all nearest-neighbor sites

joined by bonds, and the length scale doubled, to obtain G1 (see Fig. 2). Iteration of this

process yields the hierarchical family {Gn} of Sierpinski towers. Gn has 2(4n + 1) vertices,

each with 6 nearest neighbors, except for the outermost vertices A,B,C and D, which have
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4 nearest neighbors each. The length scale factor connecting successive generations of the

family of graphs is of course λ = 2. The corresponding temporal scale factor is known to

be 6, so that the random walk dimension is dw = (ln 6)/(ln 2) for the family of Sierpinski

towers.

FIG. 2: Sierpinski Tower N = 10

The self-similar configuration (comprising the initial position of a mortal random walker

on Gn and the locations of the traps) that is the counterpart of that considered in the case

of the gasket is as follows. The walker starts from A, and the traps are located at B,C and

D. We seek the total probability P
(n)
A (q) that a mortal walker gets trapped. On G0, we have

P
(0)
A (q) = 4 × 1

4
q = q (and hence the MFTP T

(0)
A (q) = 1). To find P

(1)
A (q), we must write

down the BKE (21) for each of the 7 sites of G1 (including A) other than the trap sites,

together with the ‘boundary’ conditions P
(1)
i (q) = 1 for i = B,C,D. Solving these coupled

equations, we find

P
(1)
A (q) =

q2

6− 6q + q2
. (60)

Hence P
(1)
A (1) = 1, as expected: when q = 1, trapping (or first passage from A to one of the

traps) is a sure event.
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As in the preceding instances, we may conclude that the survival probability parameter

q is effectively renormalized as we go from G0 to G1 according to the map

q → f(q) =
q2

6− 6q + q2
. (61)

Once again, we note that the map is onto, monotone and convex in the unit interval 0 ≤

q ≤ 1, with an unstable fixed point at q = 1 and a superstable attractor at q = 0. The total

probability of the trapping of a walker starting from A at one of the traps B,C and D is

given by

P
(n)
A (q) = f (n)(q), (62)

the nth iterate of the map f(q). The qualitative properties of this solution are similar to

those of the corresponding solution for the Sierpinski gasket: with increasing n, the iterate

f (n)(q) stays extremely close to 0 for most of the unit interval in q, and rises very sharply

to the value 1 at q = 1. While the recursion relation

qα+1 =
q2α

(6− 6qα + q2α)
(63)

cannot be solved to find qα explicitly as a function of q0, we are guaranteed that there exists

a formal solution

P
(n)
A (q) = ψ−1

[(
ψ(q)

)2n]
, (64)

where ψ(q) satisfies the functional equation

ψ
(
q2/(6− 6q + q2)

)
=

(
ψ(q)

)2
. (65)

ψ(q) is analytic in the neighborhood of q = 0, and has the Taylor expansion

ψ(q) = 1
6
q + 1

12
q2 +O(q3) (66)

in that neighborhood. Its inverse function is

ψ−1(q) = 6q − 18q2 +O(q3). (67)

From Eq. (64), it follows that the trapping probability on Gn is given by

P
(n)
A (q) = 6

(q
6

)2n [
1 + 2n−1q +O(q2)

]
. (68)

Analogous to the case of the gasket, the leading large-n asymptotic contribution to P
(n)
A (q)

comes from the four directed walks from A to B,C and D, respectively. The number of
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steps in each of these is 2n, and the corresponding total probability is 4×(q/4)×(q/6)2
n−1 =

6 (q/6)2
n

.

The formula of Eq. (41) gives, for the mean time to trapping for a mortal walker starting

from A on Gn, the expression

T
(n)
A (q) =

6n q0
qn

n−1∏

α=0

qα(2− qα)

(6− 6qα + q2α)
2
. (69)

Using Eq. (43), the temporal scaling factor on the Sierpinski tower is found to be

µ =
T

(n)
A (q)

T
(n−1)
A (q)

=
6(2− qn−1)

6− 6qn−1 + q2n−1

. (70)

When q = 1, µ has the value 6 independent of the generation number n (and hence dw =

(ln 6)/(ln 2) for the Sierpinski tower in d = 3). For a mortal walker, µ starts at the value

6(2−q)/(6−6q+q2) for n = 1, and approaches its limiting (‘ballistic’) value 2 as n increases,

for the same reason as in the preceding instances.

IV. UNCONDITIONAL WALK LENGTH OF A MORTAL WALK ON THE

SIERPINSKI GASKET

A. Preliminary remarks

The linear system (21) allows one to evaluate the set {Pj} for different starting sites. In

dealing with the SG, the focus of attention so far have been the quantities P
(n)
A (q) and the

associated MFPTs (or walk lengths) T
(n)
A (q), which refer to a setting where two deep traps

are each of the bottom vertices L and R (we recall that the superscripts indicate that the

former quantities refer to the n-th generation gasket). As soon as q < 1, the walk length

T
(n)
A (q) is conditional on the walker’s surviving, so that it is able to reach either of deep

traps.

However, it is also of interest to consider an even simpler situation where a single deep

trap is placed at the apex site A and one lets the mortal walker evolve from any site j 6= A

until it is either trapped at A or it dies as a result of the mortality constraint. The set of

walk lengths
{
T

(n)
j (q)

}
is then of interest, and in particular the walk length T

(n)
L (q) referring

to the left bottom vertex L, say, as initial condition [which by symmetry is identical with

T
(n)
R (q)]. A possible physical situation that corresponds to the above setting involves a
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perfect detector of radioactive particles placed at site A. Assuming that the detector clock

is set to zero at the instant where the particle starts diffusing at L, the average over the

measurement times associated with each detection event will be T
(n)
L ; one assumes hereby

that the diffusing particle decays according to the typical exponential law associated with

Eq. (3).

Returning to the general case of an arbitrary graph, in the single trap setting considered

above, one may want to compute the probability of absorption Pj(q) at the deep trap and the

conditional mean walk length Tj. However, one may also be interested in the unconditional

mean walk length T̂j of the random walk (measured in number of steps); that is, the length

of the walk until it is terminated either by mortality or by absorption at A, no matter what

happens first. In this latter case, two competing decay channels are at play. In the example

of the preceding paragraph, a diffusing radioactive particle would either die by detector

trapping or by spontaneous decay into another species, and the unconditional mean walk

length T̂j would then play the role of the mean particle lifetime (measured in time steps of

the random walk). Obviously, in the limit q → 1, the conditional and the unconditional

walk lengths become identical, T̂j(q = 1) = Tj(q = 1).

For a Pólya mortal walker on any finite N site graph with a set of deep traps, the site-

specific unconditional walk lengths T̂j are related to one another via the following set of

equations [cf. Eq. (14) in Ref. [6]]:

T̂j = 1 +
q

νj

∑

k

δ〈jk〉T̂k, (71)

where one takes T̂k = 0 if k happens to be a site with a deep trap). Note that, in the limit

q → 0, Eqs. (71) yield T̂j = 1, as a result of the ”1” on the right hand side. In this case,

the walker jumps, and the walk continues subject to survival probability q.

The linear system (71) can be solved directly for the walk lengths, thus allowing one

to obtain specific numerical values when the set of transition probabilities are specified.

On the other hand, in Ref. [6] a generating function method and probability conservation

arguments were invoked to show that, in the case of a single deep trap, the walk lengths

and the probability of absorption at the deep trap are directly related to one another via

the equation

T̂j(q) =
1

1− q
[1− Pj(q)] . (72)
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Note that insertion of Eq. (72) into (71) allows one to recover Eq. (21). Note also that

a linear relation similar to (72) holds for the global averages T̂ ≡ 1/(N − 1)
∑

j 6=A T̂j and

P ≡ 1/(N − 1)
∑

j 6=A Pj , i.e.,

T̂ (q) =
1

1− q
[1− P (q)] (73)

While this may seem a somewhat trivial statement, we note that in the case of conditional

MFPTs studied above (q < 1), there is not such a simple relation between P (q) and T (q)

because of the nonlinear relation between both quantities, and knowledge of P (q) alone does

not suffice to evaluate T (q).

In the limit q → 1, one has Pj(q), and trapping at the deep trap is a sure event. For

the particular case of the SG, the overall conditional and unconditional walk length for each

gasket generation converge to the values computed in Ref. [11], i.e.,

T (n) =
1

Nn − 1

∑

j 6=A

T
(n)
j =

3n5n+1 + 4(5)n − 3n

3n+1 + 1
. (74)

Our subsequent aim will be to extend the above result to the case q < 1 by computing the

corresponding global averages T̂ (n) and P (n) .

B. Main results

In III.C we were able to find a scaling function describing the behavior of P
(n)
A (q) for the

case where two deep traps were placed at the corner sites L and R. In the present case

where the deep trap is placed at the apex site A (P
(n)
A (q) = 1), it is also possible to find

a scaling function describing the behavior of P
(n)
L,R(q). For the zero-th generation gasket (a

triangle ALR), Eqs. (21) take the form

P
(0)
L =

q

2
P

(0)
A +

q

2
P

(0)
R ,

P
(0)
R =

q

2
P

(0)
A +

q

2
P

(0)
L , (75)

subject to the aforementioned boundary condition P
(0)
A = 1. The solution is P

(0)
L (q) =

P
(0)
R (q) = q/(2− q). For higher gasket generations one easily finds by inspection

P
(n)
L (q) = h(n)(P

(0)
L ), n = 1, 2, 3, . . . , (76)

where h(n)(·) is the n-th iterate of the map

h(x) ≡ h(1)(x) =
x2

2 + x− 2x2
. (77)
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Further, we also define h(0)(x) ≡ x/(2−x), implying that h(0)(q) = P
(0)
L (q). For convenience,

in what follows we shall introduce the simplified notation hn ≡ h(n)(q) ≡ P
(n)
L (q), n =

0, 1, 2, . . .. As pointed out in Ref. [11], in the case q = 1, one has

T
(n)
L = 5T

(n−1)
L = 5nT

(0)
L = 2× 5n. (78)

On the other hand, one also has the crucial relation [11]

T
(n)
ir

+ T
(n)
jr

+ T
(n)
kr

= T
(n)
Ir

+ T
(n)
Jr

+ T
(n)
Kr

+ 6× 5r−1, r = 1, 2, . . . (79)

In terms of T
(n)
L Eq. (lactri1) can be rewritten as

T
(n)
ir

+ T
(n)
jr

+ T
(n)
kr

= T
(n)
Ir

+ T
(n)
Jr

+ T
(n)
Kr

+ 3T
(r−1)
L , r = 1, 2, . . . (80)

In Eqs. (79) and (80), we recall that (ir, jr, kr) and (Ir, Jr, Kr) respectively denote the sites

demarcating lacunary triangles of ascending size r and the vertex sites of the triangle with

(Ir, Jr, Kr) as its central lacunary region. In the case q < 1, the analog of Eq. (78) is

T̂
(n)
L =

1

1− q
[1− hn(q)]. (81)

For all q, one finds, for example, for the n = 1 Sierpinski gasket (N = N1 = 6),

T̂
(1)
2 + T̂

(1)
3 + T̂

(1)
5 =

3q2 − 16q + 24

3q2 − 10q + 8
, (82a)

T̂
(1)
1 + T̂

(1)
4 + T̂

(1)
6 =

3q − 8

3q − 4
. (82b)

Hence,

(T̂
(1)
1 + T̂

(1)
4 + T̂

(1)
6 )− (T̂

(1)
2 + T̂

(1)
3 + T̂

(1)
5 ) =

2(q − 4)

(3q − 4)(q − 2)
. (83)

When q = 1, and for this case alone, this expression reduces to the result, Eq. (5) in Ref.

(31),

T
(1)
2 + T

(1)
3 + T

(1)
5 = T

(1)
1 + T

(1)
4 + T

(1)
6 + 6. (84)

For the n = 3 Sierpinski gasket (N = 42), the sum T
(3)
2 + T

(3)
3 + T

(3)
5 reads

(1118208q3 + 2408448q2 − 2129920q + 688128) (12600q6 + 72192q5 + 93312q4) (27q8 − 1008q7)

108(q − 2)q7(3q − 4) (3q2 + 12q − 16) (96q2 + 384q − 256)
,

(85)
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whereas the sum T
(3)
1 + T

(3)
4 + T

(3)
6 is

(3q − 8) (9q6 − 288q5 − 5664q4 − 1152q3 + 58368q2 − 92160q + 40960)

(3q − 4) (3q2 + 12q − 16) (3q4 − 36q3 − 96q2 + 384q − 256)
. (86)

Thus, the factor on the right-hand side of the analog of Eq. (83) is, once again,

2(q − 4)

(3q − 4)(q − 2)
. (87)

In more general terms, the counterpart of Eq. (80) is found to be

T̂
(n)
ir + T̂

(n)
jr + T̂

(n)
kr

= P
(r−1)
L [T̂

(n)
Ir

+ T̂
(n)
Jr

+ T̂
(n)
Kr

] + 3T̂
(r−1)
L , r = 1, 2, . . . (88)

Or, in terms of the hn’s,

T̂
(n)
ir

+ T̂
(n)
jr

+ T̂
(n)
kr

= hr−1[T̂
(n)
Ir

+ T̂
(n)
Jr

+ T̂
(n)
Kr

] + 3
1− hr−1

1− q
, r = 1, 2, . . . (89)

One is now tempted to compute the global average T̂ (n) by methods similar to those employed

in [11]. However, at this stage we realize that the absorption probabilities P
(n)
j referring to

the sets of sites (ir, jr, kr) and (Ir, Jr, Kr) fulfil a simpler relation, i.e.,

P
(n)
ir

+ P
(n)
jr

+ P
(n)
kr

= hr−1[P
(n)
Ir

+ P
(n)
Jr

+ P
(n)
Kr

], r = 1, 2, . . . (90)

This prompts us to work with the above hierarchical relation rather than with the set of Eqs.

(89). Using Eq. (90) and the equivalence P
(n)
L = P

(n)
R , it is possible to compute the global

average P (n) = (Nn − 1)−1
∑

j 6=A P
(n)
j by suitably reexpressing the site-specific probabilities

of absorption at A in terms of P
(n)
L only (see Ref. [11]). Thus, to obtain the P (n)’s, one

does not need to compute site-specific probabilities other than the set
{
P

(m)
L

}
≡ {hm} (with

m = 0, 1, . . . , n) , whence the global unconditional walk length T̂ (n) immediately follows via

Eq. (73). For the first few generations one obtains

n = 0, P (0) = h0 =
q

2− q
, (91a)

n = 1, P (1) =
(1 + h0)(1 + 2h1)− 1

5
= 4q+q2

40−30q−5q2
, (91b)

n = 2, P (2) =
(1 + h0 + h1 + 2h0h1)(1 + 2h2)− 1

14
= 32q−24q2−2q3+q4

896−1344q+336q2+126q3−7q4
, (91c)

n = 3, P (3) =
(1 + h0 + h1 + 2h0h1 + 2h0h2 + 2h1h2 + 4h0h1h2)(1 + 2h3)− 1

41

= 16384q−36864q2+23552q3−512q4−2560q5+40q7+q8

1343488−4030464q+4030464q2−1133568q3−393600q4+165312q5+20664q6−2214q7−41q8
. (91d)
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For arbitrary generation number n, the general expression of the probability of absorption

(averaged over all the sites other than the deep trap) turns out to be

P (n) =

(

1+2
∑′

i hi+4
∑′

{i,j}
i6=j

hihj+8
∑′

{i,j,k}
i6=j 6=k

hihjhk+...+2n−1h0h1h2...hn−2hn−1

)

(1+2hn)−1

Nn−1
,

(92)

where the primes in the sums indicate that the different indices i, j, k, . . . take values from

0 to n− 1. Using Eq. (73), one can subsequently find the unconditional walk length for the

n-th generation gasket, i.e.,

T̂ (n)(q) =
1

1− q

[
1− P (n)(q)

]
. (93)

V. COMPARISON BETWEEN RESULTS FOR CONDITIONAL AND

UNCONDITIONAL WALK LENGTHS

Both conditional and unconditional walk lengths are relevant for target search problems,

hence we will compare these two quantities in the present section. Eqs. (20) and (21) are the

basis to compute the site-specific conditional walk lengths, whereas Eqs. (71) can be used

to compute site-specific unconditional walk lengths. We recall that the validity of Eqs. (71)

implies that the walker jumps, and then the walk continues subject to survival probability

q. This convention has been used throughout Sec. IV for the sake of comparison of the

obtained unconditional walk lengths with previous results for the Sierpinski gasket in the

q → 1 limit. In the q → 0 limit, it implies T̂j → 1, i.e., the walker jumps at least once.

However, for a comparison between conditional and unconditional walk lengths, it appears

more natural to first check whether the walker has survived and, if so, then the jump is

implemented. In practical terms, this means that, already before taking the first step, the

walker has a non-zero probability of dying 1 − q. Consequently, the walk length becomes

smaller by a factor q. With this new convention, Eqs. (72) and Eqs. (73) must now be

replaced with

T̂j(q) =
q

1− q
[1− Pj(q)] (94)

and

T̂ (q) =
q

1− q
[1− P (q)] , (95)



29

respectively. On the other hand, Eq. (21) must remain valid regardless of the convention

used to compute the unconditional walk length, namely, the convention used here, or the

one used in Sec. IV. Together with (94), this requirement results a new equation for the

T̂j ’s, namely,

T̂j = q +
q

νj

∑

k

δ〈jk〉T̂k, (96)

instead, implying that all T̂j go to 0 as q → 0. Note that the only formal difference between

Eqs. (71) and (96) is that the ”+1” on the right hand side is replaced with ”+q” in the latter.

The unconditional walk lengths computed in the present section stem from the solution of

Eqs. (96), but the conclusions of this section remain qualitatively the same regardless of

which convention is used for the number of time steps.

Displayed in figure 3 are analytical and MC results for the overall conditional and un-

conditional walk length as a function of q for the N = 15 SG. Similar plots are presented in

Fig. 4 for the N = 42 SG, in Fig. 5 for the N = 10 Sierpinski tower, and in Fig. 6 for the

N = 34 Sierpinski tower. For the SG, traps are placed at two corner sites, whereas for the

Sierpinski tower, traps are placed at three corner sites.
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FIG. 3: Mean walk length versus survival probability q for the N = 15 Sierpinski gasket

(traps at two corner sites).
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FIG. 4: Mean walk length versus survival probability q for the N = 42 Sierpinski gasket

(traps at two corner sites)
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FIG. 5: Mean walk length versus survival probability q for the N = 10 Sierpinski tower

(traps at three corner sites)



33

+++++ + +
+

+

+

+

+

+

+

+
+

Monte Carlo

+ Monte Carlo

Condititional Walk Length

Unconditional Walk Length

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

25

q

FIG. 6: Mean walk length versus survival probability q for the N = 34 Sierpinski tower
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Several conclusions can be drawn from these data. First, note the difference in the q → 0

behavior between the unconditional walk length and the unconditional walk length (the

latter quantity goes to an N -dependent, non-zero value in this limit). This point will be

discussed in some detail in Section VI. Second, convergence to the classical random walk

limit, q → 1, is gradual for the conditional walk length, but less so for the unconditional walk

length. Qualitatively, this means that, except for a narrow range of q values, the lifetime of

the diffusing particle becomes significantly larger if one only counts absorption events at the

deep trap than it is the case when all trajectories count, i.e., not only those terminated by

absorption at the deep trap, but also by spontaneous death. Specifically, for q ≤ 0.97 there

is an appreciable difference between conditional and unconditional walk lengths in all cases

considered. Third, for sufficient large q, a walker persists much longer on larger gaskets

than on smaller ones. The percentage of deep traps on the Sierpinski gasket is 33.3% on

the N = 6 gasket, 13.3% on the N = 15 SG, 0.58% on the N = 42 SG, and 0.2% on the

N = 123 SG. On the Sierpinski tower, the percentage of traps is 30.0% on the N = 10

tower, and 8.8% on the N = 34 tower. In contemporary language, the diffusing particle

survives longer in mesosystems than in nanosystems, with an appreciable difference between

conditional and unconditional walk length in favor of the former as soon as q falls below a

relatively large (yet N -dependent) threshold value.

VI. DISCUSSION

As is evident from the results presented in the previous section, the difference between

conditional and unconditional walk lengths is quite striking. In order to decide which of these

two scenarios is relevant in a given experimental problem, it is crucial to consider the q ↓ 0

limit, where the difference is most pronounced. When 0 < q ≪ 1, or when 0 < q < 1 but the

generation number n ≫ 1, the random walk with the asymptotically leading contribution

to Pj(q) (the probability of a walker starting from j reaching a trap) dominates. This walk

is not really random, but follows a directed shortest path from j to the nearest trap. Since

the number of steps in such a walk is equal to the number of time steps, we have dw = 1

trivially, in this restricted case.

Occasionally, the starting site may be such that one or more traps are equidistant from

that site via two or more paths. For example, on the Sierpinski gasket, the starting point



35

(the top vertex, A) is equidistant from the traps at the two corner (bottom) vertices, L and

R. In this case there are two paths, each of equal length, to the traps: (i) 1 → 2 → straight

down the side of the outer triangle, to L; and (ii) 1 → 3 → straight down the other side of

the outer triangle, to R. For a given generation number n, the probabilities for each of these

paths is (q/2)(q/4)2
n−1, since the number of nearest neighbor (NN) sites of site A is just 2,

while it is 4 for all the other sites on the walk till one reaches L or R. But there are two

such walks. Hence,

P1(q) → q
(q
4

)2n−1

= 4
(q
4

)2n

, (97)

as stated earlier.

For every site, the leading contribution to Pj(q) as q ↓ 0 is easily found by identifying

the shortest path to the nearest trap. The MFPT for that site is then just the number of

bonds (or steps) on that path. More formally, since the leading small-q behavior of Pj(q) is

a monomial like cqr where c is a constant, we have

Tj → q

(
d

dq

)
ln (cqr) = r. (98)

Thus, while both the probability distribution Pj and its first moment vanish as q → 0, the

ratio of the two quantities tends to a finite non-zero value. Experimentally, if one measures

the mean time to trapping for a walker with a very small survival probability q at each step,

the particle flux impinging on the detector will be much smaller than it would be in the case

of diffusing immortal particles, because of the exponentially decreasing particle population.

In applications where the instantaneous (or cumulative) flux is measured, the efficiency will

be significantly lowered. In the limit q → 0 (large mortality) if what matters is the transit

time of each arriving particle, then pseudo-ballistic transport will be observed as a result

of an effective reduction of dimensionality. In other words, the mortality constraint selects

the shortest (and therefore fastest) trajectories by penalizing long trajectories with a very

low survival probability. This is a particular illustration of a more general feature reported

previously, namely, that the statistical properties of the fraction of surviving particles in a

collection of mortal walkers may be very different from those of an ensemble of standard

random walkers [14, 15, 19].

The foregoing finding may be relevant for a number of experimental systems where

diffusion-decay models inspired by Eq. (4) fit experimental data very well. This is the

case in a recent study [52], where such a model was successfully used to reproduce the be-
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havior of the detector signal in circular-dichroism experiments monitoring the valley diffusion

current in TMDC quantum hetero-structures. Here, pairs of spin- and valley-polarized holes

were first generated with a pulsed pump beam, and the density of valley-polarized holes was

then measured at a different location by triggering a pulsed probe beam after a given time

delay. The theoretical pump-probe signal was calculated by convoluting the free solution of

the diffusion-decay model with the spatial profile of the probe beam intensity. The resulting

expression was used to fit experimental data and thereby obtain the values of the diffusion

constant D and the valley lifetime. The value of the associated diffusion length was found to

be surprisingly large (∼ 20µs). In this case, holes that had already crossed the probe beam

area before the pulse was triggered could still contribute to the circular dichroic detection

signal if they happened to be revisiting that area at the time where the pulse had been

triggered. Therefore, the computation of the detection signal is not a first-passage problem

in this case, as opposed to the scenario considered above. However, to confirm the unusually

large value of the diffusion length, one could envisage an alternative scenario in which the

time needed by a hole to cover a certain distance is measured, whence the diffusion length

can be inferred via Eq. (8).

In another recent work concerning anomalously large diffusion lengths, long-range exci-

ton transport has been reported [54] in conjugated polymer nanofibers prepared by seeded

growth. These nanostructures are assembled using a seeded-growth method for producing

one- and two-dimensional templates of controlled sizes [55, 56]. In Ref. [54], Jin et al. study

exciton migration in crystalline fibers of poly(di-n-hexylfluorene) using photoluminescence

quenching. They report exciton diffusion lengths greater than 200 nm, a significant increase

(order of magnitude higher) than is realized in organic solar cells, and hence the significance

of their work. Holmes [53], in reviewing this work, notes that the results reported by Jin et

al. reinforce the idea that crystalline order (more precisely, a minimum degree of disorder)

plays an important role in facilitating exciton diffusion. This work also shows that strong

p-orbital overlap can as well enable more efficient exciton transport. Importantly, Jin et al.

conclude that these factors alone cannot fully explain the reported long diffusion lengths.

Although Jin et al. find their results compatible with a diffusion-decay model, Holmes

concludes that to account for these new data, it is essential to recognize the limitations

of diffusive or sub-diffusive transport regimes and to recognize the importance of ballistic

transport.
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We have explored in this paper the dramatic difference between the mean detection time

of immortal particles and that of particles subjected to an exponential decay law diffusing

on two fractal lattices, the Sierpinski gasket (fractal dimension ≈ 1.584) and the Sierpinski

tower (fractal dimension 2) embedded in Euclidean dimensions 2 and 3, respectively. We

have illustrated that for a N = 42 Sierpinski gasket with traps at the lower two vertices, the

exact value of the unconditional walk length is 428/5 = 85.6, whereas for the conditional

walk length it is 31/8 = 3.875, a difference of more than an order of magnitude. From the

point of view of first-passage properties, diffusion-decay models and ballistic behavior are

not mutually exclusive, at least in some limit. For a given system, this means that it may

be difficult to discern whether the behavior of certain quantities arises from pure ballistic

behavior or from apparent ballistic behavior induced by a mortality constraint. For the

particular system considered in [54], this observation might help reconcile, to some extent,

the authors’ conclusions with those in Holmes’ commentary on their work. We suggest that

this distinction can provide insight into studies of exciton transport in crystallization-driven

self-assembly of nanofibers templates, and into the arrival properties and the statistics of

detection of short-lived diffusing excitations present in other systems.

We close by emphasizing that the mechanism of reduction of dimensionality on which

we have been focusing here relies on a mortality constraint; it is therefore fundamentally

different from other mechanisms discussed in the literature, such as the one originally hy-

pothesized by Adam and Delbruck [57] and used as a source of inspiration in subsequent

works (see, e.g., Refs. [58–61]). In the situation considered by Adam and Delbruck, the

unconditional reaction rate of a diffusion-limited target search process is greatly enhanced,

whereas in our case an increase in the conditional reaction rate is observed. That this is

the case is remarkable given the decrease of the unconditional reaction efficiency due to the

mortality of the diffusing species.
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