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Abstract—Deep Learning has managed to push boundaries in
a wide variety of tasks. One area of interest is to tackle problems
in reasoning and understanding, with an aim to emulate human
intelligence. In this work, we describe a deep learning model that
addresses the reasoning task of question-answering on categorical
plots. We introduce a novel architecture FigureNet, that learns
to identify various plot elements, quantify the represented values
and determine a relative ordering of these statistical values. We
test our model on the FigureQA dataset which provides images
and accompanying questions for scientific plots like bar graphs
and pie charts, augmented with rich annotations. Our approach
outperforms the state-of-the-art Relation Networks baseline by
approximately 7% on this dataset, with a training time that is
over an order of magnitude lesser.

Index Terms—Visual Question Answering, Visual Reasoning,
Modular Networks, Deep Learning

I. INTRODUCTION

Deep learning has transformed the computer vision and
natural language processing landscapes and has become a
ubiquitous tool in their associated applications. The potential
of convolutional neural networks on images was demonstrated
with its success in the ImageNet classification task [1]. Long-
short-term Memory networks [2] have demonstrated a capa-
bility to tackle complex tasks like sentence summarization
[3], machine passage comprehension [4] and Neural Machine
translation [5]. Neural network models are in-fact a result
of preliminary attempts to model the brain and hence it is
a natural area of interest to accurately model “reasoning”. A
plethora of visual reasoning tasks [6], [7] have been created to
benchmark these capabilities of neural networks. Visual ques-
tion answering tasks require a combination of reasoning, Nat-
ural Language Processing and Computer Vision techniques.
The model must be capable of obtaining representations of
the image and question apart from intelligently combining
these representations to generate an answer. This task helps
machines gain the ability to process visual signals and use it
to solve multi-modal problems.

The rudimentary Convolutional neural networks (CNN)
and Long-short term memory networks (LSTM) models are
incapable of handling these datasets. [8] have demonstrated
that CNNs aren’t a satisfactory model for human graphical
perception and fail when applied to data visualizations. How-
ever, reasoning specific architectures have managed to achieve
super-human scores on these reasoning based tasks [9], [10].
One point of note is that these datasets have predominantly
addressed spatial and relational reasoning. [11] designed a
dataset that uses scientific graphs and figures to test count-
based, numeric, spatial and relational reasoning. Scientific
figures are a compact representation of statistical information.
They are found not only in scientific research papers but also in
business analysis reports, consensus reports and various other
sources wherein it is possible to supplement textual infor-
mation with figures. Therefore, automating the understanding
of this visual information could aid human analysts since it
allows drawing inferences from various reports and papers. An
architecture addressing this task is hence of great utility since
it bridges the gap towards a universal reasoning module.

We propose a neural network architecture FigureNet, that
incorporates various entities in scientific plots, to address the
reasoning task. FigureNet is motivated by the principle of
divide and conquer. Different modules are used to emulate
different logical components and are put together, while also
ensuring that the model is end-to-end differentiable. In order
to ensure that the functionality of the modules are made clear,
we employ supervised-pretraining on each of the modules on
relevant individual sub-tasks.

We compare our model against the Relation Networks (RN)
architecture [10] and a standard CNN-LSTM architecture. We
evaluate the efficacy of our model using the categorical plots
present in the Figure-QA dataset. Our model outperforms
these baselines with a training time that is over an order of
magnitude lesser than that of Relation networks. The rest of
the paper is structured as follows. Section 2 gives the related
work for this paper. Section 3 describes the FigureQA dataset
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[11] and introduces the RN baseline. In Section 4, we lay out
our approach for question answering on categorical plots like
bar graphs and pie charts. In Section 5, we explain our training
process and show improvements over various baselines on the
FigureQA dataset. This is followed by a collection of ablation
studies that dissect the different components of our model.
Section 6 gives a methodology for extending our approach to
real-life figures. Finally, Section 7 concludes the paper and
highlights directions for future work.

II. RELATED WORK

There are a variety of visual question-answering datasets
[6], [7]. These datasets however have questions which solely
deal with the positional relationship between objects. Hence,
the main function of the neural network here is to identify
different objects and codify their positions.

The baselines for this task involve naively combining
the LSTM and CNN architectures. [12] describe an end-to-
end differentiable architecture which sets the bar for neural
networks on spatial reasoning tasks. [13] report results on
a varied set of combinations of textual model embeddings
and image embeddings. These baselines were consequently
superceded by attention based models which use the image
embeddings to generate attention maps over the text [14].
Parallel to the development of attention based architectures,
several pieces of work in literature explored different fusion
functions that combine image and sentence representations
[15]. A large body of work also addresses the Visual question-
answering problem using modular networks wherein different
modules are used to replicate different logical components
[16], [17]. The state of the art approaches in visual question
answering use a rather simple, end-to-end differentiable model
and achieve super-human performance on relational reasoning
tasks [9], [10].

There is a plethora of literature on the advantages of pre-
training in deep learning. [18] discuss the difficulty of training
deep architectures and the effect of unsupervised pre-training.
They infer that starting the supervised optimization from pre-
trained weights rather than from random initialized weights
consistently yields better performing classifiers. [19] suggest
that unsupervised pre-training acts as a regularizer and guides
the learning towards basins of attraction of minima that support
better generalization from the training data set.

The disadvantage of Relation Networks, FiLM [9] is the
computational demand of these models. Our architecture is
computationally lightweight in comparison. A key require-
ment for our neural network model is to identify colours.
Traditional convolutional layers typically mix the information
content present in various channels. Inspired by the depth-wise
separate convolution operation present in the Xception model
[20], we adopt a similar family of convolution models in our
design.

III. PRELIMINARIES

In this section, we first describe the FigureQA dataset1

which was introduced by [11]. This is followed by a descrip-
tion of the Relation Networks baseline for this dataset. We
consider Relation Networks as our baseline since [10] have
shown that they outperform FiLM [9] on relational reasoning.

A. The FigureQA Dataset

FigureQA [11] is a visual reasoning corpus which contains
over a million question-answer pairs which are grounded in
scientific style figures. This synthetic corpus has been designed
to focus specifically on reasoning. FigureQA also has the
advantage of not requiring text identification modules like
OCR, since plot elements are colour-coded. It follows the
general Visual Question answering setup, but also provides
annotated data with bounding boxes for each figure.

100 unique colours covering the entire spectrum of colours,
were chosen from the X11 named colour set. FigureQA’s
training, validation and test sets are constructed such that all
100 colours are seen during training. Figure 1 and Figure 3 are
examples of different figure types with question-answer pairs.
Figure 2 shows an example for annotations available for each
figure. Images taken from [11].

Fig. 1: Vertical Bar graph with question-answer pairs

B. Relation Networks

Relation networks(RN) were introduced by [10] as a simple
yet powerful neural module for relational reasoning. Relation
Networks have the ability to compute relations, just as con-
volutional neural networks have the ability to generate image
feature map and recurrent neural networks have the ability to
capture sequential dependencies. RNs have been demonstrated
to achieve a state-of-the-art, superhuman performance on a
challenging dataset called CLEVR [7]. RN takes the object
representation as input and processes the relations between
objects as follows:

RN(O) = fφ

 1

N2

∑
i,j

gθ(oi,., oj,.)

 (1)

where O ∈ RN×C is a matrix in which the ith row contains
the object representation oi,.. Here, gθ calculates the relations

1https://datasets.maluuba.com/FigureQA

https://datasets.maluuba.com/FigureQA


Fig. 2: Horizontal Bar graph with annotations

Fig. 3: Pie chart with question-answer pairs

between a pair of objects and fφ aggregates these relations
and computes the final output of the model.

For the FigureQA evaluation, the object representations
are obtained from a convolutional neural network. The CNN
output contains 64 feature maps each of size 8 × 8. Each
pixel from this output corresponds to an object oi,.. We have
64(8 × 8) such objects wherein each object has a 64 dimen-
sional representation. The row and column coordinates of the

pixel are appended to the corresponding object’s representation
so as to include the information about location of objects inside
the feature map.

oi =

(
oi,1, · · · , oi,64,

⌊
i− 1

8

⌋
, (i− 1)mod8

)
(2)

The input to the relation network is the set of all pairs
of object representations, which are concatenated with the
question encoding. The question encoding is obtained from
an LSTM which has a hidden unit size of 256 in the RN
baseline. gθ processes each of the object pairs separately to
produce a representation for the relations between the objects.
These relation representations are then summed up and given
as input to fφ, which gives the final output. For training the
model, four parallel workers were used. The average of the
gradients from the workers was used to update the parameters.

IV. FIGURENET

In this section, we describe the FigureNet1 architecture that
tackles the question-answering task on bar plots and pie charts.
These plots have bars or sectors present in them, which we re-
fer to as plot elements. In these figure types, the plot elements
are generally distinguished by their respective colours. Thus,
we can recognize a plot element by identifying the colour in
which it is drawn. For example, in Figure 1, we can see that
the five vertical bars are drawn in five different colours. Each
image represents a sequence of numeric values and obtaining
this sequence allows one to answer any relevant question. For
the FigureQA dataset in particular, the absolute values are not
required and the relative ordering suffices. For example, in
Figure 1, the relative ordering of the five bars is [1,5,4,3,2].
The lower numbers represent lower numerical values for plot
elements and this representation allows questions involving
maximum, greater than, high median etc.. to be answered
easily.

We hypothesize that tackling the larger task of answering
the questions can be solved by handling the subtasks of
identifying plot elements followed by arriving at a relative
ordering of plot elements. We employ supervised pre-training
for each of the subtasks, using the annotations provided in
FigureQA dataset. The model is comprised of modules which
are logically intended to tackle one specific subtask each.

A. Spectral Segregator Module

The purpose of this module is to identify all plot elements
and the colour of each of these elements. For vertical bar
graphs, the model identifies the plot elements from left to
right, for horizontal bar graphs, from bottom to top and
for pie charts, in an anti-clockwise direction(starting from 0
degrees). The module takes the figure as input and outputs
the probabilities of colours for each of the plot elements. By
taking advantage of the fact that the number of plot elements
in bar graphs and pie charts of FigureQA is always less than
11, the module has 11 output units where each output unit is
a probability distribution over the 100 colours. For example,

1Code is available at FigureNet

https://github.com/revanth1996/FigureNet


Fig. 4: Architecture of Spectral Segregator Module - Image visualizes the sequence of convolution operations

in Figure 1, the targets for the module would be [Royal Blue,
Aqua, Midnight Blue, Purple, Tomato, STOP, STOP, STOP,
STOP, STOP, STOP] where STOP represents that there are no
more plot elements present and Royal Blue represents a one-
hot vector(probability distribution with a unit probability for
the colour Royal Blue).

Traditional convolution layers do not suffice since they tend
to aggregate the information and give an activation map that is
a coarse representation of the image. Another peculiarity of the
convolution operation is that the information across channels
are summed over. Ideally, the channel information is required
to be separated. Hence we solely use 1 × 1 convolutions
followed by scaling layers and depthwise convolutions.

The input to this module is an image with dimensions
128 × 128 × 3. The first convolutional layer filters the input
image with 64 kernels of size 3×3×3. This is followed by a
max-pooling layer that lowers the 2D feature map dimensions
to 64 × 64. The second, third and fourth convolution layers
apply 1× 1 convolutions with number of filters for each layer
being 64, 128 and 256 respectively. The output feature map
is of dimensions 64× 64× 256. This is followed by a scaling
layer that performs channel-wise multiplication of each of the
256 channels. In other words, each channel c is multiplied
by a scalar parameter pc. This operation will not change the
dimensions of the feature map. The idea behind adding the
1 × 1 convolution layers and scaling layer is that different
colours have different channel values and these operations will
help differentiate between the colours.

In the next layer, we perform depthwise convolutions with
30 kernels of size 64×64 each. Since there are 256 channels in
the feature map, each kernel will produce a 256 dimensional
vector, thereby giving an output with dimensions 30 × 256.
We add two fully connected layers on top of this, with
1048 and 512 hidden units respectively to finally output a
512 dimensional image representation. The motivation behind
adding the depthwise convolutions is that each 64 × 64 filter

can be understood to aggregate the count of a particular colour,
thereby quantifying the values represented by various coloured
plot elements. These convolution operations are visualized in
4.

Regular convolutions group information across the channels.
However, aggregating this information is counter-productive
to the task of identifying and segregating the colours. Con-
volution layers are not designed to perfectly identify colours
since the activation functions are often one-sided. Hence,
the depthwise convolutions and scaling operations facilitate
this requirement and equip the model, with an ability to
differentiate colours. Figure 5 is a visualization of the scaling
operation and the depthwise convolution is a standard 3D
convolution operation.

Fig. 5: Scaling layer : Each channel is multiplied by a
parameter pc with each channel assigned a distinct colour

Finally, to output the colour probabilities for each plot
element, we use a modified version of a two layered LSTM
network. The architecture for this can be seen in Figure 6.
The 512 dimensional image representation is the initial state
that is input to the LSTM. The output at every time-step is a
probability distribution over the 100 colours and STOP label.
Output at time step t gives the probability of colours for the
tth plot element. In order to mitigate the differences between



the training and testing phases, the output probabilities at time
step t− 1 are given as input to the LSTM at time step t. This
is different from a traditional LSTM in which the output is
sampled from the probabilities at time step t−1 and then given
as input at time step t, i.e we do away with the sampling. This
also allows propagating gradients from input at time step t to
the output of time-step t − 1. The input at time step 1 is a
101 dimensional parameter that is learned by the network. The
motivation behind using an LSTM mainly comes from the fact
that the number of plot elements in a figure is not fixed and
we found that using an LSTM performs better than predicting
the 11 outputs at one go. If h1

t−1, s
1
t−1 and h2

t−1, s
2
t−1 are

hidden states at time step t-1 for first layer and second layer
respectively, the equations for finding the output probabilities
at time step t are given below:

h1
t , s

1
t = LSTM1(ot−1, h

1
t−1, s

1
t−1) (3)

h2
t , s

2
t = LSTM2([h

1
t , s

1
t ], h

2
t−1, s

2
t−1) (4)

ot = softmax(ReLU(WTh2
t + b)) (5)

Fig. 6: Architecture of Spectral Segregator Module - Custom
LSTM architecture

B. Order Extraction Module

This module identifies and quantifies the statistical values
of each plot element, followed by sorting these values into
a linear order. Since the number of plot elements in bar
graphs and pie charts of FigureQA is always less than 11, the
possible positions in the sorted order are [1,2,3,4,5,6,7,8,9,10],
where lower numbers represent lower statistical values, with
0 being reserved as order for plot elements that are absent.
For example, in Figure 1, the targets for the Order Extraction
module would be one-hot values of [1,5,4,3,2,0,0,0,0,0,0](i.e
each element is one-hot vector). The module takes the image
as input and gives the probabilities for the position in the
sorted order of each of the plot element as output. We observed
that the final feed-forward network learns to ignore the output
probabilities for the plot elements which are absent.

The architecture for this module is almost the same as that
of the Spectral Segregator module except that it has three
fully connected layers with 2048, 1024, 512 hidden units

respectively, after the depthwise convolutions. The output of
two layered LSTM network at each time step is a probability
distribution over the 11 possible relative ordering values(0 to
10). The additional parameters are required to perform the
heavy lifting of the sorting operation.

C. Final Feed-forward network

We concatenate the output probabilities from the 11
timesteps in the Spectral Segregation and Order Extraction
modules. Thus, we get a 11×101+11×11 = 1232 dimensional
figure representation. We consider the output probabilities
instead of sampling the outputs so that we can backpropagate
the gradients through these modules when the entire network
is trained end-to-end. The question representation consists of
two parts, question encoding and question-colour encoding.
The question encoding is produced by an LSTM with 256
hidden units. The question-colour encoding is a representation
of the colours that are present in the question. It is obtained
by concatenating the 100 dimensional one-hot vector of first
colour in question with the 101 dimensional(100 colours +
one label for no second colour) one-hot vector of second
colour in question. The question encoding and question-colour
encoding together form the question representation. The figure
representation is concatenated with question representation
and given as input to feed-forward neural network.

The feed-forward network has four hidden layers and one
output layer. The hidden layers have 1024, 512, 256 and 256
hidden units respectively and the output layer has only 1 unit.
The activations are ReLU for the hidden layers and sigmoid
for the output layer. The architecture is shown in the Figure
7.

V. EXPERIMENTS

The training set contains 60,000 images with 20,000 each
for vertical bar graphs, horizontal bar graphs and pie charts.
The validation and test sets contain 12,000 images each with
an equal split for the 3 figure types. The annotations are
available for the training and validation set but not for the test
set. For the supervised pre-training task, the targets for the
modules are generated from the annotations for each image
provided in the FigureQA dataset. Note that the annotations
are used only while pre-training the modules. The final end-
to-end model answers the questions by taking only the image
as input.

A. Training Specifics

For pre-training the modules, a cross entropy loss between
the softmax output probabilities at each time step and the one-
hot targets generated from the annotations, are utilized. For the
question answering task, a sigmoid cross entropy loss function
on the output unit of feed-forward network is made use of.

The first step involves carrying out the supervised pre-
training of the Spectral Segregator and Order Extraction mod-
ules. The learning rate is 2.5e-04 and we train each of the
modules for 60 epochs. Consequently, the parameters of the
modules are fixed and the final feed-forward network is trained



Fig. 7: Architecture of final feedforward network

on the question answering task for 50 epochs with a learning
rate of 2.5e-04. Finally, the learning rate is lowered to 2.5e-05
and the entire architecture is trained (along with the modules)
end-to-end for 50 epochs. We select the model with the best
performance on the validation set.

B. Results

Table I compares the performances of CNN + LSTM,
Relation Networks, FigureNet and a human baseline. These
numbers are obtained on a subset of the test set(as reported
by [11]). The CNN + LSTM baseline is a simple architecture
that concatenates the representation of an image after passing
it through a CNN, with the representation of the text after
passing it through an LSTM. This concatenated representation
is passed through feed-forward layers to obtain the answer.
The RN baseline is identical to that described in Section 3.2.
The poor performance of the CNN+LSTM baseline signifies
the difficulty of the task and also shows that traditional
convolution architectures are not sufficient to handle relational
reasoning.

TABLE I: Accuracy of Model.

Model Accuracy
CNN + LSTM 59.94
RN(Baseline) 77.33
Our Model 84.29

Human 93.29

Table II shows the performance of the models for each figure
type. It can be seen that our model outperforms the baselines
on all three figure types. We find that our model performs
particularly well on pie charts and the performance on this
figure type is closest to human performance.

TABLE II: Accuracy per figure type.

Figure Type CNN + LSTM RN(Baseline) Our Model Human
Vertical Bar 60.84 77.53 87.09 95.90

Horizontal Bar 61.06 75.76 82.19 96.03
Pie Chart 57.91 78.71 83.69 88.26

We observed that model performance is close to human
performance for questions on maximum, minimum and com-
parison of plot elements. From Table III, we can see that

questions on low median and high median are the most difficult
for models as well as humans.

TABLE III: Accuracy per question type.

Template CNN + LSTM RN(Baseline) Our Model Human
Is X the minimum? 60.12 75.55 89.86 97.06
Is X the maximum? 64.70 89.29 90.25 97.18

Is X the low median? 54.87 68.94 73.74 86.39
Is X the high median? 55.83 69.37 73.71 86.91

Is X less than Y? 62.31 80.63 89.40 96.15
Is X greater than Y? 62.07 80.85 89.58 96.15

We also show the performance of the modules in our model.
We report the accuracy of the individual modules used for
identifying plot elements and their relative orders.

TABLE IV: Performance of the modules in the model.

Module Accuracy
Spectral Segregator 80.82

Order Extraction 74.31

C. Ablation Studies

We perform an ablative analysis to highlight the essentiality
of different components of the model.

1) Effect of using LSTM: Both the Spectral Segregator and
Order Extraction modules use two layered LSTM to output
the identities and relative orders of the plot elements. We
investigate the effect of using the LSTM network.

First, we study the advantage of not using sampling. In the
two layered LSTMs present in each of the modules, the output
probabilities at time step t−1 are given as input to time step t.
This is a modification to the standard approach where a vector
is sampled from the output probabilities of time step t−1, and
the sampled one-hot vector is fed as input at time step t. The
disadvantage with the standard approach is the discrepancy
during the training and testing phases. Instead, we directly
feed the output probabilities of the previous time step as input
to current time step. From Table V, it is evident that there is a
drop in performance when using a sampling based approach.

Next, we investigate the effect of using two layers in the
LSTM. We train another model that uses a single layer LSTM.
We observe a huge drop in accuracy as shown in Table



TABLE V: Comparing effect of LSTM modifications.

Model Accuracy
Our Model 84.29

With sampling 81.61
1 layer LSTM 75.29
Without LSTM 73.19

V, which signifies the greater representational capacity of a
two layered LSTM. The drop in performance of the Order
Extraction module was much higher than that of the Spectral
Segregator module, thereby emphasizing that the second layer
of the LSTM is essential for the sorting sub-task.

Finally, we train our model by removing the LSTM and
predicting the 11 outputs in the modules at one go. We
observed a drop in performance compared to using an LSTM.
We notice that in the absence of LSTMs, the model predicts the
same plot element multiple times. We hypothesize that the lack
of LSTMs result in a model that is unaware of the previously
predicted plot elements, resulting in repeated predictions.

2) Effect of using Depthwise convolutions: Finally, we
study how depthwise convolutions are essential to each mod-
ule. We train our modules by replacing the depthwise convo-
lutions with typical 3 × 3 convolutions. As shown in Table
VI, the performance of the modules dropped on removing the
depthwise convolutions. We hypothesize that depthwise convo-
lutions equip the model with an ability to differentiate colours
more easily. This claim is strengthened by the fact that the
Spectral Segregator module has a larger drop in performance
on removing the depthwise convolutions. The ability to dis-
tinguish colours is easier when the channel information is not
entirely aggregated. Since traditional convolutions sum along
all channels, the learned network parameters are incapable of
retaining critical information across layers, hence leading to
poor performances.

TABLE VI: Performance without Depthwise Convolutions.

Model Spectral Seg. Order Extraction
With Depthwise Convolutions 80.82 74.31

Without Depthwise Convolutions 15.76 54.04

D. Training time comparison

The Relation Networks baseline has a considerably larger
training time than the FigureNet architecture. The computa-
tional complexity of RNs arise from the need to process

(
N
2

)
combinations of the vectors in the last CNN feature map. Each
of these combinations have to pass through a MLP before they
can be aggregated. The large improvement in training time can
be attributed to the knowledge imbibed by the pre-training
tasks.

The Relation Networks baseline was trained on FigureQA
using an open-source implementation2 of Relation Networks.
The model was trained on a machine with a single Nvidia-
1080Ti GPU and 8 CPU cores. The model was run for 600,000
steps (as done in [11]).

2https://github.com/vmichals/FigureQA-baseline

The training for the FigureNet model was done on a
machine with 4 CPU cores and a single Nvidia K80 GPU.
Since the FigureNet architecture incorporates pre-training, the
reported training time corresponds to the summation of the
individual tasks/steps. The training times are presented in
Table VII. Note that although there exists a discrepancy in
the hardware used, the configuration used to train the Relation
Network is better and hence the difference in training times is
expected to be larger.

TABLE VII: Comparing training times of RNs and FigureNet.

Model Time(hours)
Relation Networks 354.79
FigureNet 28.50

Spectral Segregator 7.10
Order Extraction 6.58
Feed-forward layer 4.25
End-to End 10.47

VI. EXTENDING TO BEYOND SYNTHETIC FIGURES

Real life scientific figures need not have a mapping between
the plot element colour and name, since the plot elements can
be indistinguishably coloured in each figure. Hence, there is a
need to identify the plot element names from the axis/legend
in the figure. Here, we give an approach for extending the
current modules to real life figures:

1) The bounding box annotations, as shown in Figure 2, can
be used to train a detection model. This model detects
the bounding boxes around the plot element names on
the axis or legend.

2) Optical Character Recognition(OCR) can be used to
get the plot element names from the detected bounding
boxes. The detection model + OCR replaces the Spectral
Segregator module that we used earlier.

3) The Order Extraction module can be used as is, to obtain
the relative ordering of plot elements.

4) The figure representation is formed by concatenating the
word embeddings of plot element names obtained, with
the outputs from Order Extraction module.

5) This figure representation, combined with the question
encoding, can be used for the final question answering
task on real-life scientific plots/figures.

VII. CONCLUSION AND FUTURE WORK

In this work, we proposed a novel architecture for question
answering on categorical plots like bar graphs and pie charts.
The model aims to tackle the visual and numeric reasoning
tasks by using modular components. We formulated supervised
pre-training tasks to train simpler modules and then combined
these modules to solve the question answering task. We ensure
that each of the modules is differentiable so that once we
incorporate the pre-trained modules into our network, the
entire architecture can be trained end-to-end.

Our model performs significantly better than the state-
of-the-art Relation Networks baseline and the CNN+LSTM
baseline. We show improvements in accuracy for each figure

https://github.com/vmichals/FigureQA-baseline


type and question type bridging the gap towards human-
level performance. We also obtain significant improvements
in training time as our model has training time that is over an
order of magnitude lesser than that of Relation Networks.

In future work, we intend to improve the performance
on low-median and high-median questions. Another more
ambitious extension is to tackle a larger variety of question-
answering tasks on real life scientific figures. This would
include looking at plots which require understanding the
legend and axis labels. Another line of work includes making
the current model colour agnostic in order to test the model
on unseen plot colour combinations.
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