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The field confinement aspect of a multilayer cavity resonator formed by a one-dimensional

photonic crystal with prism wedge configuration is described in this paper. The prism wedge

consists of alternating dielectric layers and is used for the construction of polygon multilayered

structures with different symmetries like C4v-square and C6v-hexagon. Field confinement is studied

by finding the resonant modes and quality factors (Q) of the proposed geometries. The computed Q

factors for the two-dimensional geometries (the third dimension is taken to be infinity) are of the

order of 103–107. On the other hand, for the finite height of the cavity, the estimated Q factor is

found to be of the order of 104. An attempt has been taken to achieve the vertical confinement of

light for a few of the resonant modes so that the proposed cavities may be implemented for

microwave applications, especially in spectroscopic techniques. VC 2011 American Institute of

Physics. [doi:10.1063/1.3667292]

I. INTRODUCTION

Photonic crystals (PC) are useful for the storage of elec-

tromagnetic (e-m) radiation in the form of cavity resonating

structures.1 The cavities made of PC can be based on either

the bandgap effect2 or the anomalous dispersion.3,4 The sim-

plest form is to create the defect sites in regular periodic pat-

terns, which uniquely support the specific e-m modes at the

bandgap frequencies.5–8 The recent efforts in the realization

of cavities report ultrahigh quality factor along with small

mode volumes9–14 and explore the possible applications

ranging from field confinement to laser cooling.15,16

In this paper, two structures based on the square and

hexagon multilayer configuration (Fig. 1) are presented to

understand the field confinement effect. It may be noted

from Fig. 1 that the basic element of the proposed geometries

is the prism wedge, whose constituents are periodic in one

dimension (1D). It is well known that the 1D layer will act

as a perfect mirror at the bandgap frequencies.17 One can use

this concept to construct the polygon structure with different

structural symmetries like C4v-square, and C6v-hexagon for

the confinement of e-m waves. For example, the C4v symme-

try cavity is constructed by four 45� prism wedges and each

prism consists of periodic alternating dielectric layers of alu-

mina slab (relative dielectric permittivity is 9.0) of width 0.3

a and air spacing of 0.7 a (where a is the lattice constant).

II. Q FOR AN INFINITE HEIGHT CAVITY—TWO-
DIMENSIONAL CALCULATIONS

Initially, attention has been paid to the field confinement

effect for the modes that are not allowed by the multilayer.

Figure 2 shows the in-plane band structure of the 1D multi-

layer (obtained through plane wave method based free e-m

solver MPB),18 where the first bandgap spans from 0.209 to

0.403(2pc=a). Because the presented cavity’s center space

(�0.7a to 0.7a) is surrounded by the multilayer, the in-plane

propagation is effectively forbidden at the bandgap frequen-

cies for an e-m source excited at the center of the cavity.

However, it is necessary to mention that the cavity geometry

also has sharp corners and because of this, off-axis propaga-

tion may exist via the corner of the cavity. For example, the

off-axis band structure (transverse magnetic (TM) polariza-

tion) of the 1D multilayer given in Fig. 2(b) does not show

the complete bandgap and, hence, fields can even be allowed

for certain kx and ky values. Therefore, it is possible to

expect that the in-plane field confinement offered by the

number of multilayered sides may be limited by the off-axis

propagation (leakage) due to the number of vertices.

To show this, the resonant modes, their decay nature,

and quality factors are found through 2D calculations (where

the height of the cavity is taken to be infinity) using

the finite-difference time-domain (FDTD) method based free

e-m solver MEEP.19 The basic idea is to pump energy into the

cavity and observe the decay process. In order to do so, the

Gaussian pulse centered on the 0.311(2pc=a) with the pulse

FIG. 1. (Color online) Proposed multilayered cavity geometries. (a) Square-

C4v symmetry; (b) hexagon-C6v symmetry.
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width of 0.2(2pc=a) is excited at the center of the cavity. The

choice of this frequency excitation is based on the in-plane

bandgap information of the 1D multilayer given in Fig. 2(a).

(Hence, the calculation is restricted only to the resonant

modes within the forbidden regime of the 1D multilayer and

the other modes of the cavity are not considered. If one

wants to solve the complete band structure information, one

may consider the super-cell treatment for the cavity. For

example, in fiber optics, the band spectrum of the cylindrical

multilayer is well known.)20

To solve for the resonant modes, the computational do-

main is surrounded by the perfectly matched boundary layers

(absorbing layers)21 and transverse magnetic polarization (Ez

component) is assigned to the excitation source. After the ex-

citation and complete decay of the pulse, the field values

present at the center of the resonator are taken for the extrac-

tion of the resonant modes. For this purpose, a filter diago-

nalization method22 is employed through HARMINV.22,23

Harminv analyzes the field f tð Þ at a given point and

expresses it as a sum of the modes as f tð Þ ¼
P

anexp �ixntð Þ
for the specified frequency bandwidth. Here an is the complex

amplitudes and xn is the complex frequencies. The Q factor

is calculated through the expression as,

Q ¼
Re xð Þ

�2 Im xð Þ
: (1)

Here Q is the computed quality factor, Re(x) is the real part

of the complex frequencies, and Im(x) is the imaginary part

of the complex frequencies (corresponds to the decay rates

of the resonant modes). For the accurate calculation of the Q

factor, one need apply the HARMINV only after the complete

decay of the Gaussian pulse. For example, the Q factors of

the square and hexagonal configurations given in Table I are

calculated after 50 000 time units of the complete decay of

the pulse. For the fixed number of photonic layers (9 layers

for square and 12 layers for hexagon), the Q factors are

obtained in the range of 103–107 for the proposed geometries

and their respective mode patterns are given in Fig. 3. It is

evident from Fig. 3 that the center cavity space specifically

supports the resonant modes and some of them are even con-

fined in the dielectric layer. For example, the mode at

0.36662(2pc=a) for a square cavity is confined around the

dielectric so that it has a very low decay rate and has a high

Q factor of the order of 107.

However, it may be noted that these calculations are

only for two dimensions, where the height of the cavity is

taken to be infinity. As long as the height is being ignored,

the reported Q values will only indicate the in-plane field

confinement. In reality, any photonic cavity has at least two

energy decay channels; the one being considered as the in-

plane losses (Qin-plane) and the other one being the out-of-

plane losses (Qout-of-plane) and the total Q factor (Qtotal) com-

prises both the losses, as per Eq. (2),

1

Qtotal

¼
1

Qin-plane

þ
1

Qout-of -plane

: (2)

By examining Eq. (2), it can be justified that the Qtotal

approaches Qout-of-plane when Qin-plane is arbitrarily very

large. Because 2D calculations for an infinite height cavity

only indicate the Qin-plane, practical applications of these

geometries require the estimation of Q for the finite dimen-

sional structures.

FIG. 2. (Color online) (a) In-plane band

structure of the 1D PC consists of alterna-

tive layers of alumina slab (0.3a) and air

medium (0.7a). The first bandgap is

shown with solid horizontal lines. (b) Pro-

jected band structure corresponding to the

TM polarization for the first two bands.

The midgap frequency 0.311(2pc=a),
given with the dotted line, is allowed in

certain kx and ky values.

TABLE I. List of computed Q factors.

Square Configuration Hexagonal Configuration

Resonant frequencies

x in (2pc=a)
Quality

factor Q

Resonant

frequencies x in (2pc=a)
Quality

factor Q

0.29159 3.52� 104 0.26004 1.09� 107

0.29748 1.07� 106 0.38221 5.36� 107

0.36662 3.13� 107 0.40291 3.74� 105

0.40032 8.22� 104 0.40577 4.71� 106
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III. ESTIMATION OF Q FOR ATHREE-DIMENSIONAL
CAVITY

Q factor for a finite height (3D) square cavity is esti-

mated using the transient analysis based FDTD e-m solver

CST MICROWAVE STUDIO.24 With respect to the 2D calculations,

two important changes are considered. The calculations are

performed with specific microwave length-scales (cm) rather

than the normalized units. The theoretical point source used

in 2D computation is replaced with the monopole source in

the microwave regime. The cavity given in Fig. 4 has 9 layers

with the finite height of 10 cm. The computational domain is

surrounded with open boundaries except at the bottom of the

cavity. The bottom is the ground plane so that the monopole

of length k=4 can be fed by the discrete current source, as

shown in Fig. 4. To verify the 2D calculations, the mode at

0.36662(2pc=a) is taken owing to their high Q value. For the

microwave-length scale of a ¼ 1cm, this normalized angular

frequency x ¼ 0:36662 2pc
a

� �

corresponds to the linear fre-

quency of 10.999 GHz and, hence, the short Gaussian pulse

with range of 10.96 GHz to 11.06 GHz is considered for the

excitation.

To find out the resonant frequency, electric field inside

the cavity is monitored using the point probe. The intrinsic Q

factor of the cavity can be found through watching the energy

decay of the pulse and it is given in Fig. 5(a). It is clear that

after the excitation of the short pulse, the energy decays very

slowly. The complete decay will take exceptional computa-

tional time and memory and because of this, the calculation

is aborted after solving a few pulse widths. The recorded

power spectrum (Fourier transformation of time-domain sig-

nals) is given in Fig. 5(b). Similar to the 2D calculations, a

higher order filter is applied to extract the resonant mode and

it is shown with red solid circles in Fig. 5(b). The resonant

mode frequency found from the probe spectrum is 11.02624

GHz. The corresponding decay rate
�

dE
dt
¼ 0:00919 dB

ns

� ��

can

be calculated from the slope of the energy curve, which is

given in the inset of Fig. 5(a). The expression for Q factor in

terms of energy decay rate is given as,

Qintrinsic ¼
x0:10

ln 10ð Þ:
dE

dt

dB

ns

� � ; (3)

where Qintrinsic (Ref. 25) is the intrinsic quality factor of the

cavity, x0 is the angular resonance frequency, and dE
dt

is the

energy decay rate expressed in dB per nano-second. Substi-

tuting their respective values in Eq. (3), one can find the

value of Qintrinsic to be 3:274� 104. The corresponding elec-

tric field (Ey component—here y is the axial direction, rather

than z in 2D calculations) pattern at fo ¼ 11:02624GHz
given in Fig. 5(c) matches with the mode profile obtained

through the 2D calculations. This estimated Q value for a 3D

cavity reveals the role of finiteness of the system along the

third dimension and shows the importance of the out-of-

plane radiation losses with respect to the 2D calculations.

IV. VERTICAL CONFINEMENT

This section reveals the task of confining the light along

the third dimension so that one can improve the Q factor fur-

ther. To demonstrate the vertical confinement of light, the

resonant mode of the square cavity at x ¼ 0:4003 2pc
a

� �

is

taken (one can refer to Fig. 3). The reason for this choice is

that it has a single mode behavior and fields are concentrated

at the center. Hence, discussing the confinement mechanism

of this mode will be useful for practical applications.

Figure 6 shows the results of vertical confinement of

light. First it is observed from 2D calculation that the mode

FIG. 3. (Color online) Ez field patterns

of the resonant modes of the square and

hexagon cavities. In all cases, the field

pattern is simulated with short Gaussian

pulse with frequency width of 0.05

(2pc=a). The center frequencies are

specified at the top of the geometries.

For the square case, the field pattern is

captured at 500 time units and for the

hexagon, the field pattern is captured at

1500 time units.

FIG. 4. (Color online) Finite height of the cavity. A monopole source is

used for the TM polarization excitation. Point probe is placed at the center

of the cavity for detecting the resonant frequency.

114519-3 N. Yogesh and V. Subramanian J. Appl. Phys. 110, 114519 (2011)



at 0.4003(2pc=a) has a Q factor value of the order of 104.

However, for a finite height of the cavity (where all bounda-

ries are opened), the energy decay scheme given with red

solid circles in Fig. 6(a) implies a Q factor value of only

approximately 1000. This can also be corroborated from the

probe signal spectrum given in the inset of Fig. 6(a), where

the signal (red solid circles) falls off rapidly as the light sim-

ply escapes out of the cavity through top and bottom chan-

nels, regardless of the in-plane confinement offered by the

surrounding multilayer.

On the other hand, if the top and bottom of the geometry

are terminated by a metal layer (a simple way to confine light

along three dimensions at microwave length scales; in optics,

SOI (silicon on insulator) substrate is usually employed),26

the out-of-plane radiation loss is reduced drastically and the

mode is confined within the center cavity space. This can be

verified from the amplitude signals given in the inset of Fig.

6(a), where one can see the number of oscillations (black

solid squares), as the amplitude does not decay significantly

over a longer time. The intrinsic Q factor calculated from the

corresponding energy decay given in Fig. 6(a) is of the order

of 104.

Figures 6(b) and 6(c) show the resonant spectra for the

open boundaries and metal layers, respectively. By compar-

ing both of them, one can realize the importance of vertical

confinement, as the Q factor for the metal layer case is

increased by a factor of 10 with respect to the open boundary

case. The corresponding Ey field pattern given at 12.1636

FIG. 5. (Color online) (a) Energy decay scheme. Inset shows the tail of the energy decay. (b) Power spectrum (Fourier transformation of the time-domain sig-

nals) recorded by the point probe. Power spectrum without filtering is given by black solid squares and the filtered spectrum is given by red solid circles. (c) Ey

component captured at 3 cm for the resonant frequency of 11.02624 GHz.

FIG. 6. (Color online) Vertical confine-

ment of light. (a) Energy decay for the

open boundaries and metal layers. Inset

shows the corresponding time-domain

amplitude signals. (b) and (c) show the

resonant spectra for the open boundaries

and metal layers, respectively. (d). Abso-

lute value of Ey component captured at

y¼ 6 cm for the resonant frequency of

12.1636 GHz.
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GHz in Fig. 6(d) shows the single mode behavior of the cav-

ity. This task of confining the light at center cavity space has

an impact in microwave spectroscopy, as the concentrated

field may be used for dielectric=magnetic materials character-

ization using cavity perturbation techniques, microwave heat

treatment of materials, non-destructive evaluation, and so on.

V. CONCLUSIONS

In summary, the polygon multilayered cavities with dif-

ferent symmetries are proposed in this work and the field

confinement aspect is studied numerically. It is verified that

the in-plane field confinement has a Q factor of the order of

103–107. However, for a finite height of the cavity, the Q fac-

tor is reduced due to the out-of-plane radiation losses and the

estimated value for the multi mode behavior is of the order

of 104. The mechanism of vertical confinement is studied for

the single-mode behavior of the square cavity. It is demon-

strated that by adding up the metal layers along the third

dimension, Q factor is improved by a factor of 10 and the

fields are concentrated at the center. Owing to the high Q

value, the proposed geometry may be employed for micro-

wave sintering (material heating) applications, spectroscopy

techniques, and so on.
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