Header menu link for other important links
X
Fatigue behaviour and crack growth rate of cryorolled Al 7075 alloy
, Chowdhury T., Singh I.V., Prosenjit Das
Published in Elsevier B.V.
2011
Volume: 528
   
Issue: 24
Pages: 7124 - 7132
Abstract
The effects of cryorolling (CR) on high cycle fatigue (HCF) and fatigue crack growth rate behaviour of Al 7075 alloy have been investigated in the present work. The Al 7075 alloy was rolled for different thickness reductions (40% and 70%) at cryogenic (liquid nitrogen) temperature and its tensile strength, fatigue life, and fatigue crack growth mechanism were studied by using tensile testing, constant amplitude stress controlled fatigue testing, and fatigue crack growth rate testing using load shedding (decreasing ΔK) technique. The microstructural characterization of the alloy was carried out by using Field emission scanning electron microscopy (FESEM). The cryorolled Al alloy after 70% thickness reduction exhibits ultrafine grain (ufg) structure as observed from its FESEM micrographs. The cryorolled Al 7075 alloys showed improved mechanical properties (Y.S, U.T.S, Impact energy and Fracture toughness are 430Mpa, 530Mpa, 21J, 24Mpam1/2 for 40CR alloy) as compared to the bulk 7075 Al alloy. It is due to suppression of dynamic recovery and accumulation of higher dislocations density in the cryorolled Al alloys. The cryorolled Al alloy investigated under HCF regime of intermediate to low plastic strain amplitudes has shown the significant enhancement in fatigue strength as compared to the coarse grained (CG) bulk alloy due to effective grain refinement. Fatigue crack growth (FCGR) resistance of the ufg Al alloy has been found be higher, especially at higher values of applied stress intensity factor ΔK The reasons behind such crack growth retardation is due to diffused crack branching mechanism, interaction between a propagating crack and the increased amount of grain boundaries (GB), and steps developed on the crack plane during crack-precipitate interaction at the GB due to ultrafine grain formation. © 2011 Elsevier B.V.
About the journal
JournalData powered by TypesetMaterials Science and Engineering A
PublisherData powered by TypesetElsevier B.V.
ISSN09215093
Open AccessNo