Header menu link for other important links
X
Fast Byzantine leader election in dynamic networks
Published in Springer Verlag
2015
Volume: 9363
   
Pages: 276 - 291
Abstract
We study the fundamental Byzantine leader election problem in dynamic networks where the topology can change from round to round and nodes can also experience heavy churn (i.e., nodes can join and leave the network continuously over time). We assume the full information model where the Byzantine nodes have complete knowledge about the entire state of the network at every round (including random choices made by all the nodes), have unbounded computational power and can deviate arbitrarily from the protocol. The churn is controlled by an adversary that has complete knowledge and control over which nodes join and leave and at what times and also may rewire the topology in every round and has unlimited computational power, but is oblivious to the random choices made by the algorithm. Our main contribution is an O(log3 n) round algorithm that achieves Byzantine leader election under the presence of up to O(n1/2-ε) Byzantine nodes (for a small constant ε > 0) and a churn of up to O(√n/ polylog(n)) nodes per round (where n is the stable network size). The algorithm elects a leader with probability at least 1 - n-Ω(1) and guarantees that it is an honest node with probability at least 1-n-Ω(1); assuming the algorithm succeeds, the leader’s identity will be known to a 1-o(1) fraction of the honest nodes. Our algorithm is fully-distributed, lightweight, and is simple to implement. It is also scalable, as it runs in polylogarithmic (in n) time and requires nodes to send and receive messages of only polylogarithmic size per round. To the best of our knowledge, our algorithm is the first scalable solution for Byzantine leader election in a dynamic network with a high rate of churn; our protocol can also be used to solve Byzantine agreement in a straightforward way. We also show how to implement an (almost-everywhere) public coin with constant bias in a dynamic network with Byzantine nodes and provide a mechanism for enabling honest nodes to store information reliably in the network, which might be of independent interest. © Springer-Verlag Berlin Heidelberg 2015.
About the journal
JournalData powered by TypesetLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
PublisherData powered by TypesetSpringer Verlag
ISSN03029743
Open AccessYes
Concepts (12)
  •  related image
    Distributed computer systems
  •  related image
    Knowledge based systems
  •  related image
    Topology
  •  related image
    BYZANTINE AGREEMENT
  •  related image
    Computational power
  •  related image
    Dynamic network
  •  related image
    Full informations
  •  related image
    LEADER ELECTION
  •  related image
    LEADER ELECTION PROBLEM
  •  related image
    POLYLOGARITHMIC
  •  related image
    SCALABLE SOLUTION
  •  related image
    Algorithms