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Abstract

Photoplethysmography imaging (PPGI) for non-contact monitoring of preterm infants in the neonatal intensive care unit

(NICU) is a promising technology, as it could reduce medical adhesive-related skin injuries and associated complications.

For practical implementations of PPGI, a region of interest has to be detected automatically in real time. As the neonates’

body proportions differ significantly from adults, existing approaches may not be used in a straightforward way, and color-

based skin detection requires RGB data, thus prohibiting the use of less-intrusive near-infrared (NIR) acquisition. In this

paper, we present a deep learning-based method for segmentation of neonatal video data. We augmented an existing encoder-

decoder semantic segmentation method with a modified version of the ResNet-50 encoder. This reduced the computational

time by a factor of 7.5, so that 30 frames per second can be processed at 960 × 576 pixels. The method was developed

and optimized on publicly available databases with segmentation data from adults. For evaluation, a comprehensive dataset

consisting of RGB and NIR video recordings from 29 neonates with various skin tones recorded in two NICUs in Germany

and India was used. From all recordings, 643 frames were manually segmented. After pre-training the model on the public

adult data, parts of the neonatal data were used for additional learning and left-out neonates are used for cross-validated

evaluation. On the RGB data, the head is segmented well (82% intersection over union, 88% accuracy), and performance

is comparable with those achieved on large, public, non-neonatal datasets. On the other hand, performance on the NIR data

was inferior. By employing data augmentation to generate additional virtual NIR data for training, results could be improved

and the head could be segmented with 62% intersection over union and 65% accuracy. The method is in theory capable of

performing segmentation in real time and thus it may provide a useful tool for future PPGI applications.
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1 Introduction

According to the World Health Organization, 15 million

babies [1] are born prematurely each year and thus lack

a fully developed biological and physiological system.

Besides the neurodevelopmental problems that are highly

associated with this type of patients, the functional imma-

turity of the various organs and their regularization mech-

anisms commonly lead to complications [2]. These can

result in irregular cardiorespiratory patterns which can lead

to clinical complications [3]. It is therefore crucial to per-

form continuous monitoring of cardiovascular signals as

changes are often observed prior to major complications.
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State-of-the-art physiological monitoring of neonates

involves skin-attached sensors, e.g., electrocardiography

(ECG) electrodes, pulse oximeters, or temperature probes

in combination with the respective wires. In addition to dis-

comfort, contact-based sensors imply the risk of injuries,

such as “medical adhesive-related skin injuries” (MARSI)

which is a serious problem for preterm infants patients with

vulnerable and fragile skin [4].

Camera-based monitoring technologies such as photo-

plethysmography imaging (PPGI) offer promising alterna-

tives, as they allow remote estimation of heart rate (HR) and

respiratory rate [5–7]. Although the precise origin of the

cardiac-associated signal of PPGI is still being researched,

the fundamental principle is the same for PPGI as it is for

contact-based photoplethysmography (PPG): the pulsatile

changes in blood pressure lead to rhythmic changes in the

optical properties of the skin, which can be detected using

single-point sensors in close contact with the skin (PPG), or,

in case of PPGI, by using a camera-based sensing setup.

Considering the benefits of PPGI, monitoring of neonates

is a particularly useful application scenario which has been

addressed by several research groups. As of today, present

results are based on relatively small datasets that range

from seven [8] to 30 [9] different subjects. The videos

were recorded either through the incubator glass [8, 10–12],

directly with open incubators [13], or through a specially

drilled hole in a closed incubator [9, 14]. Some dataset’s

recordings comprise the majority of the infant’s body,

whose skin is partially or not covered [14], while others

apply zoom to focus specific uncovered body parts [13]. On

the other hand, Sikdar et al. [15] present HR results based

on a dataset that comprises a diverse range of body positions

and angles with respect to the video camera. Maintaining

the circadian rhythm of neonates is of major concern in the

neonatal intensive care unit (NICU). Thus, when deploying

PPGI technology in such an environment, the usage of

invisible near infrared (NIR) illumination is desirable [10].

Tracking regions of interest (ROIs) remains to be a

challenge. Despite presenting important contributions to the

field regarding signal processing methods, in [8, 11–15], the

PPGI signal was extracted within a manually chosen region

that in some works is tracked along the frames resorting

to rudimentary object tracking methods. Since the selected

ROI contains merely skin, it offers only few recognizable

image features, making it extremely difficult to track along

the video frames. To address this challenge, researchers are

developing new methods for automatic and continuous ROI

selection that do not resort to human supervision.

In [3], the ROI selection is accomplished through a color-

based 2-class classifier based on Gaussian Mixture models.

It clusters each pixel from each frame into skin and non-

skin classes. In this model, the ROI consists of the largest

continuous skin region in each frame. However, having a

color-based skin classifier, where the ROI is not associated

with the anatomical structure of interest, leads to non-

robust vital parameter extraction in continuous monitoring

over extended periods of time, as the author states in his

conclusions. Blanik et al. [10] opted to divide the video

frames into squares of 30 pixels edge length and compute a

quality index (QI) for each one. All the squares possessing

a QI above a threshold of 90% of the maximum QI value

will belong to the ROI and, consequently, will be used for

HR estimation. Despite the fact that the ROI is not directly

linked to an anatomical structure, this method guarantees

that the selected area is representative of the parameter that

will be extracted. However, in periods of intense motion,

this technique still yields poor results.

Recently, methods from the realm of deep learning (DL)

have gained enormous interest in virtually every image

processing domain, including medical applications. For the

scope of this work, we will use a broad definition of DL

as structures of artificial neural networks with more than

three layers. In particular for tasks such as classification

and semantic image segmentation, DL has outperformed

existing approaches. However, these gains could mainly

be achieved if large annotated datasets are available for

training. To some extended, the problem is alleviated by

data augmentation, which creates manipulated copies of the

training data to increase robustness and generalization of

the training process. Nevertheless, annotated medical image

datasets, in particular those obtained with technologies

such as PPGI, which are not yet clinically established, are

comparatively small.

Chaichulee et al. [9, 16] managed to detect the presence

of the neonate in the incubator, identify the skin region,

and define two different ROI for vital-sign estimation

using DL. For this purpose, Chaichulee et al. proposed a

convolutional neural network (CNN) with three branches

from a shared core network. The patient detection branch

was implemented using global average pooling with two

outputs containing the prediction of the two classes. The

skin segmentation branch was implemented following the

“fully convolutional neural network” (FCNN) proposed by

Long et al. [17]. The body part detection branch locates

the neonate’s head, torso, and diaper relying on bounding

boxes using a faster “region-based convolutional network”

R-CNN network [18]. The model performs patient detection

with 98.75% accuracy, 97.56% precision, and 100% recall.

In terms of skin segmentation, a mean pixel accuracy of

98.05 % and a mean Intersection over Union (IoU) of

88.57 % is achieved. The authors reported a mean absolute

error of 2.4 beats per minute for 80% of recording time in

terms of HR estimation. However, as the authors state in the

discussion section, the model is unable to achieve real-time

performance given its “VGG-16” feature extractor [19] and

its region proposal generation network.
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Also outside of the NICU setting, human body part

segmentation is a challenge in the computer vision

community, and large datasets exist: For example, the

PASCAL human parts dataset is a subset of the general

PASCAL VOC 2010 dataset [20], which contains extra

detailed annotations of human body parts (eyes, nose, upper

arm, etc.). The FCNN model proposed by Oliveira et al. [21]

is designed to address the human body part segmentation

problem relying on a less complex decoder network

compared with previous work [22–24]. For the “PASCAL

4 parts dataset,” they report a mean accuracy of 76.58%

and a mean IoU of 63.03%. The corresponding values for

“PASCAL 14 parts” are 77%/54.18% and 88.2%/71.71%

for an augmented dataset. For the “Freiburg People in

Disaster” dataset, a mean IoU of 71.99% is reported.

Similarly to [17] (mean IoU 62.7%/62.2% for PASCAL

VOC 2011/2012), the encoder network of Oliveira et al.

corresponds to a modified VGG-16 image classification

network combined with a novel upsampling process.

In this work, we focus on the task of body part

segmentation and tracking of neonates in the NICU.

The goals of our approach are to develop a DL-based

segmentation system:

• with real-time applicability based on the works by

Oliveira et al. but with a less resource-demanding

encoding stage

• which can deal with the problem of limited training

data by exploring pre-training using publicly available

datasets

• and is capable to process NIR data.

2Materials andmethods

In the following, the dataset as well as algorithm used for

segmentation is described.

2.1 Data description

A dataset recorded in two different hospital settings was

used in this work. The first subset was recorded at

RWTH Aachen University Hospital (UKA), Department

of Neonatology, Aachen, Germany (Aachen subset), and

the study was approved by the ethics committee of the

UKA, Aachen, Germany (EK 327/16). Nine neonates were

placed in incubators or on warming beds/cribs. RGB data

was recorded using the CMOS color camera GS3-U3-

23S6C-C (FLIR, USA). NIR data was recorded using

the monochrome CMOS camera GS3-U3-23S6M-C (FLIR,

USA) equipped with a 940-nm filter (BN940, Midwest

Optical Systems, Inc., USA). Images were recorded at fs =

25 Hz and a shutter time of 19.5 ms at a resolution of 1920

× 1200, downsampled to 960 × 600 and cropped to 960 ×

576, which ensures divisibility by 32. In addition to ambient

light, a S75-WHI NIR lighting module at 940 nm (Smart

Vision Lights, USA) was used.

The second subset (Chennai subset) was recorded at

Saveetha Medical College and Hospital, Chennai, India, and

the study was approved by the institutional ethics committee

of Saveetha University (SMC/IEC/2018/03/067). Twenty

neonates were recorded either under an infant radiant

warmer or in a transport incubator [25]. The same cameras

as in the Aachen subset were used. While illumination in

the visual domain was ambient, active NIR illumination

was provided using a matching LED lamp (S75-940-W,

Smart Vision Lights, USA) and two layers of an additional

diffusion filter (LEE Filters, UK).

In both datasets, the majority of the infants were awake dur-

ing the whole measurements. Consequently, the recordings

comprise a high level of motion. Only in seven record-

ings, minimal motion was present indicating calmly sleep-

ing babies. Also, no constraints were imposed regarding

the neonates’ position/orientation and clinical staff activity

which proceeded normally with the patient care routine.

To generate segmented data for training and test,

manual segmentation was performed using the MATLAB

segmentation tool “Image Labeler” (The MathWorks, Inc.,

Natick, MA, USA). Each image was segmented into six

parts, namely “head,” “torso,” “left arm,” “right arm,” “left

leg,” and “right leg.” Only naked skin was segmented, i.e.,

occlusions due to clothing, electrodes, bandages, etc. were

excluded. The process is visualized in Fig. 1.

To identify “interesting” frames for segmentation, a

straightforward algorithm computed differences of consecu-

tive frames. As lighting conditions were relatively constant,

larger differences indicated movement. Using calculated

differences as guidance, frames were manually selected for

annotation. In total, 563 RGB and 80 NIR images were

manually annotated.

To evaluate our approach, fivefold cross-validation was

performed. Images were assigned to folds so that no images

from one recording were distributed over multiple folds, i.e.,

complete recordings are left out for evaluation. This implies

that complete subjects are left out in the evaluation process.

In the dataset, skin tone of neonates varied substantially.

While neonates from Europe tend to have relatively light

skin, South Indian neonates tend to have darker skin,

whereas North Indian skin tones usually fall somewhere

in between. Moreover, neonates could be oriented “prone,”

“supine,” or “on the side.” Thus, recordings were optimized

to generate folds that are balanced in terms of frames, origin,

and orientation for RGB and NIR frames. The resulting

distribution is provided in Table 1.
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Fig. 1 Ground-truth six-part

segmentation: head (blue), torso

(green), right arm (red), left arm

(magenta), right leg (cyan), left

leg (yellow). Note that only

naked skin is segmented. White

balance was corrected for

visualization purposes

2.2 Deep learning structure

Figure 2 shows the proposed encoder-decoder structure. The

encoder network to the left (A–F) receives an input image

and outputs a rich multidimensional feature representation.

On the right side, the decoder network (G–S) gradually

recovers shapes and detail information from the coarse

feature representation extracted from the encoder network.

The output of the decoder network is a prediction mask with

the same resolution as the input image. Finally, the softmax

layer (T) outputs a probability map for each pixel and class.

For the encoder network, a modified version of the ResNet-

50 [26] pre-trained on ImageNet dataset [27] is used. For

the decoder network, an architecture inspired by the one

proposed by Olivera et al. [21] is used. Four variants of our

network are evaluated:

• In “bilinear,” the transposed convolutional layers

(Fig. 2) are replaced by a bilinear interpolation layer,

i.e., no learning is involved.

• The “unconnected” variant does not include the

concatenation of intermediate encoder network feature

maps in the decoder network. In this decoder variant,

no structural information will be harnessed from the

encoder network, meaning that the upsampling process

will rely exclusively on learned multi-dimensional

upsampling kernels.

• In “dropout,” the batch normalization layers of the

encoder networks are replaced with dropout layers. This

approach is similar to the decoder network proposed by

Oliveira et al. [21].

• Finally, “batchnorm” constitutes the model as depicted

in Fig. 2, i.e., every convolutional layer is followed by

a batch normalization layer.

2.3 Data augmentation and transfer learning

As described above, the size of the training data used is

small compared with other datasets used in deep learning

scenarios. To overcome the associated challenges, data

augmentation and transfer learning is used.

2.3.1 Regular augmentation

To improve the generalization of the network’s parameters,

the training data was synthetically modified using standard

augmentation techniques [28]. For all random operations, a

uniform distribution was used:

• Scaling: since distance between camera and neonate

may vary, it is important for the model to be invariant

to different body scales. Thus, each training image

was randomly resized by a scale factor between 0.7

and 1.4. After scaling, the images were randomly

Table 1 Summary of the dataset frame distribution in the fivefolds. Su supine, Pr prone, Si side, Eu European, No North Indian, So South Indian

Fold RGB dataset frames NIR dataset frames

Total Per orientation Per origin Total Per orientation Per origin

Pr Su Si Eu No So Pr Su Si Eu No So

1 106 3 103 0 30 14 62 19 1 18 0 5 2 12

2 121 14 107 0 38 18 65 17 4 13 0 8 2 7

3 109 12 97 0 34 14 61 13 2 11 0 5 1 7

4 121 0 113 8 30 23 68 15 0 14 1 3 3 9

5 106 0 106 0 40 5 61 16 0 16 0 3 1 12

Sum 563 29 526 8 172 74 317 80 7 72 1 24 9 47
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Fig. 2 Proposed encoder-

decoder structure based on the

architecture proposed by Olivera

et al. [21] with a modified

version of the ResNet-50 [26] as

encoder. Rectified linear units

(ReLUs) are omitted for reasons

of brevity

Encoder Network Decoder Network 

Convolution

Transpose Convolution

Max Pooling

Batch Normalization

ResNet Residual Block

Softmax

cropped/placed on a black background depending on

their increase/decrease in size.

• Rotation: to increase the network’s robustness to

camera rotations, each training image was randomly

rotated by an angle of up to 30◦.

• Flipping: as the human body is symmetric, it is accept-

able to randomly flip the training image horizontally.

• Color variations: to increase robustness to variations in

illumination and skin color, brightness, contrast, and

saturation were slightly modified within a range of 0.9

to 1.1.

In the training process on the public datasets, only scal-

ing/cropping and rotation was used for data augmentation.

2.3.2 Pre-training/transfer learning

While the size of the annotated dataset is comparable with

those found in other medical publications, it is still far

smaller than those typically used in other deep learning

scenarios. Since this problem often occurs in medical

engineering, transfer learning might be used to overcome

the challenges associated with smaller datasets. In this work,

pre-training using similar datasets, namely the PASCAL

human parts [29] and the Freiburg sitting dataset [21],

were used. These datasets contain a great variety of body

scales and poses, allowing the generation of a flexible and

general initial model. Since the data is publicly available

and thus poses no special demands on data security, a

cloud-computing service (Google “colab” Colaboratory)

was used for the pre-training. A total of 3583 images from

the PASCAL dataset and 200 images from the Freiburg

dataset were scaled to 320 × 320 pixels and used in the

process.

2.3.3 Virtual NIR data

As argued above, imaging in the NIR domain offers less

obtrusive means of illumination. However, as the images

are monochromatic, no color-based skin segmentation is

possible. At the same time, the available datasets used for

pre-training are only available in the visual (RGB) domain.

Hence, the need for annotated virtual NIR data arose. To

obtain it, first, only the red channel of the RGB image was

used, as it is closest to the NIR images from a spectral

point of view. Next, histogram matching was performed to

generate virtual NIR images that exhibit histograms more

similar to real NIR data. For this, the MATLAB function

“imhistmatch” is used. In short, it:

• calculates the target histogram cNIR of the NIR data,

• calculates the actual histogram cR of the red channel

data, and

• minimizes
∣

∣ĉR(T (k)) − ĉNIR(k)
∣

∣.
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Fig. 3 Left: Real NIR data. Center: Red channel of RGB image. Right: Virtual NIR image. The top row shows histograms; the bottom row

excerpts of the corresponding images. Note the different scale of the colorbar in the center image

Here, ĉ are the cumulative histograms at intensity k. T (k)

is the mapping function found by the algorithm. T must

be monotonic and ĉR(T (a)) cannot overshoot ĉNIR(a) by

more than half the distance between the histogram counts

at a. The result of the process is visualized in Fig. 3.

The histogram matching was performed by matching the

histogram of the red-channel images of one subject to one

NIR frame of the same recoding. Thus, no information from

other folds of the dataset is leaked in the process. Note that

Fig. 3 also indicates underexposure of the real NIR data.

2.3.4 Implementation details

The network was implemented in Python using PyTorch.

The “Adam” optimizer [30] was used for training. The initial

learning rate was set to 0.0001, and the other parameters

were left to their default values (β1 = 0.9, β2 = 0.999, ǫ =

1e−8). In the pre-training stage, the learning rate was kept

constant, while the learning rate was reduced by a factor of

0.5 every 30 epochs when training with the clinical data.

The cross-entropy function was used as loss function.

3 Results and discussion

In the following, the proposed approach is analyzed in

terms of complexity and computational cost as well as

segmentation performance.

3.1 Complexity and computational cost

As described above, our approach is based on works by

Oliveira et al. However, instead of using the VGG16

network, ResNet-50 was used as an encoder. Hence,

complexity and thus the number of tunable parameters

as well as the number of floating-point multiply-add

operations (FMAs) is reduced significantly. The differences

are listed in Table 2. Additionally, Fig. 4 compares the peak

memory usage during inference as well as the inference time

on a NVIDIA Quadro P4000 GPU of our method to the

approach proposed by Oliveira et al.

As one can see, the proposed modifications significantly

reduce the number of free parameters as well as compu-

tational complexity. The proposed FCNN model has 18%

Table 2 Comparison of the

number of tunable parameters

and the number of floating-

point multiply-add operations

(FMAs) of the Oliveira-model

and our approach

Oliveira et al. Our model

Number of parameters Total 134 729 180 23 577 892

Encoder 134 260 544 23 508 032

Decoder 468 636 69 860

Computational complexity (GFMAs per forward pass) Total 129.17 8.44

Encoder 129.11 8.40

Decoder 0.06 0.04

3054 Med Biol Eng Comput (2020) 58:3049–3061



Fig. 4 a Maximum allocated

GPU memory b Inference time

per image with varying batch

size
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of the learnable parameters of the encoder-decoder archi-

tecture proposed by Oliveira et al. [21]. This substantial

difference in the model’s complexity mainly derives from

the employed encoder network: the proposed model and its

decoder variants rely on a modified ResNet-50, which is

significantly smaller in the number of learnable parameters

when compared with the modified VGG-16 in the Oliveira

et al. architecture. The substantial increase of FMAs in the

Oliveira et al. encoder-network with respect to the FMAs

of the regular VGG-16 (31.51 GFMAs) derives from the

padding increase (1 to 100) in the first convolutional layer

of the network.

Note that inference time is also reduced in the original

approach as the batch size is increased (Fig. 4b). However,

due to limitations in GPU memory, 6 was the maximum

batch size for inference of images with a size of 960 ×

576 pixels using the Oliveira-approach (see also Figure

3a). No significant increase in inference time was observed

for batches larger than 3 using our proposed approach. As

expected, the allocated GPU memory increases linearly with

the batch size (Fig. 4a). To conclude, the proposed method

can inference 30 images per second, making it feasible for

real-time segmentation applications.

3.2 Segmentation performance

The performance was evaluated in terms of the metrics

intersection over union (IoU) and accuracy (ACC) for the

six segmented classes. To decide on the final implemen-

tation, the four proposed architectures were first evaluated

on a combination of the PASCAL human parts dataset and

Freiburg sitting images dataset. The datasets were used both

unaltered (i.e., as RGB color data) and in a version con-

verted to grayscale. After the final implementation was

determined based on the external dataset, the performance

of the algorithm was evaluated on the neonatal dataset. For

the large external datasets, 90% of the datasets were used

for training, and the remaining data was used for eval-

uation. As the neonatal dataset was comparatively small,

5-fold cross-validation was used to assess segmentation

performance.

3.2.1 PASCAL human parts dataset and Freiburg sitting

images dataset

Table 3 lists the results. The first four rows present results

of different architectures on the original RGB dataset.

The proposed encoder-decoder architecture “batchnorm”

outperforms all the other methods in most of the body

part classes for the RGB data. Particularly noteworthy are

the significant improvements in both accuracy and IoU

for thinner classes such as the right and left arm and

right and left leg. Figure 5 shows qualitative results of the

proposed architecture. The model shows good segmentation

results on unseen testing images. However, the model has

some difficulties in segmenting infants. On average, the

“dropout” variant of our system resulted in the second best

performance. Thus, these two architectures are selected for

evaluation with grayscale data. The last two rows of Table 3

show segmentation results for the architectures when the

dataset is converted to grayscale.

A marked decrease in performance could be observed

for the grayscale data. This was expected as no information

is available which would allow segmentation based on

skin color. Interestingly, the classes “head” and “torso” are

affected comparatively little. While the “dropout” network

outperforms the “batchnorm” variant of the network

architecture on average, it shows inferior results for the

classes “head” and “torso” both in terms of IoU and ACC.

For a numeric comparison, the “batchnorm” variant was

tested against the original algorithm of Oliveira et al. on

the PASCAL human parts RGB dataset. Table 4 shows the

condensed results. As one can see, the architecture proposed

by Oliveira et al. outperforms our approach in terms of

3055Med Biol Eng Comput (2020) 58:3049–3061



Ta
b
le
3

Q
u
an

ti
ta

ti
v
e

re
su

lt
s

o
n

th
e

P
A

S
C

A
L

h
u
m

an
p
ar

ts
an

d
F

re
ib

u
rg

si
tt

in
g

v
al

id
at

io
n

d
at

as
et

Io
U

(%
)

A
cc

u
ra

cy
(%

)

N
et

w
o
rk

st
ru

ct
u
re

v
ar

ia
n
t

H
ea

d
T

o
rs

o
R

ig
h
t

ar
m

L
ef

t
ar

m
R

ig
h
t

le
g

L
ef

t
le

g
H

ea
d

T
o
rs

o
R

ig
h
t

ar
m

L
ef

t
ar

m
R

ig
h
t

le
g

L
ef

t
le

g
M

ea
n

Io
U

(%
)

M
ea

n
ac

cu
ra

cy
(%

)

R
G

B
d
at

a
B

il
in

ea
r

6
6

5
5

1
8

1
2

2
9

3
3

7
3

7
1

2
4

1
2

3
1

4
1

3
6

5
0

U
n
co

n
n
ec

te
d

4
7

5
2

1
0

1
2

3
0

3
2

5
1

7
2

1
0

1
2

3
0

3
9

3
1

4
3

D
ro

p
o
u
t

6
5

5
3

3
3

3
2

4
4

4
3

7
3

6
7

3
9

4
0

4
8

4
6

4
5

6
3

B
at

ch
n
o
rm

6
7

5
6

3
5

3
6

4
6

4
5

7
2

6
9

4
0

4
3

5
2

5
2

4
8

6
6

G
S

d
at

a
D

ro
p
o
u
t

6
1

5
0

3
1

3
0

4
3

4
4

6
7

6
3

3
7

3
6

4
6

5
0

4
3

6
0

B
at

ch
n
o
rm

6
3

5
2

1
7

1
5

2
9

3
2

7
1

6
5

1
1

1
4

3
4

3
2

3
5

4
5

F
o
r

ea
ch

m
et

h
o
d
,

Io
U

an
d

ac
cu

ra
cy

fo
r

ea
ch

cl
as

s
as

w
el

l
as

m
ea

n
Io

U
an

d
m

ea
n

ac
cu

ra
cy

ar
e

re
p
o
rt

ed

accuracy and intersection over union. While the differences

are particularly noteworthy for the finer structures of arms

and legs, they are less pronounced for head and torso.

In the light of future real-time applications and because

of the significantly reduced amount of free parameters,

the “batchnorm” variant of our algorithm was decided for

evaluation on the clinical dataset.

3.2.2 NICU data

In Fig. 6, quantitative results for the NICU dataset are

presented for RGB, NIR, and grayscale (GS) data obtained

from the histogram-matched red-channel data. Moreover,

Figs. 7 and 8 give an qualitative visualization of the

segmentation performance.

Several observations can be made. For the RGB data,

results on the clinical data are comparable with those

obtained on the PASCAL human parts dataset and Freiburg

sitting images dataset. In particular, mean IoU (51%)

and mean accuracy (62%) are in the range of the public

dataset, 48% and 66% respectively. On average, the head

is particularly well detected (IoU 82%, Acc. 88%), which

is not the case for the torso (IoU 41%, Acc. 50%).

One possible explanation is that in neonates, the head

is relatively large and thus easier to detect, while the

torso is often (partly) covered with a variety of clothing

and/or cables (see also Fig. 7). In the current approach,

the segmentation labels for left/right arms and legs were

not flipped in the data augmentation process of flipping

the input images. This may have decreased performance to

some extend and needs to be analyzed in future iterations.

For the NIR data with data augmentation, results are

inferior, with a mean IoU of 27% and a mean accuracy

of 31%. However, the head is comparatively well detected

(IoU 62%, Acc. 65%), which is again in the range of

performance for the public dataset converted to grayscale.

This is also obvious in the qualitative display in Fig. 8.

While we are optimistic that an IoU > 50% will allow the

extraction of a cardiac-related signal from the head region

using NIR data, this needs to be analyzed in future work.

As the performance degraded significantly when switch-

ing from RGB to NIR, the question arises how much of

this degradation can be attributed to the switching from

RGB (3 channel) to grayscale (1 channel) and how much

is caused by the usage of NIR data instead of RGB data.

One can speculate that differences in spectral properties

or a non-ideal histogram matching process could lead to

this degradation. Thus, an experiment was performed where

the network trained for NIR data prediction was applied

to the histogram-matched red-channel data. As the network

was trained with approximately 7-times as many histogram-

matched frames than with real NIR frames, one would

expect that the performance increases. Figure 6 shows,
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Fig. 5 Qualitative results of the proposed “batchnorm” model on the PASCAL human parts and Freiburg sitting people dataset

however, that this is not the case. In fact, performance is

slightly decreased, but within the range of variation, one

would expect with this relatively small dataset. Together

with the observations made on the grayscale versions of

the public dataset (Table 3), this indicates that the lack of

color information is the major cause of performance degra-

dation. We can further speculate that the inhomogeneous

illumination as visible in Fig. 8 contributes to the greater

variability in segmentation performance for some body parts

such as torso and left arm. Whether or not an improved

exposure will improve segmentation performance remains

to be analyzed with new, gain-adjusted measurements.

As described above, the public datasets were used to

pre-train the model. For each fold, the pre-trained model

was additionally trained with the hand-annotated data of the

other folds. In Fig. 9, the effects of this transfer learning are

visualized. Several beneficial effects can be observed. For

one, the starting performance is higher. Next, the learning

slope is higher as well; thus, convergences are achieved

faster. Most strikingly, however, the final performance is

significantly better: If we only used our own hand-annotated

dataset, a mean accuracy of 20% is achieved, while using

pre-training, this value improves to 60%. This is particularly

noteworthy as the annotations on the public dataset include

clothing, whereas our target annotations only included

exposed skin.

If data augmentation with virtual NIR data is omitted

(“NIR only” in Fig. 6), the average performance decreases.

However, the decrease is relatively small, and the results for

the head are actually better without the augmentation step.

This further shows that our model, when pre-trained with

the public dataset, only needs very few images (here only

80 NIR images in total) for finetuning.

By using the standard data augmentation described above

on our dataset, no gains in performance are achieved.

In fact, if we omit these steps, the performance actually

increased slightly. We assume that due to our standardized

setup, the data exhibits relatively little variability (in

particular distance from the camera) and does not benefit

from classical augmentation. Nevertheless, since it will

make the model more robust for future applications, the

results presented are based on training including data

augmentation. To determine the limits of the proposed

approach to generalize, evaluation on additional datasets

with a less standardized setup will be necessary in future

work.

A different observation is made in terms of the data

augmentation of the NIR data via histogram equalization.

Here, results improve dramatically: If we use the red

channel of our data without histogram equalization, the

values of IoU/accuracy drop dramatically, both for mean

(17%/18%), and for the head ROI (47%/47%).

Comparing the results achieved on the public datasets

with those achieved on neonatal images in terms of

RGB, NIR, and grayscale data, our key learnings can be

summarized as follows. For one, NIR data seems to be no

Table 4 Quantitative comparison of our method and the approach by Oliveira et al. on the PASCAL human parts RGB dataset

Individual IoU (%) Mean

Method Head Torso Arms Legs IoU (%) Accuracy (%)

Batchnorm 65 55 18 36 44 53

Oliveira et al. 83 79 74 77 78 86
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Fig. 6 Quantitative results of

the proposed CNN model

“batchnorm” on the NICU

dataset for the 5-folds. The

training and validation images

are downsampled by a factor of

two in both dimensions (i.e.,

960 × 576) using bilinear

interpolation. The bars show

minimum, mean, and maximum

value

Fig. 7 Qualitative segmentation results for the RGB data. Images were individually optimized (brightens, contrast, white balance) for visualization

purposes. Note that the caregivers’ hands are ignored by the algorithm

Fig. 8 Qualitative segmentation results for the NIR data. Images were individually optimized (brightens, contrast) for visualization purposes. Note

the relatively inhomogeneous illumination
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Fig. 9 Mean accuracy over the

number of epochs for the model

trained with neonatal data only

(regular) and when using the

public dataset (with pre-training)
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less suitable than other types of monochromatic images for

detecting and segmenting humans in images. Whether or

not this accuracy will be sufficient, and if the differences in

terms of light-tissue interaction will have an influence on the

extracted cardiac signal has to be analyzed in future work.

For another, the head can be segmented relatively well,

even in NIR/grayscale data. We suspect that this stems from

the fact that the head is relatively large in neonates, has a

distinct shape, and has distinct features. This is particularly

noteworthy as PPGI is extracted with great success from the

head in adults.

4 Conclusion and outlook

In this paper, we presented a deep learning-based method

for segmentation of neonatal video data based on an

architecture proposed by Olivera et al. [21] with a modified

version of the ResNet-50 [26] as encoder. This reduced

the computational time by a factor of 7.5, so that 30

frames per second can be processed at 960 × 576 pixels.

Thus, the method is capable of performing segmentation

in future real time for PPGI applications. While the

presented computations were performed on expensive

server-grade GPU hardware (NVIDIA Quadro P4000), we

are confident that future embedded computing systems will

be powerful for actual real-time implementation. Our work

also continues the works of Chaichuleea et al. [9, 16], whose

DL approach provided three bounding boxes at 10 frames

per second.

In terms of segmentation accuracy, our approach presents

promising results on the RGB data from 29 neonates

recorded in two NICUs in Germany and India. In particular

the head is segmented well, and performance is comparable

with those achieved on large, public, non-neonatal datasets.

While it took considerable effort to generate a hand-

annotated dataset with 643 manually segmented frames,

this amount of data seems insufficient when training the

network from scratch. Only if large public datasets with

similar content (segmented adults, PASCAL human parts

dataset [20] and Freiburg sitting images dataset) are used

for pre-training, results improve dramatically even though

data (adults vs. neonates) as well as annotations (at least

partial clothing vs. naked skin) were dissimilar. This is

an important observation for medical DL applications in

general, as the availability of data is usually limited in these

settings.

While results on the RGB data were promising,

performance on the NIR data was inferior. By employing

data augmentation in terms of histogram equalization of the

red color channel, results could be improved. Nevertheless,

only the head could be segmented with satisfactory quality.

In the future, experiments have to show whether or not

the segmentation accuracy will be sufficient for PPGI

extraction.
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