
54

Falcon: A Graph Manipulation Language for Heterogeneous Systems

UNNIKRISHNAN CHERAMANGALATH, Department of CSA, Indian Institute of Science, Bangalore 
RUPESH NASRE, Department of CSE, Indian Institute of Technology, Madras 
Y. N. SRIKANT, Department of CSA, Indian Institute of Science, Bangalore

Graph algorithms have been shown to possess enough parallelism to keep several computing resources
busy—even hundreds of cores on a GPU. Unfortunately, tuning their implementation for efficient execution
on a particular hardware configuration of heterogeneous systems consisting of multicore CPUs and GPUs is
challenging, time consuming, and error prone. To address these issues, we propose a domain-specific language
(DSL), Falcon, for implementing graph algorithms that (i) abstracts the hardware, (ii) provides constructs
to write explicitly parallel programs at a higher level, and (iii) can work with general algorithms that may
change the graph structure (morph algorithms). We illustrate the usage of our DSL to implement local
computation algorithms (that do not change the graph structure) and morph algorithms such as Delaunay
mesh refinement, survey propagation, and dynamic SSSP on GPU and multicore CPUs. Using a set of
benchmark graphs, we illustrate that the generated code performs close to the state-of-the-art hand-tuned
implementations.
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1. INTRODUCTION

Graphs model relationships across real-world entities in web graphs, social network
graphs, and road network graphs. Graph algorithms analyze and transform a graph to
discover graph properties or to apply a computation. For instance, a pagerank algorithm
computes a rank for each page in the web graph, a community detection algorithm dis-
covers likely communities in a social network, and a shortest path algorithm computes
the quickest way to reach from one place to another in a road network.

An algorithm is irregular if its data-access pattern or control-flow pattern is un-
predictable at compile time. Static analysis techniques prove inadequate to deal with
the analysis and parallelization of irregular algorithms, and we require dynamic tech-
niques [Pingali et al. 2011] to deal with such situations. Traditionally, graph algorithms
have been perceived to be difficult to analyze and parallelize because they are irregular.
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GPUs further complicate graph algorithm implementations: managing separate
memory spaces of the CPU and GPU, single instruction multiple data (SIMD) exe-
cution, exposed thread hierarchy, asynchronous CPU/GPU execution, to name a few.
Handwritten and efficient implementations not only are difficult to code and debug but
also are also error prone.

It would be helpful if a programmer could specify a graph algorithm in a hardware-
independent manner and focus solely on the algorithmic logic. Unfortunately, such
an approach—which essentially auto-parallelizes a sequential piece of code—provides
limited performance in general when compared to a manually parallelized hardware-
centric code by an expert.

Our goal in this work is to bridge this performance gap between an autogenerated
code and a manually crafted implementation. We wish to let the programmer write
the algorithm at a higher level (much higher than CUDA and OpenCL), without any
hardware-centric constructs. To achieve performance close to that of a handcrafted
code, we make two compromises: (i) we allow only graph algorithms to be specified (i.e.,
we do not provide special constructs for other type of algorithms), and (ii) we require
the code to be explicitly parallel. The first compromise trades generality for speed,
whereas the second one allows our code generator to emit hardware-specific code.

Our specific contributions are as follows:

—The design of Falcon, a domain-specific language (DSL) for general graph algorithms.
Unlike previously reported languages, Falcon supports morph algorithms—that is,
algorithms wherein the graph structure may also change, apart from the values at
the nodes and the edges.

—Falcon’s code generation scheme for multicore CPUs, single GPUs, multi-GPUs, and
heterogeneous backends. Our compiler supports worklist-based implementations of
morph and local computation algorithms on the CPU that run much faster than most
handwritten implementations.

—Falcon’s support for graph partitioning and execution of a single algorithm on the
partitioned graph on the CPU and multiple-GPUs (for vertex-centric algorithms
only).

—Performance analysis of Falcon. We generate CUDA and OpenMP code for morph al-
gorithms such as Delaunay mesh refinement (DMR), survey propagation (SP), and
dynamic single source shortest path (SSSP), as well as CUDA and OpenMP code for lo-
cal computation algorithms. Performance of these and several other benchmarks are
compared against the state-of-the-art DSL and framework-based implementations.

The rest of the article is organized as follows. Section 2 mentions the benefits of
Falcon. Section 3 compares and contrasts the related work. We present the Falcon
language with example programs in Section 4. Section 5 explains the code generation
phase of the compiler. Section 6 discusses the performance evaluation of the code
generated by the Falcon compiler, and we conclude in Section 7.

2. BENEFITS OF FALCON

Existing DSLs such as Green-Marl [Hong et al. 2012] and Elixir [Prountzos et al. 2012]
auto-parallelize sequential graph algorithm implementations. The algorithm specifica-
tion in these DSLs tends to be much smaller and simpler compared to the corresponding
specification in a general-purpose language such as C or Python. However, there are
multiple issues with the existing approaches. First, they target only a single type of
device (multicore CPUs). It is unclear if these frameworks can be modified to effec-
tively support heterogeneous systems. Second, their scope is limited to graph analytic
algorithms, wherein the graph structure is assumed to be static. Therefore, the do-
main of morph algorithms is unsupported. As has been shown earlier [Nasre et al.
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2013b], concurrent execution of morph algorithms poses new challenges, and their ef-
ficient parallel execution is quite difficult. Third, despite the simplicity of these DSLs,
a user needs to invest time in learning a new language. This last issue is addressed
by library-based approaches such as Galois [Pingali et al. 2011] and Totem [Gharaibeh
et al. 2013]. However, Totem does not support morph algorithms, whereas Galois does
not work for heterogeneous systems. New challenges while dealing with GPUs and het-
erogeneous systems in the context of auto-parallelization of structural graph updates
are not addressed in any existing framework.
Falcon supports both morph and local computation algorithms for GPUs, multi-

GPUs, and a combination of CPUs and GPUs. It extends the C language and provides
a rich set of constructs and concurrent data structures for efficient execution across
computing systems. Unlike Green-Marl and Elixir, Falcon also allows a user to write
the entry function main, allowing him full control over the program’s execution. In
Falcon, it is easy to write a worklist-based implementation of many algorithms on the
multicore-CPU that are much faster than the state-of-the-art implementations (e.g.,
the �-stepping SSSP algorithm [Meyer and Sanders 1998] implementation).

Writing code for GPU-based algorithms is very simple in Falcon. A programmer is
simply required to annotate the location of the graph object, using an optional <GPU>
tag, and the rest, including thread, device, and memory management, is handled by the
Falcon compiler. The parallel sections in Falcon can be used to specify concurrent
execution of CUDA kernels on different GPU devices. Generation of code for the CPU is
equally easy in Falcon. Further, the support for execution of vertex-centric algorithms
on partitioned graphs makes such implementations easy for very large graphs that do
not fit entirely in GPU memory.

Handwritten codes of LonestarGPU [Nasre et al. 2013b] for GPUs and Galois [Pingali
et al. 2011] for multicore CPUs, both of which support morph algorithms, are very
complex. Coding a new algorithm using these platforms requires a very good knowledge
of the device architecture, thread management, and memory management, and the
programmer is required to handle all of these on his or her own. Such a code is difficult
to debug. This makes Falcon a new choice for coding parallel graph algorithms that is
easy to use, easy to debug, and also efficient.

3. RELATED WORK

Green-Marl [Hong et al. 2012] and Elixir [Prountzos et al. 2012] are examples of graph
DSLs, and both of them target multicore CPUs. Green-Marl and Elixir can be used to
implement only local computation algorithms.

Morph algorithms can be classified as cautious if the algorithms read all of the neigh-
borhood elements before modifying any of them. The Galois framework [Pingali et al.
2011], which is a library implementation in C++, supports cautious morph algorithms
and generates code only for multicore CPUs. Cautious morph algorithms have been
implemented on the GPU by Nasre et al. [2013b]. GraphLab [Low et al. 2012] is a
framework that supports a combination of machine learning and graph algorithms.
Pregel [Malewicz et al. 2010] is a graph-processing framework in a distributed setting.
It uses bulk-synchronous parallelism (BSP) for efficient execution of graph algorithms
in a cluster of nodes. OpenMP to GPGPU [Lee et al. 2009] is a framework for auto-
matic code generation for the GPU from OpenMP CPU code. The Medusa [Zhong and He
2014] framework generates CUDA code using device APIs for graph elements and sup-
ports multi-GPU systems. Paragon [Samadi et al. 2012] uses the GPU for speculative
execution, and on misspeculation, that part of the code is executed on the CPU. An
online profiling–based method by Kaleem et al. [2014] partitions work and distributes
it across the CPU and GPU.
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Table I. Related Works Comparison

References A B C D E F
Green-Marl [Hong et al. 2012], Elixir [Prountzos et al.
2012], [Hong et al. 2014]

√
x x

√
x x

[Ragan-Kelley et al. 2013]
√

x x
√ √

x
Lonestar-GPU [Nasre et al. 2013b] x

√
x x

√ √
[Shun and Blelloch 2013; Roy et al. 2013; Zhang et al.
2015]

x
√

x
√

x x

Medusa [Zhong and He 2014; Lee et al. 2009] x
√

x x
√

x
Totem [Gharaibeh et al. 2012, 2013] x

√
x

√ √
x

Galois [Pingali et al. 2011] x
√

x
√

x
√

[Burtscher and Pingali 2011; Sariyüce et al. 2013; Nasre
et al. 2013a; Davidson et al. 2014; Khorasani et al. 2014;
Mendez-Lojo et al. 2012; Prabhu et al. 2011; Harish and
Narayanan 2007; Harish et al. 2009; Hong et al. 2011]

x x x x
√

x

[Feng et al. 2012; Menon et al. 2012] x x x x
√ √

[Tian et al. 2008, 2011] x x x
√

x
√

[Low et al. 2012; Bader and Madduri 2008; Gregor and
Lumsdaine 2005]

x x
√ √

x x

Note: A, DSL; B, Framework; C, Library; D, CPU; E, GPU; F, Speculation.

The Parallel Boost Graph Library [Gregor and Lumsdaine 2005] is a distributed
version of BGL, and SNAP [Bader and Madduri 2005, 2008] is a stand-alone paral-
lel graph analysis package. CuSha [Khorasani et al. 2014] proposes two new ways
of storing graphs on a GPU that has improved regular memory access patterns. Ef-
ficient implementations of local computation algorithms such as breadth-first search
(BFS) and SSSP were reported several years ago [Harish and Narayanan 2007; Harish
et al. 2009]. In addition, there have been successful implementations of other local
computation algorithms such as n-body simulation [Burtscher and Pingali 2011], be-
tweenness centrality [Sariyüce et al. 2013], and dataflow analysis [Mendez-Lojo et al.
2012; Prabhu et al. 2011] on the GPU. [Davidson et al. 2014] proposes different ways of
writing SSSP programs on the GPU along with their merits and demerits. It concludes
that worklist-based implementation would not benefit much on a GPU compared to a
CPU.

The iGPU [Menon et al. 2012] architecture proposes a method for breaking a GPU
function execution into many idempotent regions so that in between two continuous
regions, there is very little live state, and this fact can be used for speculative execution.
[Feng et al. 2012] implemented methods for speculative parallelization of loops on the
GPU that have irregular memory access and control flow. The CoRD [Tian et al. 2008,
2011] framework proposes methods for speculative execution on multicore CPUs. It
supports rollbacks and morph algorithms that need not be cautious. More references
related to graphs, graph DSLs, speculation, and so on, can be found in Table I. Falcon
currently supports only cautious morph algorithms.

4. OVERVIEW OF FALCON

4.1. Introduction

Falcon is a graph DSL, and it extends the C programming language. In addition to the
full generality of C (including pointers, structs, and scope rules), Falcon provides the
following types relevant to graph algorithms: Point, Edge, Graph, Set, and Collection.
It also supports constructs such as foreach and parallel sections for parallel execu-
tion, single for synchronization, and reduction operations. Many complete examples
of Falcon programs are available in [Unnikrishnan et al. 2015].
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Fig. 1. Optimized GPU SSSP code in Falcon.

4.2. Example: Shortest Path Computation

SSSP computation is a fundamental operation in graph algorithms. Given a designated
source node, an SSSP algorithm computes the shortest distance from the source node
to each node. Figure 1 shows the code for SSSP computation in Falcon for the GPU.
The algorithm first initializes the dist variable of all nodes to a large value (line 24).
The dist variable of the source node is then made zero (line 25). It then progressively
relaxes nodes to determine whether there is any shorter path to a node via some other
incoming edge (line 29). This is done by checking the condition (for each edge (u, v))
dist[v] > dist[u] + weight(u, v). If this condition is satisfied, then the distance of the
destination node v is changed to the smaller value via u (line 5) using an atomic
operation (more on this later). This procedure is repeated until we reach a fix point
(lines 27 through 32).
Falcon needs each variable that resides on the GPU to have the <GPU> tag preceding

the variable name in the declaration statement (lines 1 and 9). Being a graph DSL, the
type Graph is directly available in the language.

Line 18 adds a property dist to each Point in the CPU Graph object, hgraph. The
getType() function on line 19 (a compile-time function) returns a type that is used
to create a Graph object graph on the GPU. An object created from another type also
inherits its dynamic properties. Thus, the object graph automatically gets dist property
attached to its points. Lines 20 and 21 add two properties (uptd, olddist) to points in the
GPU Graph object graph. Lines 22 and 23 read the graph from a file into CPU memory
and copy it to the GPU memory. The compiler generates efficient code to perform this
copy operation using DMA.

GPU kernels are specified using a foreach construct. Line 24 uses the foreach
parallelizing construct to initialize a few properties of each Point in the graph variable.
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Table II. Data Types in Falcon

Data Type Description Major Fields Major Functions
Point Point in graph x, y, z del(), getNeighbors()
Edge Edge in graph src, dst, weight del()
Graph Entire graph points[], edges[],

npoints, nedges
addEdge(), addPoint(), getWeight(), read(),
addEdgePropery(), sortEdges(),
addProperty(), makePartition(),
updatePartition()

Set A static
collection

size, parent find(), union(), clear()

Collection A dynamic
collection

size add(), del(), orderByIntValue(), clear()

The foreach statement identifies that the Graph object it uses is on the GPU and the
appropriate GPU code is generated automatically. The compiler needs to (i) identify
the kernel code, (ii) identify the variables used in the computation, and (iii) pass the
appropriate parameters.

The relaxgraph() function is called repeatedly (line 29), and it keeps on reducing
the dist value of each Point (line 5). The foreach in relaxgraph() is augmented with a
condition (t.uptd) that makes sure that only those points which satisfy the condition will
execute the code inside the relaxgraph() function. In the first invocation of relaxgraph(),
only the source node will perform the computation. Since multiple threads may update
the distance of the same node (e.g., when relaxing edges (u1, v) and (u2, v)), some
synchronization is required across the threads. This is achieved by providing atomic
variants for commonly used operations. The MIN() function used by relaxgraph() is an
atomic function that reduces dist atomically (if necessary), and if it does change, the
third argument value will be set to 1 (line 5). Thus, whenever there is a reduction in
the value of dist for even one Point, the variable changed is set to 1. Line 3 makes
the uptd property of each Point whose current value is true to false. After each call
to relaxgraph(), the reset1() function makes uptd true only for points whose distance
from the source node was reduced in the last invocation of the relaxgraph() function
(line 31). The variable changed is reset to zero before relaxgraph() is called in each
iteration (line 28). Its value is checked after the call, and if it is zero, indicating a fixed
point, the control leaves the while loop (line 30). At this stage, the computation is over.
The final dist value of each Point is copied from the GPU to the CPU in line 33 (this is
also a DMA transfer). The final dist value of each Point is printed using a for loop in
line 34.

The CPU version of SSSP in Falcon does not differ much from the code in Figure 1.
The <GPU> tag does not precede any variable name, and there will be only one Graph
object. So the code up to line 18 is the same, with the exception that there is no
<GPU> tag. Lines 20 and 21 should be modified to add the properties to the CPU graph
object hgraph. There is no need to create a GPU graph object, and we should replace all
occurrences of the GPU graph object graph with the CPU graph object hgraph. Lines 19,
23, and 33 will be absent in the CPU SSSP code.

This example shows the ease of programming in Falcon. A programmer need not
worry about memory allocation and thread management on the device. Data copy
between the CPU and the GPU is performed efficiently and automatically for basic
data types.

4.3. Data Types in Falcon

Table II shows a list of special data types in Falcon along with their important fields
and functions.
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Fig. 2. Finding the minimum weight edge in MST computation.

4.3.1. Point and Edge. A Point data type can have up to three dimensions. An Edge can
be directed or undirected, and both Point and Edge can store either integer or floating
point values in their fields. The Falcon compiler decides all of these choices based on
command line arguments (input and other options) and does not allocate separate fields
for each choice. Functions for Point and Edge are self-explanatory.

4.3.2. Graph. A Graph stores its points and edges in vectors points[] and edges[]. The
method addEdgePropery() is used to add a property to each edge in a Graph object with
the same syntax as addPointProperty() used in line 18 of Figure 1. The addProperty()
method is used to add a new property to a Graph object (not to each Point or Edge). This
will become a property of the whole Graph object. Such a facility allows a programmer
to maintain additional data structures with the graph that are not necessarily direct
functions of points and edges. For instance, such a function is used in DMR [Chew
1993] code, as the graph consists of a collection of triangles, each triangle with three
Points and a few extra properties. The statement shown next illustrates the way DMR
code uses this function for a Graph object, hgraph.

hgraph.addProperty(triangle, struct node);

The structure node has all fields that are needed for the triangle property of the
Graph object. This will add to hgraph a new iterator triangle and a field ntriangle that
stores the number of triangles.

4.3.3. Set. A Set is an aggregate of unique elements (a set of threads, a set of nodes,
etc.). A Set has a maximum size and cannot grow beyond that size. Such a set is
naturally implemented as a union-find data structure, and we have also implemented
it as suggested in Stockel and Bog [2008], with our own optimizations. The parent
field of a Set stores the representative key of each element in a Set. A Set data type
can be used to implement, as an example, Boruvka’s minimum spanning tree (MST)
algorithm [Chung and Condon 1996]. The way in which Set data type is declared in
MST code is shown in Figure 3.

Line 2 declares objects of Set data type one each on the CPU and GPU. Each Set
object contains a set of all points in the host (hset) and the device (set) Graph objects
hgraph and graph, respectively. As edges get added to the MST, the two end points
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Fig. 3. Use of Set in MST computation.

of the Edge are unioned into a single Set. The algorithm terminates when the Set
has a single representative (assuming that the graph is connected) or when no edges
are added to the MST in an iteration (for a disconnected graph). We mark all edges
added to the MST by using the Edge property mark of the Graph object. This makes the
algorithm a local computation, as the structure of the Graph does not change.

Figure 2 shows how minimum weight edges are marked in the MST computation.
Function MinEdge(), which gets converted to a device function, takes three parameters:
a Point on which to operate, the underlying Graph object on the GPU, and a Set of points.
Line 10 takes each outgoing neighbor of Point p and checks whether those neighbors
and p belong to the same set using the find() function. If not (line 14), the code checks
whether the edge (p, t) has the minimum weight (line 15). If it is indeed of minimum
weight, the code tries to lock the Point using the single construct (see Section 4.5)
in line 16. If the locking is successful, this edge is added to the MST. After MinEdge()
completes, each end point of the edge that was newly added to the MST is put into the
same Set using the union operation (performed in the caller).

4.3.4. Collection. A Collection refers to a multiset. Thus, it allows duplicate elements
to be added to it and its size can vary (no maximum limit like Set). The extent of a
collection object defines its implementation. If its scope is confined to a single func-
tion, then we use an implementation based on dynamic arrays. On the other hand, if
a collection spans multiple function/kernel invocations, then we rely on the implemen-
tation provided by the Thrust library [Hoberock and Bell 2011] for the GPU and the
Galois worklist and its runtime for the multicore CPU. The use of a Galois worklist for
the multicore CPU made it possible to write many efficient worklist-based algorithms
in Falcon. Implementation of operations on Collection, such as reduction and union,
will be done in the near future.

DMR [Chew 1993] needs local Collection objects to store a cavity of bad triangles
and to store newly added triangles. A Collection can be declared in the same way as a
Set. A programmer can use add() and del() functions to operate on it, and the current
length of a Collection can be found using the size field of the data type.

4.4. Variable Declaration

Variable declarations in Falcon can occur in two forms, as shown next with Point
variables P0 and P1 (Edge declarations are similar). Given a Graph object g, we say that
g is the parent of the points and edges in g.

Point P1, (graph)P0; //parent Graph of P0 is graph

When a point or edge variable has a parent Graph object, it can be assigned values
from that parent only, and whatever modifications we make to that object will be
reflected in the parent Graph object. In the preceding example, P0 can be assigned
values that are Point objects of graph only (see also line 6 of Figure 2). But if a variable
is declared without a parent and a value is assigned to it, it will be copied to a new
location and any modification made to that object will not be reflected anywhere else
(e.g., P1 in the preceding example).
Falcon allows a programmer to specify on which GPU device the variable needs to

be allocated with the optional integer argument along with the <GPU> tag. Falcon has
a new keyword named struct_rec, which is used to declare recursive data structures.
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Table III. Single Statement in Falcon

single(t1) {stmt block1}
else {stmt block2}

The thread that gets a lock on item t1 executes stmt block1 and
other threads execute stmt block2.

single(coll) {stmt block1}
else {stmt block2}

The thread that gets a lock on all elements in the collection coll
executes stmt block1 and others execute stmt block2.

Table IV. Foreach Statement in Falcon

foreach(item (advance_expression) In object.iterator)
(condition) {block of code}

Used for Point, Edge
and Graph objects

foreach(item (advance_expression) In object) (condition) {block
of code}

Used for Collection and
Set objects

In C, a recursive data structure can be implemented using pointers and the malloc() li-
brary function. With struct_rec, a programmer can support a recursive data structure
without explicitly using pointers (like in Java).

4.5. Parallelization and Synchronization Constructs

Falcon provides reduction operations and three statements—single, foreach, and par-
allel sections—to exploit the parallelism available in the GPU.

4.5.1. Single Statement. This statement is used for synchronization across threads. It
ensures mutual exclusion for the participating threads. In graph algorithms, we use
the single statement to lock a set of graph elements, as discussed later in this section.

When compared to other synchronization constructs such as the synchronized con-
struct of Java or lock primitives in the pthreads library, the single construct differs in
two aspects: (i) it has a non-blocking entry, and (ii) only one thread executes the code
following it.
Falcon supports two variants for single, as given in Table III: with one item and with

a Collection of items. In both variants, the else block is optional (Figure 2, line 16).
The first variant tries locking one item. As it is a non-blocking entry function, if multiple
threads try to get a lock on the same object, only one will be successful, and others will
fail. In the second variant, a thread tries to get a lock on a Collection of items given
as an argument. This allows a programmer to implement cautious forms of algorithms
wherein all shared data (e.g., a set of neighboring nodes) are locked before proceeding
with the computation. A thread succeeds if all elements in the Collection object are
locked by that thread. As an example, a thread in DMR code tries to get a lock on a
cavity, which is a Collection of triangles. In both variants, the thread that succeeds in
acquiring a lock executes the code following it, and if the optional else block is present,
all threads that do not acquire the lock execute the code inside the else block.

4.5.2. Foreach Statement. This statement is one of the parallelizing constructs in
Falcon. It processes a set of elements in parallel. This statement has two variants,
as shown in Table IV. The condition and advance_expression are optional for both
variants. The use of a condition was explained in Figure 1. An advance_expression is
used to iterate from a given position instead of from the starting or ending positions.
A + advance_expression (- advance_expression, respectively) makes the iterations
go in the forward (backward, respectively) direction, starting from the position given
by the value of advance_expression. The advance_expression is optional, and its de-
fault value is taken as 0. The object used by foreach statement (see Table IV) can
also be a dereference of a pointer to an object. For examples on the use of these two
features of Falcon, the reader is referred to the CPU code of Boruvka MST and DMR in
[Unnikrishnan et al. 2015]. Iterators used in the foreach statement for different Falcon
data types are shown in Table V.
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Table V. Iterators for Foreach Statement in Falcon

Data Type Iterator Description
Graph points Iterate over all points in graph
Graph edges Iterate over all edges in graph
Graph pptyname Iterate over all elements in new ppty
Point nbrs Iterate over all neighboring points
Point innbrs Iterate over src point of incoming edges (directed Graph)
Point outnbrs Iterate over dst point of outgoing edges (directed Graph)
Edge nbrs Iterate over neighbor edges
Edge nbr1 Iterate over neighbor edges of Point P1 in Edge(P1,P2) (directed Graph)
Edge nbr2 Iterate over neighbor edges of Point P2 in Edge(P1,P2) (directed Graph)

A foreach statement gets converted to a CUDA kernel call or an OpenMP pragma
(except for Collection) based on the object on which it is called: either a GPU object or
a CPU object.

In a Graph, we can process all points and edges in parallel. An iterator called ppty-
name is generated automatically when a new property is added to a Graph object using
the addProperty() function. This is often used in morph algorithms. When a property
triangle is added to a Graph object using addProperty(), it generates an iterator tri-
angle. There is no nested parallelism in our language. A nested foreach statement is
converted to simple nested for loops in the generated code, except for the outermost
foreach that is executed in parallel. The outermost foreach statement (executed in
parallel) has an implicit global barrier after it (in the generated code).

4.5.3. Parallel Sections . The parallel sections block statement consists of one or
more sections. Each section inside parallel sections runs as a separate parallel
region. With this facility, Falcon can support multi-GPU systems, and concurrent ex-
ecution of CUDA kernels and parallel execution of CPU and GPU code is possible.
Falcon DSL code used to compute BFS and SSSP distance values for one input graph
using parallel sections and multiple GPU Graph objects can be found in Section 5.5.

4.5.4. Reduction Operations. Reduction operations such as ReduxSum, which sums a set
of items, and ReduxMul, which multiplies a set of items, are provided by Falcon. We
leave the support for arbitrary associative functions as reduction operations as future
work.

4.6. Library Functions

We provide atomic library functions MIN, MAX, SUB, AND, and so on, which are
abstraction over the similar one in CUDA [Nickolls et al. 2008] and GCC [Stallman
et al. 2011]. The MIN atomic function was used in Figure 1. We also provide a barrier()
function that acts as a barrier for the entire group of threads in a CUDA kernel and
OpenMP parallel region. A genericbarrier() that supports barriers for a group of related
threads is also available.

4.7. Graph Partitioning

Falcon provides support for graph partitioning and execution of vertex-centric algo-
rithms on the CPU and multiple GPUs. This involves partitioning the input Graph into
two or more subgraphs and allocation of each subgraph on a GPU or a CPU. This is
needed for input graphs that do not fit in the global memory of a single GPU. An algo-
rithm may benefit by executing on both highly multithreaded GPUs and the CPU with
the help of a graph partitioning algorithm using the BSP model of execution [Valiant
1990].
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Fig. 4. Falcon code generation overview for parallelization and synchronization constructs.

5. CODE GENERATION

We now explain how the Falcon compiler generates code (code fragments are shown
with macro statements to make the code readable, but these macros are not a part
of the compiler-generated code). Falcon extends the C language grammar to support
additional constructs. The compiler generates CUDA/C++ code. Currently, it supports
two types of graph representation: (i) Compressed Sparse Row (CSR) format, and
(ii) Coordinate List (COO) or Edge List format. Graphs are stored as C++ classes in
Falcon-generated code. The GGraph and HGraph classes are used to store a graph on
the GPU and CPU, respectively, and both inherit from a parent Graph class. The Graph
class has an extra field (of type void *) that stores all properties added to a Graph object
using addPointProperty(), addEdgeProperty(), and addProperty(). The Point and Edge
data types can have either integer (default) or floating point values and are stored in
a union type with fields ipe and fpe, respectively. The generated code is compiled with
nvcc and g++. Figure 4 gives an overview of how parallelization and synchronization
is done for the CPU and GPU. The Falcon compiler names for all data types and
functions specific to the CPU and GPU start with H(Host) and G(Gpu), respectively, in
the generated code.

5.1. Type Checking

Falcon is strongly typed. The compiler checks for undeclared variables, type mismatch
involved in an assignment, invalid iterator usage, invalid field access, invalid property,
and usage of the supported data types (e.g., Collection).

5.2. Properties

Point and Edge are converted to integer IDs. All extra properties of a Graph object
are stored in the extra field and can be typecasted to any structure. By default, extra
properties are stored in a structure with the name struct_objectname and are assigned
to the extra field of a Graph object. If a Graph object is created by the getType() function,
its extra properties are assigned to a structure with the name struct_parentobjectname,
which will have fields for extra properties of the parent object and all objects created by
the getType() compile-time function. In the SSSP example (Figure 1), Graphs on the
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Fig. 5. Allocating extra property for the Graph object on the GPU.

GPU and CPU are both allocated in a structure with the same name as the GPU Graph
object is being created with a call of getType(). Figure 5 shows how extra properties of
the Graph object on the GPU in the SSSP computation are allocated. For the CPU Graph
object (hgraph), only the dist field is allocated using malloc(), as olddist and uptd fields
are associated only with the GPU Graph object (graph). Such simple optimizations are
performed during the storage allocation phase of the Falcon compiler.

5.3. Set and Collection

The Falcon compiler has two C++ classes, HSet and GSet, which implement the CPU
and GPU Set data types, respectively. Each of these classes has the same functions
named, union to union two sets and find to find the representative key for an element.
By default, the key for a subset will be an integer number, which denotes the maximum
value of an element in that subset.

Collections that are confined to a kernel are implemented using dynamic arrays.
A Collection that spans across multiple functions is implemented using the Thrust
library (for the GPU) and the Galois worklist along with its runtime code (for the CPU).
This made possible the worklist-based implementation of Boruvka MST and SSSP
algorithms in Falcon DSL very easy. Details of a �-stepping–based implementation
of the SSSP algorithm in Falcon and the code generated by the Falcon compiler using
the Galois worklist can be found [Unnikrishnan et al. 2015]. A Collection-based BFS
implementation on the GPU (written in Falcon) can be found in [Unnikrishnan et al.
2015].

5.4. Foreach Statement

Code generation for a foreach statement depends on the object on which it is called
and where (GPU/CPU) the object is allocated. Nested parallelism using foreach is
not supported. We convert inner foreach statements of nested foreach statements to
simple for loop statements during code generation.

The outermost loop is retained as a foreach statement and is converted to a CUDA
kernel call/OpenMP pragma (except for Collection on the CPU) in the generated code.
Figure 6 shows the code generated for the relaxgraph() function and its foreach call
from Figure 1, with the target being the GPU. Since the foreach statement inside
relaxgraph() is nested inside the foreach statement from main(), the foreach inside
relaxgraph() is converted to a simple for loop. The variable threads per block (TPB)
corresponds to (MaxThreadsPerBlock - MaxThreadsPerBlock % CoresPerSM) for the
GPU device on which the CUDA kernel is being called. We also make sure that a kernel
executes by splitting a kernel call into multiple calls, if the number of threads or blocks
for the kernel call is above the allowed value for device. Each Edge in Falcon stores
two values in the edges array: the destination Point and weight of the Edge. When a
program uses innbrs iterator and outnbrs iterators, the inedges arrays of the Graph
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Fig. 6. Code generated for the GPU SSSP relaxgraph() and
its call.

Fig. 7. Code generated for the CPU SSSP relax-
graph().

class stores two fields: source Point of the incoming Edge and an index in to the edges
array that can be used to find out the weight of the incoming Edge, which is stored in
edges arrays.

Figure 7 shows the code generated for the relaxgraph() function and its foreach
statement when SSSP is written for a multicore CPU. The variable TOT_CPU stores
the number of CPU cores available. The MIN function is converted to GMIN for the
GPU and HMIN for the CPU. This convention is used throughout Falcon, as can be
seen with Graph type converted to HGraph or GGraph based on where it is allocated.
Falcon stores the beginning index of neighbors of a Point in the index field of the

Graph class, and the outdegree of the point is found by taking the difference of the index
value of the nextpoint and this point (see Figure 7, line 6). The foreach statement in
relaxgraph() processes all neighbors of a Point serially, using a simple for loop. Similar
code is generated for other iterators of Point and Edge data type.

We have experimented with warp-based code generation as well. However, we find
that performance improvement is not always positive across benchmarks. Details of
warp-based code generation are provided in [Unnikrishnan et al. 2015].

5.5. Parallel Sections, Multiple GPUs, and Multiple Graphs

Falcon supports concurrent kernel execution using parallel sections. Falcon also
supports multiple GPUs and Graphs. When multiple GPUs are available and multiple
GPU Graph objects exist in the input program, each Graph object will be assigned a
GPU number in a round robin fashion by the Falcon compiler. A GPU is assigned more
than one Graph object if the number of GPU Graph objects exceeds the total number of
GPUs available. Falcon assumes that a Graph object fits completely within a single GPU
and proceeds with code generation. If there is more than one GPU Graph object, object
allocation and kernel calls will be preceded by a call to the cudaSetDevice() function,
with the GPU number assigned to the object as its argument. It is possible to execute
either the same algorithm or different algorithms on the Graph objects in various GPUs.
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Fig. 8. Multi-GPU BFS and SSSP in Falcon.

Fig. 9. Code generated for line 34 in Figure 1.

For parallel kernel execution on different GPUs, each foreach statement should be
placed inside a different section of the parallel sections statement. The parallel
sections statement gets converted to a OpenMP parallel region pragma, which makes
it possible for the code segments in different sections inside the parallel sections to
run in parallel. The method that we use for assigning Graphs to different GPUs is not
optimal, and the search for a better one is part of future work. The code fragment in
Figure 8 shows how SSSP and BFS are computed at the same time on different GPUs
using a parallel sections statement of Falcon. An important point to be noted here
relates to how the changed variable is used in the code. If we declare changed as shown
in line 1 of Figure 8, it will be allocated in GPU device 0. Thus, to ensure that changed
appears in each device, it is added as a Graph property in line 5.

5.6. Inter-device Communication

Copying data between the CPU and GPU is translated to cudaMemcpy, which has dif-
ferent forms for the various assignment statements in Falcon. When an entire property
of Graph, say Point or Edge, is copied from the GPU or to the GPU, a cudaMemcpy oper-
ation is called to transfer a block of data. Falcon allows direct usage of GPU variables
of basic types, such as int and bool, inside the CPU code. These statements will be
converted to cudaMemcpyFromSymbol (see Figure 1, line 30) and cudaMemcpyToSym-
bol (see Figure 1, line 28) for data transfer from the GPU and to the GPU, respectively,
using compiler-generated temporary variables.

In the SSSP() example, the dist property of all points is copied by an assignment
statement:

hgraph.dist = graph.dist; // (see Figure 1, line 33)
The generated CUDA code for this statement is shown in Figure 9. The preceding

statement needs two cudaMemcpy operations, as graph.extra is a GPU location, and we
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Fig. 10. Usage of single statement in DMR (pseu-
docode).

Fig. 11. Generated CUDA code.

cannot access graph.extra.dist in cudaMemcpy, as this implies dereferencing a device
location (something that cannot be done from the host). A programmer can use the GPU
Graph object directly in the printf statement, and the Falcon compiler generates code
to copy the dist value of all points to a temporary pointer variable and use that in printf
statement.

Recent advances in GPU computing allow access to a unified memory across the CPU
and GPU (e.g., in CUDA 6.0 and shared virtual memory in OpenCL 2.0 and AMD’s
HSA architecture). Such a facility clearly improves programmability and considerably
eases code generation. However, concluding about the performance effects of a unified
memory would require detailed experimentation. For instance, CUDA’s unified memory
uses pinning pages on the host. For large graph sizes, pinning of several pages would
interfere with the host’s virtual memory processing, leading to reduced performance.
We defer the use of unified memory in Falcon as future work.

5.7. Synchronization Statement

The single statement is used for synchronization in Falcon. The second variant of
the single statement is needed in functions that make structural modifications to
graphs (morph algorithms), and it requires a barrier for the entire function to be
inserted automatically during code generation. The total number of threads inside a
CUDA kernel with a grid barrier cannot exceed a value specific to the GPU device, so
these functions run in such a way that one thread processes more than one element.
Cautious functions need single to be called on a Collection before any modification to
the elements of Collection, and no new elements can be added to the same Collection
after the single statement. The compiler performs this check, and if this condition is
violated, the user is warned about possible incorrect results.

There is no support for a grid barrier in CUDA, and we have implemented it as given
in Xiao and Feng [2010]. The CPU code uses a barrier provided by OpenMP. The way
in which a single statement is used in DMR is shown in Figure 10. Here, pred is a
Collection object that stores the set of all triangles in the cavity. If a lock is obtained
on all triangles, then the cavity is updated; else the corresponding thread is aborted.

Pseudocode in lines 5 through 9 in Figure 10 get converted to the CUDA code shown
in Figure 11. Both GPU and CPU versions follow the preceding code pattern, with
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appropriate GPU and CPU functions. We lock the triangles based on the thread ID,
and if two or more cavities overlap, only the thread with the lowest thread ID will
succeed in locking the cavity and others abort. The global barrier makes sure that the
operations of all threads are complete up to the barrier before any thread can proceed.
This generated code is similar to that used in LonestarGPU.

The first variant of the single statement in Table III that locks a single object does
not need a barrier. It uses the compare_and_swap variant of CUDA [Nickolls et al.
2008] and GCC [Stallman et al. 2011] for the GPU and CPU, respectively. This type
of single statement is normally used in local computation algorithms such as MST
computation. For single to work properly, the property value must be reset to zero
before entering the function in which single is executed.

5.8. Reduction Function

Reduction operation has been implemented on GPU objects. Translation of reduction
functions to CUDA functions is straightforward [Harris 2007].

5.9. Modifying Graph Structure

Deletion of a graph element is by marking. Each point and edge has a Boolean flag that
marks its deletion status. We provide an interface that enables a programmer to check
if an object has been deleted by another thread.

For adding a Point or an Edge, we rely on atomics. For a Graph object with the
name of, say, graph, we add global variables falcgraphpoint, falcgraphedge, which will
be initialized to the number of points and edges in graph, respectively. When a pro-
grammer writes graph.addPoint in the Falcon program, that code will be replaced by
a call to an automatically generated function falcaddgraphpointfun(). This function
atomically increments falcgraphpoint by one. Analogous functions exist for Edge and
properties added using the addProperty function. Currently, none of properties (at-
tributes) associated with graph elements can be autodeleted (including the one added
using addProperty); their deletion must be explicitly coded by the programmer. DMR
deletes triangles by storing a Boolean flag in the property triangle and making that
flag value true for deleted triangles.

Automatic management of size is also needed for morph algorithms. For example, in
DMR, the Graph size increases and the preallocated memory may not be sufficient. A
call to the compiler-generated realloc() function is inserted automatically after the code
that modifies the Graph size. This realloc() function considers current size, the change
in size, and the available extra memory allocated and performs Graph reallocation, if
necessary.

In general, graph algorithms exhibit both memory and control-flow irregularity. Al-
though Falcon does not try to remove any of them completely, it takes the following
measures to achieve better coalescing and locality: (i) CSR representation enables ac-
cessing the nodes array in a coalesced fashion, and it also helps achieve better locality
as edges of a node are stored contiguously; (ii) shared memory accesses for warp-based
execution and reductions help to improve memory latency; and (iii) optimized algo-
rithms. Note that a high-level DSL allows us to tune an algorithm easily, such as the
SSSP optimization discussed in Section 4.

5.10. Heterogeneous Execution in Falcon Using Graph Partitioning

When a Graph object does not fit into the GPU memory, the programmer can make
use of the graph partitioning functions available in Falcon. Falcon currently supports
partitioned execution with one CPU and multiple GPUs. Only Totem [Gharaibeh et al.
2012, 2013] supports partitioned execution. The partitioning algorithm, communication
mechanism, and subgraph storage structures used in Falcon have been derived from
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Fig. 12. Partitioned SSSP algorithm (unoptimized).

Totem. But unlike Totem, Falconhides all internal details from the programmer. Falcon
supports random partitioning, partitioning based on the degree of the nodes, and a
new partitioning algorithm called ordered partitioning. In this algorithm, if X and
Y are the percentages (X + Y = 100) of a graph to be allocated on two partitions,
the first X% points and their edges are allocated on subgraph1, and the remaining
graph on subgraph2 (similarly for partitioning with three or more subgraphs). We
have tested partitioned execution only for vertex-centric algorithms (as in Totem). A
non–vertex-centric algorithm requires edge-based processing, and this may result in
more communication, as the number of edges in a graph is usually much higher than
the number of nodes. This will be explored in future work.

As in Totem, a node and all of its edges are also stored in the same subgraph. If
the destination node of an edge is in the other partition, it becomes a remote node. In
the case of computation with the GPU and CPU, new values of the remote nodes of
a subgraph are sent to the other subgraph after the computation step, with the help
of a communication buffer created in the CPU and the GPU. We support multi-GPU
execution by enabling peeraccess between GPUs. The values are updated after each
computation step for each subgraph in parallel without requiring any data transfer
between GPUs. We have also implemented a basic version of partitioned execution using
Unified Virtual Addressing (UVA), which is possible for Nvidia GPUs with compute of
2.0 or greater. But computation with peeraccess is faster than with UVA.

A programmer is required to use the parallel foreach construct with the initial
Graph object, and the Falcon compiler automatically generates CUDA and the OpenMP
version codes for the GPU and the CPU, respectively. The compiler also determines
the properties of a node (Point) that are updated in a parallel region. The programmer
must specify a function for updating the values of properties of Points in the Graph
object. On receiving the new values of properties of Points from another subgraph, the
values are updated using this function (e.g., the minimum of the current value and the
incoming value is taken in SSSP and BFS).
Falcon code in Figure 12 shows how SSSP computation can be performed on an

input using both the GPU and CPU. The makePartition function in line 14 of Figure 12
partitions the graph into two parts, one each on the CPU (argument 1) and GPU
(argument 2) using the partition algorithm based on the degree of nodes in a graph
(argument 3).

After a computation step, the current values of remote nodes are communicated to
the partition in which the remote node is actually present. The updating function,
updatePartition() (line 22) applies the function fun1 (defined in line 1 and specified
as shown in line 15) to update the value. The update function does not need atomic
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Table VI. Inputs Used for Local Computation Algorithms

Input
Graph
Type

Total
Points

Total
Edges

BFS
Distance

Maximum
Neighbors

Minimum
Neighbors

rand1 Random 16M 64M 20 17 1
rand2 Random 32M 128M 18 17 1
rmat1 Scale Free 10M 100M INF 1,873 0
rmat2 Scale Free 20M 200M INF 2,525 0
road1(usa-ctr) Road Network 14M 34M 3,826 9 1
road2(usa-full) Road Network 23M 58M 6,261 9 1

operations, as each thread is accessing a different location. The Falcon compiler op-
timizes data transfers between partitions by sending the values of only the required
properties to remote partitions (e.g., property values of Point incom, which are read in
fun1, in Figure 12).

For partitions in the GPU and CPU, two cudaMemcpy operations are needed, one
for each partition. The values are updated using a CUDA kernel call for the GPU
and an OpenMP parallel loop for the CPU. Space allocation for various buffers and
the generation of code for communication are handled automatically by the Falcon
compiler. The property changed gets duplicated for each partition (also handled by the
Falcon compiler). The Graph class contains pointers to the HGraph (GGraph) class, and
these are used to allocate subgraphs on the CPU (GPU). The parallel call to relaxgraph
gets converted to a CUDA kernel call and an OpenMP pragma for the GPU and CPU,
respectively. The if statement checks whether the value in the variable changed is
unchanged (in both partitions). If a programmer wants to execute only on multiple
GPUs or multiple GPUs and CPU, the first two arguments are required to be modified.
A programmer can also specify the percentage of a Graph object to be allocated on the
CPU and GPUs using command line arguments.

The preceding example shows the ease of programming in Falcon using partitioned
graphs. Falcon currently supports only vertex-centric algorithms and has been tested
using a combination of multiple GPUs and a single CPU.

6. EXPERIMENTAL EVALUATION

To execute the CUDA codes, we have used an Nvidia multi-GPU system with four
GPUs (one Kepler K20c GPU with 2,496 cores running at 706MHz and 6GB memory,
two Tesla C2075 GPUs each with 448 cores running at 1.15GHz and 6GB memory, and
one Tesla C2050 GPU with 448 cores running at 1.15GHz and 4GB memory). Multicore
codes were run on an Intel Xeon E5645 CPU, with two hex-core processors (total 12
cores) running at 2.4GHz with 24GB memory. All GPU codes were by default run on
a Kepler K20c (device 0). The CPU results are shown as speedup of 12-threaded codes
against single-threaded Galois code. We used an Ubuntu 14.04 server with g++-4.8 and
CUDA-7.0 for compilation.

We compared the performance of the Falcon-generated CUDA code against
LonestarGPU-2.0 and Totem [Gharaibeh et al. 2012, 2013], and the multicore code
against that of Galois-2.2.1 [Pingali et al. 2011], Totem, and Green-Marl [Hong et al.
2012]. LonestarGPU does not run on a multicore CPU, and Galois has no implemen-
tation on a GPU. Only Totem supports implementation of an algorithm on multiple
GPUs using graph partitioning, and Falcon ’s comparison with Totem on this aspect is
described in Section 6.3.

Results are shown for three cautious morph algorithms (SP, DMR, and dynamic
SSSP) and three local computation algorithms (SSSP, BFS, and MST). Falcon achieves
close to 2× and 5× reduction in number of lines of code (see Table VII) for morph al-
gorithms and local computation algorithms, respectively, compared to the handwritten
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Table VII. Lines of Codes for Algorithm in Different Frameworks/DSLs

Algorithm
Falcon
CPU Green-Marl Galois

Totem
CPU

Falcon
GPU

Lonestar
GPU

Totem
GPU

BFS 26 24 310 400 28 140 200
SSSP 35 24 310 60 38 170 330
MST 113 NA 590 NA 103 420 NA
DMR 302 NA 1,011 NA 308 860 NA
SP 198 NA 401 NA 185 420 NA
Dynamic SSSP 51 NA NA NA 56 165 NA

Fig. 13. Speedup of SSSP, BFS, and MST on the GPU.

code. We have measured the running time from the beginning of the computation phase
until its end. This includes the cost of communication between the CPU and the GPU
during this period. We have not included the running time for reading and copying the
Graph object to the GPU and for copying results from the GPU. Absolute running times
for all algorithms can be found in [Unnikrishnan et al. 2015].

6.1. Local Computation Algorithms

Figure 13 shows the results for BFS, SSSP, and MST on the GPU, and Figure 14
shows the results for BFS and SSSP on the CPU. MST speedup on the CPU is shown
in Figure 15. We experimented with several graph types (e.g., the Erdös-Rényi model
random graphs [Erdös and Rényi 1960], road networks, and scale-free graphs) and have
shown results for two representative graphs from each category, with several million
edges. Details can be seen in Table VI. Road network graphs are real road networks
of the United States [DIMACS 2009] and have less variance in degree distribution
but large diameter. Scale-free graphs have been generated using the GTGraph [Bader
and Madduri 2006] tool and have a large variance in degree distribution but exhibit
small-world property. Random graphs have been generated using the graph generation
tool available in Galois.

Single source shortest path. Results for SSSP on the GPU have been plotted as
speedup over the best time reported by LonestarGPU variants (worklist-based SSSP
and Bellman-Ford–style SSSP). We find that Falcon SSSP (Figure 1) is faster than
LonestarGPU. This is due to the optimization used in the Falcon program using the
uptd field, which eliminates many unwanted computations. For rmat2 input, worklist-
based SSSP of LonestarGPU went out of memory, and speedup shown is over the slower
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Fig. 14. Speedup of SSSP and BFS on the CPU.

Fig. 15. Speedup of MST on the CPU over the Galois
single.

Fig. 16. Speedup of Falcon on a multi-GPU.

Bellman-Ford–style SSSP of LonestarGPU. The speedup for SSSP on the GPU is shown
for Totem and Falcon with respect to LonestarGPU in Figure 13(a).

The results for SSSP on the CPU are plotted as speedup over Galois single-
threaded code (Figure 14(a)). Falcon and Galois use a Collection- based �-stepping
implementation. Totem and Green-Marl do not have a �-stepping implementation.
Hence, Totem and Green-Marl are always slower than Galois and Falcon for road
network inputs. Green-Marl failed to run on rmat input giving a runtime error on
std::vector::reverse(). It is important to note that the Bellman-Ford variant of the
SSSP code (Figure 1) on the CPU with 12 threads is about 8× slower than that of
the same on the GPU. It is the worklist-based �-stepping algorithm that made CPU
code fast. BFS and MST also benefit considerably from worklist-based execution on the
CPU.
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Breadth-first search. Results for BFS on GPU are compared as speedup over the
best running times reported by LonestarGPU. We took the best running times re-
ported by worklist based BFS and Bellman-Ford variant BFS implementations. The
worklist based BFS performed faster only for road network input. Falcon also has a
worklist based BFS on GPU which is slower by about 2× compared to that of Lones-
tarGPU. Totem framework is too slow on road network due to lack of worklist based
implementation. Green-Marl failed to run on rmat input giving a runtime error on
std::vector::reverse().
Falcon BFS code on CPU always outperformed Galois BFS, due to our optimiza-

tions (Figure 14(b)). Totem and Green-Marl are again slower on road inputs. Totem
performed better than Falcon BFS on GPU for scale free graphs. Totem runs algorithms
using graph partitioning which benefits graphs that follow the power law distribution,
and rmat graphs do follow the power law [Gharaibeh et al. 2012]. The speedup for BFS
on GPU is shown for Totem and Falcon with respect to LonestarGPU in Figure 13(b).

Minimum spanning tree. LonestarGPU has a Union-Find–based MST implementa-
tion. Falcon GPU code for MST always outperformed that of LonestarGPU for all inputs,
with the help of better implementation of Union-Find that Falcon has for the GPU. But
our CPU code showed a slowdown compared to Galois (about 2× slowdown). Galois
has a better Union-Find implementation based on object location as key. The speedup
for MST on the GPU is shown in Figure 13(c) and the same for the CPU is shown in
Figure 15.

Multi-GPU. Figure 16 shows the speedup of Falcon when algorithms BFS, SSSP, and
MST are executed on three different GPUs in parallel for the same input when com-
pared to their separate executions on the same GPU. One should not be confused with
speedup values in Figure 16 and values in Figure 13, because for road networks, SSSP
running time was very high compared to the MST running time, and for other inputs
(random, rmat), MST running time was higher. It is also possible to run algorithms on
the CPU and GPU in parallel using the parallel sections statement. A programmer
can decide where to run a program by allocating a Graph object on the GPU or CPU,
which can be specified in a declaration statement with or without using the <GPU>
tag. He or she can then place appropriate foreach statements in each section of the
parallel sections statement of Falcon. For example, SSSP on road network inputs
can be run on the CPU (because it is slow on the GPU), and for random and rmat graph
inputs on the GPU. The effort required to modify codes for the CPU or GPU is minimal
with Falcon.

We have Falcon implementations of many other graph algorithms, such as page
ranking and betweenness centrality, and these can be found in [Unnikrishnan et al.
2015]. We found it easy to implement such algorithms in Falcon without worrying
about the details of the underlying architecture.

6.2. Morph Algorithms

We have specified three morph algorithms using Falcon: DMR, SP, and dynamic SSSP.
All of these algorithms have been implemented as cautious algorithms, and we have
compared the results with implementations using LonestarGPU and Galois (other
frameworks do not support mutation of graphs). Other morph algorithms can easily be
specified in Falcon.

Delaunay mesh refinement. DMR implementation in LonestarGPU relies on a global
barrier, which can be implemented either by returning to the CPU and launch-
ing another kernel or by emulating a grid barrier in software [Xiao and Feng
2010]. LonestarGPU uses the latter approach, as it allows saving the state of the

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 4, Article 54, Publication date: December 2015.



54:22 Unnikrishnan C et al.

Table VIII. Performance Comparison for SP (Running Time in Seconds)

Input (K, N, M) Galois (12 Threads) Falcon (12 Threads) Lonestar GPU Falcon GPU
(3,1x106, 4.2x106) 67 46 26 23
(3,2x106, 8.4x106) 147 76 55 47
(3,3x106, 12.6x106) 232 114 86 69
(3,4x106, 16.8x106) 322 147 117 93
(4,4x106, 9.9x106) 1867 149 118 95
(5,1x106, 21.1x106) Killed 356 414 314
(6,1x106, 43.4x106) Killed 1,322 1,180 928

computation in local and shared memory across barriers inside the kernel (which is
infeasible in the first approach where the kernel is terminated), and this approach is
used in Falcon DSL code as well. Unfortunately, grid-level barriers pose a limit on the
number of threads with which a kernel can be launched, as all thread blocks need to be
resident and all threads must participate in the barrier; otherwise, the kernel execution
hangs. Therefore, both LonestarGPU and Falcon-generated code restrict the number of
launched threads, thereby limiting parallelism. However, it avoids costly global mem-
ory access. This is also observable in other morph algorithm implementations needing
a grid barrier. Figure 17(a) and (b) show the performance comparison of DMR code
for the GPU and CPU on input meshes containing a large number of triangles in the
range of 0.5 to 10 million. Close to 50% of the triangles in each mesh are initially bad
(i.e., they need to be processed for refinement). Galois goes out of memory for 10 mil-
lion triangles or more and terminates. Falcon code is about 10% slower compared to
LonestarGPU code, and both used the same algorithm. This can be due to the ineffi-
ciency arising from conversion of DSL code to CUDA code. Speedup shown is for mesh
refinement code (including communication involved during that time) after reading
mesh.

Survey propagation. The SP algorithm [Braunstein et al. 2005] deletes a node when
its associated probability becomes close to zero, and this makes SP a morph algorithm.
In this implementation, we implemented the global barrier on a GPU by returning to
the CPU, as no local state information needs to be carried across kernels (the carried
state of variables is stored in global memory). A similar approach is used in Lonestar
GPU as well.

The first four rows of Table VIII show how SP works for a clause(M)-to-literal(N)
ratio of 4.2 and 3 literals-per-clause(K) for different input sizes and the last three rows
are for different values for the clause(M)-to-literal(N) ratio. We observe that Falcon-
generated code always performs better than both multicore Galois with 12 threads
and LonestarGPU. Note that performance has been compared to LonestarGPU-1.0
and Galois-2.1 codes. New versions of both of these frameworks use a new algorithm,
which is yet to be coded in Falcon. Multicore Galois goes out of memory for higher
values of (K, N, M), whereas LonestarGPU and Falcon versions complete successfully.
LonestarGPU allocates each property of clause and literal in separate arrays, whereas
in Falcon each property of clause and literal is put in structures, one each for clause and
literal. Galois has a worklist-based implementation of the algorithm. In addition, both
Galois and LonestarGPU work by adding edges from clauses (Point in Graph) to each
literal (Point in Graph) in the clause. But Falcon takes a clause as an extra property of
the Graph (like triangle was used in DMR), and that property stores literals (Points)
of the clause in it. Thus, our Graph does not have any explicit edges, and literals of
a clause (which correspond to edges) can be accessed very efficiently from the clause
property of the Graph. We find that Falcon code runs faster than that of both Galois
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Fig. 17. Morph algorithm results: DMR and Dynamic SSSP.

and LonestarGPU. Writing an algorithm that maintains a clause as a property of a
Graph in LonestarGPU and Galois is not an easy task.

Dynamic single source shortest path. In a dynamic SSSP algorithm, edges can
be added or deleted dynamically. A dynamic algorithm where only edges get added
(deleted) is called an incremental (decremental) algorithm, whereas algorithms where
both insertion and deletion of edges happen are called fully dynamic algorithms
[Frigioni et al. 1998]. We have implemented an incremental dynamic algorithm on the
GPU and CPU using Falcon. We have used a variant of the algorithm by Ramalingam
and Reps [1996]. Insertions are carried out in chunks, then SSSP is (incrementally)
recomputed. We found it difficult to add dynamic SSSP to the Galois system, because
no Graph structure that allows efficient addition of big chunk of edges to an existing
Graph object was found. LonestarGPU code has been modified to implement dynamic
SSSP, and we compare it to our CPU and GPU versions. Falcon looks at functions used
in programs that modify a Graph structure (addPoint(), addEdge(), etc.) and converts
a Graph read() function in Falcon to the appropriate read() function of the HGraph
class. For dynamic SSSP, the read() function allocates more space to add edges for each
Point and makes the algorithm work faster. LonestarGPU code has also been modified
in the same way. Results are shown in Figure 17(c), which shows the speedup of the
incremental SSSP computation with respect to initial SSSP computation. SSSP on the
GPU is an optimized Bellman-Ford–style algorithm that processes all of the elements
and does many unwanted computations, whereas the CPU code is a �-stepping algo-
rithm. Implementation of a fully dynamic SSSP is easy in Falcon. Edge deletion is a
harder problem, and we do not deal with it.

6.3. Heterogeneous Execution with Graph Partitioning

Falcon supports execution of vertex-centric algorithms on the CPU and multiple GPUs
using graph partitioning. We have collected results for two random graphs and three
RMAT graphs. Random graphs are with 64M nodes (rand64) and 128M nodes (rand128)
with the number of total edges being 4 times the number of nodes. RMAT graphs are
with 50M nodes (rmat50), 60M nodes (rmat60), and 80M nodes (rmat80) with the total
number of edges being 10 times the number of nodes. Results are shown for SSSP and
BFS on these inputs for execution on two GPUs (Figure 18(a)), and and two GPUs and
one CPU (Figure 18(b)), as compared to execution over single-threaded CPU code. The
reader should note that partitioned execution is to be used only when the graph does
not fit into single GPU or single (multicore) CPU memory. We utilized the GPU memory
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Fig. 18. Heterogeneous execution speedup comparison over a single-threaded CPU (SSSP, BFS).

to the maximum possible extent for these large graphs. The rand128 input and rmat80
inputs did not fit in two GPUs and hence is executed on two GPUs and one CPU. The
Totem framework and Falcon code were run on a multi-GPU by enabling peeraccess,
and this is faster than code using UVA. The peeraccess method needs GPUs to be on
the same I/O hub, so we used two GPUs (Fermi C2075 and Fermi C2050) that are on
the same I/O hub in our multi-GPU machine. Totem needed recompilation for compute
capability 2.0 and modification of code to assign GPU partitions to use devices with
peeraccess. Our results were collected with ordered partitioning (because it worked
better than other schemes with Falcon), and Totem uses random partitioning. Results
are shown with time, including partitioning time, execution time, and communication
time, during computation.

7. CONCLUSION AND FUTURE WORK

We have presented Falcon, a DSL for expressing graph algorithms. It supports writ-
ing explicitly parallel programs, thus retaining efficiency. By enabling an algorithmic
specification at a higher level, it allows easy changes to the code and also its mainte-
nance. Salient features of Falcon are that it supports morph algorithms, wherein the
underlying graph structure may change and provides support for heterogeneous ar-
chitecture, multi-GPU systems, and multi-core CPUs. We illustrated its expressibility
by generating CUDA and OpenMP code for morph algorithms such as DMR, SP, and
dynamic SSSP. We showed that writing code for the CPU and GPU are similar, except
in the case where variables in the GPU need to be annotated with a <GPU> tag, and
we showed that the generated code performs close to (and sometimes better than) their
hand-tuned implementations. We also presented preliminary results of execution of
vertex-centric algorithms on partitioned graphs. In the future, the portability of Falcon
will be improved by supporting OpenCL as the backend and by extending Falcon sup-
port for CPU clusters. Automatic code generation without the programmer explicitly
specifying the location of Graph objects and supporting speculation with rollback are
also in the cards.

REFERENCES

D. Bader and K. Madduri. 2006. GTgraph: A Suite of Synthetic Graph Generators. Retrieved November 18,
2015, from http://www.cse.psu.edu/∼madduri/software/GTgraph.

D. Bader and K. Madduri. 2008. Snap, small-world network analysis and partitioning: An open-source paral-
lel graph framework for the exploration of large-scale networks. In Proceedings of the IEEE International
Parallel and Distributed Processing Symposium (IPDPS’08).

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 4, Article 54, Publication date: December 2015.

http://www.cse.psu.edu/protect $elax sim $madduri/software/GTgraph


Falcon: A Graph Manipulation Language for Heterogeneous Systems 54:25

David A. Bader and Kamesh Madduri. 2005. Design and implementation of the HPCS graph analysis
benchmark on symmetric multiprocessors. In High Performance Computing—PiPC 2005. Lecture Notes
in Computer Science, Vol. 3769. Springer, 465–476.
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