Header menu link for other important links
X
Fabrication, characterization, and implementation of engineered hydrogels for controlling breast cancer cell phenotype and dormancy
, H. Slater John
Published in Elsevier BV
2019
Volume: 6
   
Pages: 2744 - 2766
Abstract

A better understanding of how microenvironmental factors regulate cancer dormancy is needed for development of new therapeutic strategies to control metastatic recurrence and disease progression. Modeling cancer dormancy using engineered, in vitro platforms is necessary for investigation under well-defined and well-controlled microenvironments. We present methods and protocols to fabricate, characterize, and implement engineered hydrogels with well-defined biochemical and physical properties for control over breast cancer cell phenotype in three-dimensional (3D) culture. Changes in hydrogel adhesivity, crosslink density, and degradability induce a range of phenotypic behaviors in breast cancer cells including: (1) high growth, (2) moderate growth, (3) single cell, restricted survival dormancy, and (4) balanced dormancy. We describe a method of classifying hydrogel formulations that support each of these phenotypic states. We also describe a method to phenotypically switch cancer cells from single cell dormancy to high growth by dynamically modulating ligand density, thereby recapitulating reactivation and metastatic recurrence.

About the journal
PublisherData powered by TypesetElsevier BV
Open AccessNo