Header menu link for other important links
X
Estimation of Short-and Long-Term Probability Distributions of Wave-Induced Loads Acting on a Cruise Vessel in Extreme Seas
, Fonseca Nuno, Guedes Soares C.
Published in ASME International
2018
Volume: 140
   
Issue: 2
Abstract

A time domain code based on strip theory is applied to calculate the probability distributions of relative motions and bending moments of a cruise ship in a set of extreme seas. The code includes two levels of complexity. The simpler one combines linear radiation and diffraction forces with nonlinear Froude-Krylov forces, hydrostatic forces, and shipping of green water on the bow. Cummins formulation is used to represent the radiation forces. The second approach is a generalization of the first one and, although the formulation is based on the linear assumption (of the radiation forces), the effects of body nonlinearity are considered by a simplified method: the memory functions, infinite frequency added masses, and the radiation restoring coefficients are assessed at each time instant as function of the instantaneous wetted surface. A similar procedure is used to calculate the diffraction forces. The code is used to analyze the responses of a cruise ship in a set of extreme sea conditions. The short-term nonlinear responses are represented by empirical probability distributions, obtained from the nonlinear time domain simulations, and the quality of the predictions is assessed by comparing with model tests experimental data. Finally, the long-term value of the bending moment is calculated from the short-term distribution of the nonlinear loads in a few extreme sea states selected based on coefficient of contribution method, and the results are compared with the International Association of Classification Societies (IACS) rule bending moment.

About the journal
JournalData powered by TypesetJournal of Offshore Mechanics and Arctic Engineering
PublisherData powered by TypesetASME International
ISSN08927219
Open AccessNo