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Abstract. We have examined both single and entangled two-mode multiphoton

coherent states and shown how the ‘Janus-faced’ properties between two partner states

are mirrored in appropriate tomograms. Entropic squeezing, quadrature squeezing and

higher-order squeezing properties for a wide range of nonclassical states are estimated

directly from tomograms. We have demonstrated how squeezing properties of two-

mode entangled states produced at the output port of a quantum beamsplitter are

sensitive to the relative phase between the reflected and transmitted fields. This feature

allows for the possibility of tuning the relative phase to enhance squeezing properties of

the state. Finally we have examined the manner in which decoherence affects squeezing

and the changes in the optical tomogram of the state due to interaction with the

environment.
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quadrature squeezing, quantum beamsplitter

1. Introduction

Quantum states of light are identified from experimentally obtained values of

appropriate observables through detailed reconstruction procedures. A relevant set of

observables which can be measured by homodyne detection is provided by the rotated

quadrature operators of the radiation field. The measured values constitute a quadrature

histogram, or optical tomogram, which is the first step in state reconstruction. The

reconstruction program crucially relies on the intimate link between optical tomograms,

which can be thought of as the marginal distribution functions of continuous variables

(corresponding to the rotated field quadratures), on the one hand, and the Wigner

function corresponding to the state, on the other [1, 2]. Such a connection opens up the

possibility of treating the tomogram as the fundamental object which contains complete

information about the state. Several nonclassical states of light such as squeezed light

have been identified using optical tomography [3, 4]. Optical tomograms also manifest

qualitative signatures of revivals and fractional revivals of the initial state of a system

whose time evolution is governed by a nonlinear Hamiltonian [5, 6]. Further, they can

be used to identify if a bipartite state is entangled. This has been demonstrated [7] by
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examining the state at the output port of a quantum beamsplitter for a specific choice of

input states. Continuous-variable optical quantum-state tomography has been reviewed

in [8].

While these developments facilitate the understanding of qualitative aspects of

continuous-variable tomograms, it is of interest to examine if quantitative estimates

of nonclassical effects such as quadrature squeezing can be obtained directly from

optical tomograms. A preliminary step in this programme is the identification of

distinctive qualitative signs of different nonclassical states in tomograms. Verification

of quadrature and entropic uncertainty relations [9], and of entropic inequalities [10],

provides consistency checks in determining the extent of squeezing of a state from

the tomogram. For instance, for a single-mode system there is an important bound

on the sum of entropies in the position and momentum quadratures, as well as an

inequality involving the quadrature variance and the corresponding entropy [11]. In

bipartite systems, too, bounds on the sums of entropies in position and momentum

have been established [12]. It is both relevant and important to explore the possibility

of quantifying nonclassical effects directly from the tomogram, without attempting

to reconstruct the state (or density matrix) from it, as the latter involves statistical

procedures and is inherently error-prone at various stages. Exploiting optical tomograms

is an alternative to approaches based on obtaining probability distributions of discrete

random variables such as squeeze tomography [13], where the statistics of photon number

distributions is examined.

An elegant method exists [14] for estimating quadrature squeezing in single-mode

systems directly from the optical tomogram. This procedure can be extended in a

straightforward manner to quantify both Hong-Mandel [15] and Hillery type [16] higher-

order squeezing and two-mode squeezing. This has been used [6] to evaluate the

squeezing properties, during time evolution, of a radiation field propagating through an

optical medium with cubic nonlinearities, and of a Bose-Einstein condensate evolving

in a double-well potential. However, a comprehensive investigation of signatures of

squeezing mirrored in optical tomograms of cat states, multiphoton coherent states

(CS) [17], isospectral counterparts of coherent states [18] and two-mode squeezed states

has not hitherto been undertaken. In this paper we identify the qualitative differences

between tomograms of representative states of the radiation field, and quantify the

extent of entropic and quadrature squeezing of these states directly from tomograms. We

investigate a variety of two-mode candidate states, including entangled states created at

the output port of a beamsplitter. This investigation is both important and relevant as

cat states can be generated in practice, and methods have been proposed [19] to produce

superposed large-amplitude coherent states from two small-amplitude coherent states.

Further, ‘breeding’ cat states by iteratively increasing their numbers experimentally,

by means of an ingenious use of beamsplitters, has been reported [20]. Cat states and

multiphoton coherent states (eigenstates of powers of the photon annihilation operator

a) are ideal candidates for the investigation at hand, as they display interesting squeezing

properties and sub-Poissonian statistics. These states can be broadly categorised as
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annihilation operator eigenstates or Perelomov-type coherent states [21].

Our choice of states for investigation utilises a novel approach to multiphoton

coherent states [17] that highlights relations between specific pairs of nonclassical states.

One starts with the standard commutation relation [a, a†] = 1 on the Hilbert space

spanned by the Fock basis {|n〉 , n = 0, 1, ...} of eigenstates of a†a. Define the operators

Ia = (1 + a†a)−1, G†
0 =

1
2
a† 2Ia, G†

1 =
1
2
a†Iaa

†. (1)

Then, on the ‘even’ subspace spanned by the set {|2n〉}, we have the commutation

relation [a2, G†
0] = 1. Similarly, on the ‘odd’ subspace spanned by the set {|2n+ 1〉},

the commutation relation [a2, G†
1] = 1 holds good. This provides a natural setting for

identifying interesting links between certain sets of states. For instance, eigenstates of

a2, namely,

|f〉0 = exp (1
2
fa† 2Ia) |0〉 and |f〉1 = exp (1

2
fa†Iaa

†) |1〉 (f ∈ C), (2)

can be identified after appropriate changes of variables as the even coherent state (ECS)

and the odd coherent state (OCS), respectively. Similarly, the eigenstates of G0 and G1

(the hermitian conjugates of G†
0 and G†

1) are

|g〉0 = exp (ga† 2) |0〉 and |g〉1 = exp (ga† 2) |1〉 (g ∈ C), (3)

respectively. These states can be identified after appropriate parameter changes as the

squeezed vacuum state and the Yuen state [22, 23], respectively. The ECS and the

squeezed vacuum (the pair generated from |0〉) can then be regarded as ‘Janus-faced’

partners, as can the OCS and the Yuen state (the pair generated from |1〉). The concept
of Janus-faced partners also extends to the two-mode case.

The plan of this paper is as follows. In the next section, we summarise the salient

features of single-mode and two-mode optical tomograms and examine the qualitative

differences between tomograms of various cat states and multiphoton coherent states

including Janus-faced partner states. In particular, we point out how the Janus-faced

nature of states is revealed in their tomograms. In Section 3, we obtain the entropic

squeezing properties and the quadrature squeezing properties of these states from the

tomograms. The analysis is then extended to two-mode Janus-faced pairs, namely, the

pair coherent states [24] and the Caves-Schumaker state [25, 26]. In Section 4, we

consider different entangled states produced by sending appropriate factored product

cat states through the input ports of a quantum beamsplitter. This device produces

a relative phase between the reflected and transmitted fields. The dependence of

the squeezing properties of the output states on this phase is assessed directly from

tomograms. In Section 5, we investigate the decoherence of the output states when they

are subject to amplitude decay or phase damping. An appendix outlines the crucial

steps in the evaluation of quadrature squeezing properties from tomograms using the

procedure of Ref. [14].
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2. Optical tomograms

For a single-mode radiation field, consider the family of quadrature operators

Xθ = (ae−iθ + a†eiθ)/
√
2, (4)

where θ (0 ≤ θ ≤ π), is the phase of the single mode in the homodyne detection setup.

It is evident that for θ = 0 and 1
2
π, respectively, we have the two field quadrature

operators analogous to position and momentum, respectively. The eigenkets of Xθ are

given by

|Xθ, θ〉 =
1√
π
exp (− 1

2
X2

θ − 1
2
ei2θa†2 +

√
2eiθXθa

†) |0〉 . (5)

Further, it can be shown that

|Xθ, θ〉 = eiθa
†a |X〉 , (6)

where |X〉 is an eigenstate of X0. The optical tomogram ω(Xθ, θ) corresponding to a

density matrix ρ is given by

ω(Xθ, θ) = 〈Xθ, θ| ρ |Xθ, θ〉 . (7)

ω(Xθ, θ) is non-negative and satisfies
∫

ω(Xθ, θ) dXθ = 1 (8)

and

ω(Xθ, θ + π) = ω(−Xθ, θ). (9)

It follows from (6) that

〈Xθ, θ|n〉 =
e−X2

θ
/2

π1/4

e−inθ

√
2nn!

Hn(Xθ), (10)

where Hn is the Hermite polynomial of order n. Then, for a pure state |ψ〉 = ∑

n cn |n〉,
(7) yields the optical tomogram

ω(Xθ, θ) =
e−X2

θ

√
π

∣

∣

∣

∣

∞
∑

n=0

cn
e−inθ

√
2n n!

Hn(Xθ)

∣

∣

∣

∣

2

. (11)

It is straightforward to extend these results to bipartite systems with two

subsystems (A and B, say), such as two radiation fields, or a single-mode radiation

field interacting with an atomic medium modelled by an oscillator. The corresponding

quadrature operators are

Xθ1 =
1√
2
(ae−iθ1 + a†eiθ1), Xθ2 =

1√
2
(be−iθ2 + b†eiθ2). (12)

The optical tomogram is given by

ω(Xθ1, θ1, Xθ2, θ2) = 〈X1, θ1, X2, θ2| ρAB |Xθ1 , θ1, Xθ2 , θ2〉 , (13)
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where ρAB is the bipartite density matrix. It is easy to see that this tomogram satisfies

the requirements of a probability distribution, and that

ω(Xθ1, θ1 + π,Xθ2 , θ2 + π) = ω(−Xθ1 , θ1,−Xθ2 , θ2). (14)

Again, for a pure state |ψ〉 = ∑

n

∑

m cnm |n〉1 ⊗ |m〉2 of the bipartite system we have

ω(Xθ1, θ1, Xθ2 , θ2) =
e−X2

θ1
−X2

θ2

π

∣

∣

∣

∣

∞
∑

n=0

∞
∑

m=0

cnm
e−inθ1e−imθ2

√
n!m!2(n+m)

Hn(Xθ1)Hm(Xθ2)

∣

∣

∣

∣

2

. (15)

Since the optical tomogram is normalised as
∫ ∫

ω(Xθ1, θ1, Xθ2, θ2)dXθ1dXθ2 = 1, (16)

the tomographic entropy of the bipartite system for any specific value of θ1 and θ2 can

be defined [10] as

SAB(θ1, θ2) = −
∫

ω(Xθ1, θ1, Xθ2, θ2) ln [ω(Xθ1, θ1, Xθ2 , θ2)] dXθ1dXθ2.(17)

The tomographic entropy for the subsystem A for any specific value of θ2 (equivalently,

for a single-mode system) is

SA(θ1) = −
∫

ω(Xθ1, θ1) ln [ω(Xθ1, θ1)] dXθ1, (18)

where

ω(Xθ1, θ1) =

∫

ω(Xθ1, θ1, Xθ2, θ2)dXθ2. (19)

It is clear that SA is independent of the value of θ2 chosen, and that
∫

ω(Xθ1, θ1)dXθ1 = 1. (20)

A similar definition can be given for the entropy of subsystem B.

The entropic uncertainty relation for the bipartite system is given by [11]

SAB(θ1, θ2) + SAB(θ1 +
1
2
π, θ2 +

1
2
π) ≥ 2 ln (πe), (21)

and correspondingly, for a subsystem (A, say) by

SA(θ1) + SA(θ1 +
1
2
π) ≥ ln (πe). (22)

A state with entropy in either quadrature less than 1
2
ln (πe) is said to display entropic

squeezing in that quadrature.

In order to estimate the extent of quadrature squeezing or higher-order squeezing

of a state from a tomogram, the crucial step is to compute [14] the expectation value

of products of powers of a and a† (see the Appendix). In the single-mode case, this

expression is given by

〈

a† kal
〉

= Ckl

k+l
∑

m

exp
(

− i(k − l)mπ

k + l + 1

)

∫ ∞

−∞

dXθ ω
(

Xθ,
mπ

k + l + 1

)

Hk+l(Xθ), (23)

where Ckl = k! l!/((k + l + 1)!
√
2k+l). It is straightforward to generalise this result to

the two-mode case. It is clear from (23) that we need to consider (k + l + 1) values
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Figure 1: Tomograms for (a) ECS, (b) squeezed vacuum, (c) OCS, (d) Yuen and (e) YS

states with α = ξ = 1/
√
2 and (f) ECS/OCS/YS state with α =

√
10.

of the tomogram variable θ in order to calculate a moment of order (k + l) from a

single tomogram. That is, (k + l + 1) probability distributions ω(Xθ) corresponding to

these selected values of θ are used to calculate the extent of squeezing and higher-order

squeezing, without indulging in an elaborate state-reconstruction program. In the case

of a system evolving in time, the extent of squeezing at various instants is determined

from the corresponding instantaneous tomograms.

2.1. Tomograms of single-mode states

We first express the multiphoton coherent states of interest to us in a manner

convenient for numerical computations. In terms of the CS |α〉 (where α ∈ C), we

have

ECS = Nα+
( |α〉+ |−α〉 ), OCS = Nα−

( |α〉 − |−α〉 ) (24)

with normalization constants Nα±
= [2(e|α|

2 ± e−|α|2]−1/2. The Yurke-Stoler state (YS)

is given by

YS = ( |α〉+ i |−α〉 )/
√
2. (25)

Writing the complex number g in the form ξ/|ξ| tanh |ξ| (ξ ∈ C), the squeezed vacuum

state |g〉0 and the Yuen state |g〉1, defined in (3), can be expressed as S(ξ) |0〉 and

S(ξ) |1〉, respectively, where
S(ξ) = exp [1

2
(ξ∗a2 − ξa†

2

)] (26)

is the standard single-mode squeezing operator.
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We have also examined the tomogram corresponding to the isospectral coherent

state [18]. This state differs from the coherent states considered in the foregoing, in the

following sense. Consider the operator

a1 = a†(1 + a†a)−1/2a(1 + a†a)−1/2a. (27)

It is easily checked that [a1, a
†
1] = 1 − |0〉 〈0|, so that a1 annihilates both |0〉 and |1〉.

In the restricted Hilbert space with basis {|n1〉} (n1 = 1, 2, . . .), we can therefore define

the isospectral coherent state

|ζ, 1〉 = exp (ζa†1 − ζ∗a1) |1〉 , ζ ∈ C. (28)

This state is an eigenstate of a1, with eigenvalue ζ . This idea can be extended to other

restricted Hilbert spaces with bases {|ni〉} (ni = i, i+1, . . .). We show below that there

are subtle qualitative differences between the tomograms of |ζ, ni〉 and the tomograms

corresponding to the m photon-added coherent state (m-PACS) [27] |α,m〉, obtained
by normalising the state a†m |α〉 to unity. |α,m〉 is a nonlinear coherent state, i.e., it is

an eigenstate of the operator [1−m(1 + a†a)−1] a [28].

Figures 1(a-f) and 2(a-c) are the tomograms for the single-mode states defined

above. We have taken the parameters α, ξ and ζ to be real, without significant loss

of generality. As expected, for sufficiently large values of |α|, the tomograms for the

ECS, OCS and the YS state are identical (figure 1(f)). The Janus-faced nature of

partner states is revealed in the tomograms. The qualitative appearance (apart from a

phase difference of 1
2
π) of the tomograms for the ECS and the squeezed vacuum state

[respectively, the OCS and the Yuen state] are very similar: compare figures 1(a) and

(b)) [resp., figures 1(c) and (d)]. Since the ECS and OCS are superpositions of two

coherent states, their tomograms are two-stranded. It is interesting that this property

is also displayed by the tomograms of their Janus-faced partners. As expected, this

feature holds for the YS state as well, and becomes more evident for large values of |α|.
For sufficiently small vales of |α|, the tomogram of anm-PACS hasm vertical bands.

This feature is present also in the tomogram for the isospectral CS constructed from

|m〉 (figures 2(a) and (b)). The bands are more prominent in the latter tomogram, for

the same value of α. However, this feature disappears for large |α|, and the tomograms

corresponding to the isospectral CS and the m-PACS are similar to that of the standard

CS (figure 2(c)).

2.2. Tomograms of two-mode Janus-faced partners

We recall that the photon destruction and creation operators for the two modes A

and B are (a, a†) and (b, b†), respectively. The relevant commutator in this case is given

by [ab,G†] = 1, where G† = a†b†(Ia + Ib), Ia = (1 + a†a)−1 and Ib = (1 + b†b)−1. Let

|0, 0〉 denote the direct product ground state |0〉A ⊗ |0〉B. The pair coherent state [24]

is given by exp (f ′G†) |0, 0〉 (f ′ ∈ C). Its Janus-faced partner is the Caves-Schumaker

state exp (g ′a†b†) |0, 0〉 (g ′ ∈ C). By a suitable change of variables we can identify the
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Figure 2: Tomograms for (a) |α, 3〉, (b) |ζ, 3〉 and (c) |α〉, with α = ζ = 1/
√
2.
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Figure 3: Tomograms for (a) Caves-Schumaker and (b) pair coherent states with η = 1,

Xθ2 = 1 and θ2 = 0.

Caves-Schumaker state as the two-mode squeezed state SAB(η) |0, 0〉 [25, 26], where the

two-mode squeezing operator

SAB(η) = exp [1
2
(ηa†b† − η∗ab)], η ∈ C. (29)

Setting η = reiθ, the Caves-Schumaker and pair-coherent states can be expressed in the

two-mode Fock basis as

sech r
∞
∑

n=0

eniθ(− tanh r)n |n, n〉 and N0

∞
∑

n=0

rneniθ

n!
|n;n〉 , (30)

respectively. Here N0 = 1/
√

I0(2r), I0 denoting the modified Bessel function of order

0. The tomograms for the two-mode squeezed state and the pair coherent state (figures

3(a) and (b)) are qualitatively similar; the only difference is due to a phase shift. (For

illustrative purposes, we have set η = 1 in both cases.) The intensity of the tomograms

depends on the specific value of Xθ2 .

3. Estimation of squeezing properties from tomograms

We now examine the entropic squeezing properties of single-mode states using (18).

The tomographic entropy as a function of α for the ECS, OCS and the YS state is

squeezed in the ‘momentum’ quadrature P (θ = 1
2
π), with the OCS displaying a very



Estimation of squeezing properties of multiphoton CS from optical tomograms 9

 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5  2  2.5  3

(a)

E
nt

ro
py

â��

α

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1

(b)

E
nt

ro
py

â��

ξ

 0.7

 0.9

 1.1

 1.3

 1.5

 1.7

 0  1  2  3  4

(c)

E
nt

ro
py

â��

parameter

Figure 4: Tomographic entropy (a) as a function of α for the ECS (violet), OCS (green)

and the YS state (blue) (θ = 1
2
π); (b) as a function of ξ for the squeezed vacuum (violet)

and Yuen state (green) (θ = 0); (c) as a function of α (respectively, ζ) for |α, 1〉 (violet),
|α, 3〉 (green), |ζ, 1〉 (blue) and |ζ, 3〉 (orange) (θ = 0). The horizontal lines denote the

value below which entropic squeezing occurs.

different behaviour than that of the ECS and the YS state (figure 4(a)). These three

states do not display entropic squeezing in the ‘position’ quadrature X (θ = 0) as α is

varied. As expected, for sufficiently large |α| these states show similar behaviour. In

contrast, the tomographic entropy as a function of ξ for the corresponding Janus-faced

partners, namely, the squeezed vacuum and Yuen states, exhibits squeezing in X and

not in P (figure 4(b)). This mirrors the phase shift of the corresponding tomograms by
1
2
π. Further, while the ECS and its Janus-faced partner are squeezed for a wide range

of parameter values, the OCS and the Yuen state are squeezed only for α & 0.9 and

ξ & 0.3.

In contrast to these cat states, the m-PACS |α,m〉 and the isospectral CS |ζ,m〉
built on |m〉 display entropic squeezing in X when α (equivalently, ζ) is greater than a

critical value (figure 4(c)). With increase in m, this critical value decreases for PACS

and increases for the isospectral CS. Further, it is clear that the critical value of α is

higher for the isospectral CS than for the m-PACS.

Using the procedure mentioned earlier for calculating expectation values
〈

a† kal
〉

from the tomograms, we have verified that, like the entropy, the variance in P

corresponding to the ECS and the YS state is squeezed (figure 5(a)). Similarly, it is seen

that for the squeezed vacuum and Yuen state, X is the squeezed quadrature. The OCS

does not exhibit squeezing in either quadrature. These features are consistent with the

conclusion that the extent of entropic squeezing does not reflect quadrature squeezing

alone, but also includes other nonclassical effects [11]. As expected, for sufficiently large

|α|, the cat states show similar behaviour. Again, as in entropic squeezing, the m-PACS

and the isospectral CS exhibit quadrature squeezing in X .

Squeezing in higher powers of ∆X and ∆P can also be quantified in a

straightforward manner. A state is squeezed to order q (q = 1, 2, 3, ...) in the operator A

if 〈(∆A)q〉 is less than the corresponding value obtained for a CS. q = 2 corresponds, of

course, to the variance. The dependence of (∆P )3 and (∆P )4 on α is shown in figures

5(b, c). The YS state shows marginal squeezing of (∆P )3 for sufficiently small values
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Figure 6: Relative fluctuation product between the ECS and the squeezed vacuum as a

function of θ, for α = ξ = 1. The blue curve corresponds to (∆Xθ)ECS(∆Xθ+π/2)SQV ,

and the orange curve to (∆Xθ)SQV (∆Xθ+π/2)ECS.

of α in contrast to the ECS, for which squeezing in (∆P )3 is absent (figure 5(b)).

A signature of Janus-faced partners is exhibited in the relative fluctuations.

Consider the ECS and the squeezed vacuum (SQV). It is easy to see that for fixed real

values of α and ξ, the product of variances (∆Xθ)
2
ECS(∆Xθ+π/2)

2
SQV can be expressed

in the form A + B cos 2θ + C cos2 2θ, while the product (∆Xθ)
2
SQV (∆Xθ+π/2)

2
ECS has

the form A−B cos 2θ+C cos2 2θ, where A, B, and C are real positive constants. As a

consequence, the square roots of these products display a symmetry property seen for

instance, in figure 6 where we have plotted them as a function of θ, for α = ξ = 1. In

this case, the symmetry is about the horizontal line at approximately 1.5. A similar

symmetry is seen in the relative fluctuation product corresponding to the OCS and the

Yuen state.

We have also verified from the relevant tomograms that the two-mode variance

corresponding to the Caves-Schumaker state exhibits squeezing for θ1 = θ2 = θ = 0

and for the pair coherent state for θ = π/2. An important observation is that the

two-mode tomographic entropies for these states are not squeezed, indicative of the fact

that the result in [11] for single-mode systems (namely, that the single-mode entropy
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subsumes the the single-mode quadrature variance) cannot be extrapolated to bipartite

systems.The reduced single-mode variances do not exhibit squeezing in any quadrature,

consistent with the fact that the reduced single-mode tomographic entropy is also not

squeezed.

4. The quantum beamsplitter: Phase dependence and squeezing properties

of the output state

In this section we examine the squeezing properties of the output state of a 50:50 lossless

beamsplitter when different superpositions of photon number states such as PACS or cat

states are passed through the input ports A and B (figure 7). C and D are the output

ports. The initial states considered are direct products of the quantum states of the

radiation field. (a, a† ), (b, b†), (c, c†) and (d, d†) are the photon destruction and creation

operators corresponding to A,B,C and D respectively. The beamsplitter operation is

performed by the unitary operator

U = exp [1
4
π(a†beiφ − ab†e−iφ)], (31)

where the phase difference between the reflected and transmitted fields is given by φ.

Hence we have

c = Ua U † = (a− eiφb)/
√
2, d = Ub U † = (b+ e−iφa)/

√
2. (32)

A D

B

Radiation field I

Radiation field II

C

Figure 7: Schematic diagram of the quantum beamsplitter.

We note that if a CS |α〉A is sent through A and another CS |β〉B through B, the

output state is again a direct product of two CS, |γ〉C ⊗ |δ〉D, where
γ = (α− e+iφβ)/

√
2 and δ = (β + e−iφα)/

√
2. (33)

In contrast, for generic direct product input states the output states are entangled. We

may expand these states, for ease of numerical computation, in the photon number

basis.
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Figure 8: Contour plots for two-mode (a) tomographic entropy and (b) variance for an

input state ECSA⊗ ECSB for φ = 0 and θ = π/2. Negative values indicate squeezing.
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Figure 9: Contour plots for two-mode (a) tomographic entropy and (b) variance for an

input state OCSA⊗ OCSB for φ = 0 and θ = π/2. Negative values indicate squeezing.

We first consider the case φ = 0. For an input state ECSA ⊗ ECSB with

ECSA = Nα+
(|α〉 + |−α〉) (see (24)), and ECSB has α replaced with β, the entangled

output state is

Nα+
Nβ+

∞
∑

n=0

∞
∑

m=0

(1 + (−1)n+m)√
n!m!

(C+γn+δm− + C−γn−δm+ ) |n〉C ⊗ |m〉D .

Here, C± = exp[−(|γ±|2+|δ∓|2)/2] where γ± = (α±eiφβ)/
√
2, and δ± = (e−iφα±β)/

√
2.

The contour plots (figures 8(a, b)) for both the two-mode tomographic entropy and

the two-mode variance as functions of α and β reveal squeezing for φ = 0 and θ = π/2.

Corresponding to these values the reduced single-mode states also display entropic and

quadrature squeezing. In contrast, a similar analysis for an input state OCSA⊗ OCSB

(contour plots 9(a, b)) reveals that only the two-mode tomographic entropy exhibits

squeezing for these values of φ and θ. Quadratic squeezing is absent.

For an ECS through one port and vacuum through the other, we have the output

state

|Ψ〉out = Nα+
e−|α|2/2

∞
∑

n=0

∞
∑

m=0

(1 + (−1)n+m)
αn+me−imφ

√
2n+mn!m!

|n〉C ⊗ |m〉D . (34)
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Figure 10: Output tomograms for input ECSA⊗|0〉B with α = 1, (a) Xθ1 = 1, θ1 = π/2,

and with Xθ2 = 1, θ2 = π/2 for (b) φ = 0 (c) φ = π/2.
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Figure 11: (a) Two-mode entropy, (b) reduced tomographic entropy in C and (c) reduced

tomographic entropy in D as functions of α, for θ = π/2 and input ECSA ⊗ |0〉B (violet

for φ = 0 and green for φ = π/2) and OCSA ⊗ |0〉B (blue for φ = 0 and orange

for φ = π/2). The horizontal line indicates the value below which entropic squeezing

occurs.

The output tomograms display interesting φ dependence. We denote by Xθ1 and θ1
the tomographic variables corresponding to C and by Xθ2 and θ2 those corresponding

to D. The tomographic projections obtained for different values of φ for a fixed value

of Xθ1 and θ1 are qualitatively similar. This follows from the fact that the phase

dependence through φ is associated only with port D (see (34)) and hence changes

in the tomographic variables corresponding to C merely change the projection by a

phase. This feature holds for any combination of unentangled input states with vacuum

through one port and a cat state through the other. The tomographic projection 10(a)

is such an example and corresponds to an ECS through A and the vacuum state through

B. On the other hand, tomographic projections obtained for fixed values of Xθ2 and

θ2 for φ = 0 and π/2 are qualitatively significantly different (figures 10(b, c)). The

variation of the two-mode entropic squeezing and quadrature squeezing with α for φ = 0

and π/2, setting θ1 = θ2 = θ, has been computed from the tomograms. Figure 11(a)

corresponds to a factored product input state ECSA (OCSA) ⊗ |0〉B for θ = π/2. For

φ = 0 the α dependence of two-mode entropy for these states closely resembles that

of the corresponding single-mode ECS (OCS) (compare figure 4(a) and 11(a)). It is

evident that the squeezing properties are very sensitive to φ. While for both input

states the outputs are squeezed over a wide range of α for φ = 0, they are not squeezed
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for φ = π/2. The beamsplitter can therefore be used with a judicious choice of values

of φ to assist enhanced squeezing. Quantifying squeezing directly from the tomograms

is clearly a significant improvement over state reconstruction and hence estimation of

squeezing properties.

The two reduced output tomograms obtained from (34) can now be examined. It

can be inferred that one of these tomograms (corresponding to tracing out the state

in port D) and hence the corresponding entropy is independent of φ. In this case, the

variation of output state entropy with α, for different cat states in one input port and

vacuum through the other is shown in figure 11(b) where we see that four curves have

collapsed to two, one for each input state. Corresponding to input ECSA⊗|0〉B entropic

squeezing is present. In contrast, if the reduced state is obtained by tracing out the state

in C, φ dependence of entropic squeezing is evident from 11(c). The reduced output

state corresponding to input OCSA ⊗ |0〉B does not display entropic squeezing in this

case also for any value of φ.

Recall that for small α, the tomogram for an m-PACS has m vertical bands. This

feature is absent in the output tomogram corresponding to an input state which is a

factored product of the m-PACS and the vacuum.

5. Decoherence effects

We investigate how decoherence affects the output state of a beamsplitter when it

interacts with a reservoir. The reservoir is modelled by an infinite number of harmonic

oscillators, initially in the ground state. We consider both amplitude decay and phase

damping models. In the former model, ρcd(t) the density operator for the field state

obeys the master equation [29]

dρcd(t)

dt
= γc{2cρcd(t)c† − c†cρcd(t)− ρcd(t)c

†c}
+ γd{2dρcd(t)d† − d†dρcd(t)− ρcd(t)d

†d}. (35)

Here γc (respectively γd) is the strength of interaction between C (respectively, D)

and the environment. Since ρcd(0) (pure output state density operator) is known, this

equation can be solved to express ρcd(t) in the photon number basis |n〉C⊗|m〉D (denoted

by |n;m〉). We get

ρcd(t) =
∑

n,n′

∑

m,m′

ρnn′mm′(t) |n;m〉 〈n′;m′| , (36)

with

ρnn′ll′(t) = e−γn,n′,l,l′ t

∞
∑

r,p=0

Cn,n′,l,l′,r,p(1− e−2γct)r(1− e−2γdt)pρ(n+r)(n′+r)(l+p)(l′+p)(0). (37)

Here, γn,n′,l,l′ = γc(n + n′) + γd(l + l′), and Cn,n′,l,l′,r,p =
√

(

n+r
r

)(

n′+r
r

)(

l+p
p

)(

l′+p
p

)

. We

take γc = γd = 1 for numerical computations. A contour plot (figure 12(a)) reveals how

Tr(ρ2cd) depends on time and α for the input state ECSA ⊗ |0〉B. We see that starting
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Figure 12: Amplitude decay model: (a) contour plot of Tr(ρ2cd) as a function of time

and α for the input state ECSA ⊗ |0〉B for φ = 0, and (b) Tr(ρ2cd) as a function of time

for the input (cat state)A ⊗ |0〉B and |α,m〉A ⊗ |0〉B (m = 1, 5) with α = 1, θ = 0 and

φ = 0.

from the corresponding output at t = 0 (Tr(ρ2cd) = 1) the system evolves through a

series of mixed states and after a sufficiently long time it decoheres to the vacuum

state. Thus, the final tomogram is independent of the initial state. As α increases the

system takes more time to decohere completely. From figure 12(b) it is evident that

for a state with marginal departure from coherence (e.g., 1-PACS) through one input

port of the beamsplitter and vacuum through the other, the maximum departure from

unity of Tr(ρ2cd) is substantially less than for input states with increased departure from

coherence. (Compare the plots for |α, 1〉A ⊗ |0〉B with |α, 5〉A ⊗ |0〉B as inputs. Further,

within the family of cat states, the output corresponding to OCSA ⊗ |0〉B as input

displays maximum departure from a pure state as it decoheres). It is straightforward

to verify that the entropy, variance and the higher order moments (for the two-mode

and both the reduced single-modes) for all these initial states also attain the value

corresponding to that of the vacuum when Tr(ρ2cd) becomes unity at large times.

We now consider the phase damping model. The corresponding master equation

for dissipation is

dρcd(t)

dt
= κc(2Ncρcd(t)Nc−N2

c ρcd(t)−ρcd(t)N2
c )+κd(2Ndρcd(t)Nd−N2

dρcd(t)−ρcd(t)N2
d ).(38)

Here, Nc = c†c, Nd = d†d and κc (respectively κd) is the coupling constant between C

(respectively, D) and the environment mode. We again expand ρcd(t) in the Fock basis,

analogous to (36). In this case it can be shown that

ρnn′mm′(t) = e−{κ1(n−n′)2+κ2(m−m′)2}tρnn′mm′(0). (39)

In contrast to the situation in the amplitude decay model, in this case an initial pure

state loses phase information completely after sufficiently long times. The precise form

of the final mixed state (corresponding to a diagonal form of ρcd) depends on the initial

state considered. A contour plot shows the variation of Tr(ρ2cd) with time and α for an
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Figure 13: Phase damping model: (a) contour plot of Tr(ρ2cd) as a function of time and

α for the input state ECSA ⊗ |0〉B for φ = 0, and (b) two-mode entropy as a function of

time for the input (cat state)A ⊗ |0〉B with α = 1, θ = 0, π/2 and φ = 0. The horizontal

line indicates the value below which entropic squeezing occurs.

input ECSA ⊗ |0〉B (figure 13(a)). The variation of the two-mode entropy with time

corroborates this result, and for different initial states this entropy saturates at different

values (figure 13(b)).

In summary: We have examined optical tomograms of several experimentally

relevant states of the radiation field and identified distinctive signatures of different

states in their tomograms. In particular, we have exploited this tomographic approach

to obtain symmetry properties of Janus-faced partner states corresponding to both

single-mode and bipartite systems. We have examined tomograms of cat states and

multiphoton coherent states which have been produced in the laboratory and are

ideal candidates for quantum information processing. Entropic squeezing, quadrature

and higher-order squeezing properties of states have been computed directly from

tomograms, thus circumventing the need for state or density matrix reconstruction

from experimentally obtained tomograms. This approach has been used to estimate the

dependence of squeezing properties of entangled states on the relative phase between

the reflected and transmitted components of fields passing through a beamsplitter. Our

investigation shows that this phase can be chosen so as to tailor the squeezing properties

of various states of the radiation field—an aspect which is very important for information

storage and transmission.

Appendix A. Expression for normal-ordered moments from optical

tomograms

We summarise the important steps in the procedure for obtaining normal-ordered

moments for infinite-dimensional single-mode systems, from optical tomograms. The

details of the calculation are discussed in [14].
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The density operator can be written in the normal-ordered form

ρ =
∞
∑

k=0

∞
∑

l=0

ρk,la
†kal, (A.1)

with

ρk,l =

{k, l}
∑

j=0

(−1)j

j!
√

(k − j)!(l − j)!
〈k − j| ρ |l − j〉 (A.2)

in the Fock basis. Here {k, l} stands for min(k, l).

We can also express the density operator in terms of expectation values as

ρ =
∞
∑

k,l=0

|l〉 〈k|Tr ( |k〉 〈l| ρ). (A.3)

Since

|k〉 〈l| = 1√
k!l!

∞
∑

u=0

(−1)u

u!
a† k+ual+u, (A.4)

we get

ρ =

∞
∑

k=0

∞
∑

l=0

ak,l Tr (a
†kalρ), (A.5)

where

ak,l =

{k,l}
∑

j=0

(−1)j

j!
√

(k − j)!(l − j)!
|l − j〉 〈k − j| . (A.6)

Recalling (10), namely,

〈Xθ, θ|n〉 = π−1/4e−X2
θ
/2e−inθ2−n/2(n!)−1/2Hn(Xθ), (A.7)

we obtain

〈Xθ, θ|m〉 〈n|Xθ, θ〉 =
e−X2

θ√
π

e−i(m−n)θ

√
m!n!

√
2m+n

Hm(Xθ)Hn(Xθ). (A.8)

Using the identities
∑k

j=0(−1)j/(j!(k − j)!) = δk,0 and

Hk+l(Xθ) =

{k,l}
∑

s=0

(−2)sk!l!Hk−s(Xθ)Hl−s(Xθ)

s!(k − s)!(l − s)!
, (A.9)

it follows from (A.5) and (A.8) that

ω(Xθ, θ) = 〈Xθ, θ| ρ |Xθ, θ〉 =
e−X2

θ√
π

∞
∑

k,l=0

e−i(k−l)θ

√
k!l!

√
2k+l

Hk+l(Xθ) Tr (a
† kalρ) (A.10)

Using the orthonormality property of the Hermite polynomials and the identity
n

∑

u=0

exp(2πiuj/(n+ 1)) = (n+ 1)δj,0 (A.11)
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in (A.10), we get

〈

a† kal
〉

= Ckl

k+l
∑

m

exp
(

− i(k − l)mπ

k + l + 1

)

∫ ∞

−∞

dXθ ω
(

Xθ,
mπ

k + l + 1

)

Hk+l(Xθ), (A.12)

where Ckl = k!l!/((k + l + 1)!
√
2k+l). As mentioned in the text, a straightforward

extension of this formula holds good for bipartite systems.
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