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The celebrated Michaelis-Menten (MM) expression provides a fundamental relation between the
rate of enzyme catalysis and substrate concentration. The validity of this classical expression is,
however, restricted to macroscopic amounts of enzymes and substrates and, thus, to processes with
negligible fluctuations. Recent experiments have measured fluctuations in the catalytic rate to reveal
that the MM equation, though valid for bulk amounts, is not obeyed at the molecular level. In this
mini-review, we show how new statistical measures of fluctuations in the catalytic rate identify
a regime in which the MM equation is always violated. This regime, characterized by temporal
correlations between enzymatic turnovers, is absent for a single enzyme and unobservably short in
the classical limit.

I. CLASSICAL ENZYME KINETICS

Enzymes are biological catalysts that accelerate chem-
ical reactions manyfold, without getting consumed in the
catalytic process. Several biological processes involving
the conversion of substrates to products, thus, rely cru-
cially on the catalytic activity of enzymes. Specific en-
zymes control and regulate a wide-range of life-sustaining
processes that vary from digestion, metabolism, absorp-
tion, blood clotting to reproduction. While specificity
depends on detailed chemical structure of enzyme pro-
teins, the rate at which enzymes carry out the catalytic
conversion depends less on their chemical structure but
more on physical parameters, including the amounts of
enzymes, substrates, temperature, pH, and so on [1]

In 1903, Victor Henri, in his doctoral thesis, studied
the rate of hydrolysis of sucrose into glucose and fructose
by the enzyme invertase, and laid the foundation for the
understanding of enzymatic mechanisms from reaction
rates [2]. In 1913, Leonor Michaelis and Maud Menten,
building on the work of Victor Henri and many others,
introduced the initial rate method for kinetic analysis.
Using data for the initial rate of hydrolysis of sucrose,
a simple reaction mechanism for enzyme catalyzed reac-
tions, the Michaelis-Menten (MM) mechanism, was pro-
posed [3–5].

According to MM mechanism, enzyme E binds with
substrate S to form an enzyme-substrate complex ES,
which either dissociates irreversibly to form product P,
regenerating the free enzyme E, or dissociates reversibly
to release the substrate:

E + S
k1−−⇀↽−−
k−1

ES
k2−→ P + E (1)

For thermodynamically large numbers of enzymes and
substrates, deterministic mass action kinetics provides
the rate equations for the MM mechanism in terms of the
temporal variation of the concentrations of E, ES and
P . The mean rate of product formation d[P ]/dt, then,
quantifies the catalytic activity of enzymes through its
dependence on the rate parameters for substrate bind-
ing k1[S], substrate release k−1 and product formation

k2. Assuming a time scale separation in which the inter-
mediate complex reaches a steady-state faster than the
reactants and products, d[ES]/dt ≈ 0, the mean rate of
product formation yields

Vss =
Vmax[S]

[S] +KM
(2)

the celebrated Michaelis-Menten (MM) equation, the
steady-state “enzymatic velocity”, which has widespread
applicability in biochemical catalysis [6]. Here, KM =
k−1+k2
k1

is the Michaelis constant and Vmax = k2[E0] is
the maximum velocity at saturating substrate concen-
tration, with [E0] being the initial enzyme concentra-
tion. The MM equation, in its double reciprocal form,
V −1ss = V −1max + KM

Vmax
[S]−1, yields a linear variation of

V −1ss with [S]−1[7]. Kinetic data for the variation of the
initial rate of product formation with [S], when fitted to
this linear form, provides a simple way to estimate the
rate parameters of several biochemical reactions. The
hyperbolic dependence of the catalytic rate on substrate
concentration, which the classical MM expression pre-
dicts, has had an enormous influence on the progress of
biochemistry.

II. ENZYME KINETICS AT THE MOLECULAR
LEVEL

Enzymatic reactions at the molecular level, however,
do not proceed deterministically. Fluctuations of both
quantum mechanical and thermal origin, termed as
molecular noise, are inherent to reactions catalyzed by
individual enzyme molecules. These impart stochasticity
to each step in the MM mechanism, such that neither the
lifetime of a given enzymatic state and nor the state to
which it transits can be known with certainty. The effect
of fluctuations, and thus the uncertainty, diminish pro-
gressively with increasing number of enzymes, and vanish
for their macroscopic amounts. It is in the latter limit
that the MM kinetics acquires its deterministic character
and the classical description of enzymatic velocity as the
“mean rate of product formation”, is sufficient to charac-
terize the catalytic activity of enzymes [8].
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Biochemical catalysis, under physiological conditions,
involves enzyme concentrations that are not thermody-
namically large, but vary from nanomolar to micromolar.
The substrates are typically between ten and ten thou-
sand times more than the number of enzymes. At these
low concentrations, termed as mesocopic, the presence
of molecular noise is inherent to enzymatic reactions [9].
Once this fact is realized, a series of questions arise. Is
classical enzymatic velocity, the MM equation, a valid de-
scription of the catalytic activity at physiologically rel-
evant concentrations of enzymes? How do fluctuations
in the rates of substrate binding, substrate release and
product formation influence the rate of enzyme catalysis?
How are uncertainties in the product formation times
measured and characterized? What new information do
these uncertainties carry about the catalytic mechanism
that is lost in going over to the deterministic limit?

To address some of these questions, it is important to
understand how single-enzyme kinetic data is collected
and analyzed.

A. Single-molecule kinetic data

In the last two decades, advances in experimental tech-
niques have finally made it possible to measure, with
precision, the effect of molecular noise in enzyme cat-
alyzed reactions, involving a single enzyme and numer-
ous substrates [10, 11]. Such techniques have made it
possible to monitor, in real time, the catalytic conver-
sion of non-fluorescent substrates to fluorescent products,
one substrate at a time, and yield a time series of the
turnover times T1, T2, . . . for the first, second, . . . prod-
uct bursts. The turnover time series yields an equivalent
series of the waiting times τ1, τ2, . . . between two con-
secutive product bursts τp = Tp − Tp−1, with turnover
number, p = 1, 2, . . ..

A schematic of the MM mechanism for a single enzyme
forming products in succession, one product per enzyme
turnover, is shown in panel (a) of Fig. (1). The waiting
and turnover times for p = 1, 2, 3, . . . product formation
are indicated as τp and Tp, respectively. Each waiting
time is the sum of the lifetimes of E and ES states, tE
and tES , τp = tE,j + tES,j , where the subscript index
j = 1, 2, . . . denotes the number of times a given state E
orES is visited.

Due to the presence of molecular noise, the lifetimes of
E and ES states, and hence τp and Tp, are random vari-
ables. Enzyme kinetics at the molecular level, thus, re-
quires a stochastic description that includes intrinsic fluc-
tuations in the lifetimes of E and ES states, the waiting
times between two consecutive product turnovers, and
the turnover times for p-th product formation. While the
duration of time spent in E and ES states remains unob-
served in single-molecule measurements, fluctuations in
the lifetimes of these “hidden” states are “observed” as
fluctuations in the product formation times τp and Tp.

To measure fluctuations in τp, statistical measurements

are carried out, in which waiting times for p-th prod-
uct bursts are recorded, over and over again, for sev-
eral stochastic realizations of the same reaction, under
identical experimental conditions. A histogram of the
recorded data is then used to extract probability distri-
butions of waiting times, w(τp) and joint distributions
of p-th and q-th waiting times, w(τp, τq). Kinetic data
at the molecular level is, thus, collected as waiting time
distributions w(τp) and joint distributions w(τp, τq), for
given p, q = 1, 2, . . . , N and [S]. and analyzed in terms
of their moments.

B. Fluctuations in product formation times

To understand how fluctuations in product formation
times can arise, let us consider two stochastic realiza-
tions of the MM mechanism, termed as stochastic MM
networks. Panels (b) and (c) of Fig. (1) illustrate two
stochastic MM networks, each forming three products in
succession, but following different pathways due to the
presence of molecular noise. Stochasticity in these net-
works arises due to variation in the lifetimes of E and
ES states, and the number of times a given state is vis-
ited. Both these aspects are included in the stochastic
trajectories (d) and (e), corresponding to (b) and (c) re-
spectively, depicting the number of products np formed in
time t. Intrinsic fluctuations in tE and tES are indicated
as variation in the length of red and blue lines, and the
number of times these colors switch between each other,
before forming a product.

Panels (d) and (e) show that the first waiting time
comprises of τ (b,c)1 = tE,1 + tES,1 for both (b) and (c).
However, given that tE for (b) is longer than (c), with
no variation in tES , implies τ

(b)
1 > τ

(c)
1 . This illus-

trates how stochasticity in the first waiting time can
arise from variation in the lifetime of E state. The
waiting times for the second product burst are given by
τ
(b)
2 = tE,1 + tES,1 + tE,2 + tES,2 and τ (c)2 = tE,1 + tES,1 .
These captures stochasticity in τ2 due to fluctuations in
the lifetime of E and ES, and the number of times they
switch between each other before forming a product. To-
gether, they yield fluctuations in the number of products
np formed in a given time t, and the turnover time Tp
for the p-th product formation. These are indicated as
dashed lines in panels (d) and (e).

C. New statistical measures of fluctuations

Single enzyme kinetic measurements yield waiting time
distributions for product turnovers. A stochastic refor-
mulation of the MM mechanism, presented in the next
section, allows one to obtain these distributions theoret-
ically. Enzyme kinetics at the molecular level can, then,
be characterized in terms of the means and variances of
these distribution for given N and [S]. The first two mo-
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Figure 1. Panel (a) shows a schematic of the MM mechanism for a single enzyme forming products, one by one, in discrete
turnover events. Here, Tp with p = 1, 2, . . . is the p-th turnover time and τp = Tp − Tp−1 is the waiting time between two
consecutive product bursts. Panels (b) and (c) show two stochastic MM networks, each forming three products in succession,
but following different pathways due to inherent stochasticity of the MM reaction at the molecular level. Panels (d) and (e)
show two stochastic trajectories, corresponding to (b) and (c), for the number of products np formed in time t. The lifetimes
of E and ES, tE and tES , are indicated by red and blue colors, respectively. Stochasticity in three consecutive waiting and
turnover times is indicated by solid and dashed lines.

ments of w(τ), for instance, yields the expectation value
〈τ〉, and variance σ2

τ = 〈τ2〉 − 〈τ〉2 in the waiting time
τ . While the former is related to the mean catalytic rate
of a single enzyme, the latter provides a new statistical
measure of intrinsic temporal fluctuations in the catalytic
rate [12, 13]. In particular, the dimensionless variance of
the distribution, termed as the randomness parameter
r =

σ2
τ

〈τ〉2 , yields uncertainty in product formation times
for a range of substrate concentrations [12–16].

The correlation, Cq = 〈δτpδτp+q〉, between a waiting
time, τp, and another, τp+q, q turnovers apart, where
δτp = τp − 〈τp〉, p = 1, 2, · · · , provides another statistical
measure of intrinsic temporal fluctuations that can be
derived from the joint probability distribution of wait-
ing times [9, 14]. A finite value of Cq indicates that en-
zymatic turnovers are correlated in time, and the time
duration of first turnover influences the time duration
of subsequent turnovers. The correlations between enzy-
matic turnovers, thus, yield a “molecular memory” effect
in which sequences of waiting times shorter or longer than
the mean are more probable than sequences uniformly
distributed about it [9, 14].

The landmark experiments on a single tetrameric en-
zyme, β-galactosidase, which is known to follow the MM
equation in bulk amounts, reveal that the MM equation

is violated at the molecular level [11]. This effect due to
molecular noise is linked to the simultaneous observation
of r > 1 and Cq > 0. The magnitude of r and the na-
ture of decay of Cq provide new fundamental constraints
on potential enzymatic mechanisms that can be analyzed
theoretically [9, 15, 16].

In the next section, we discuss the relevance of these
statistical measures for the MM mechanism - a network
with linear topology comprising of three reaction steps.
We begin by presenting a stochastic reformulation of the
MM kinetics for arbitrary number of enzymes [9, 14]. An
analysis of intrinsic temporal fluctuations, through the
probability distributions of waiting times, is then pre-
sented to show how the statistical measures of intrinsic
fluctuations - the randomness parameter and temporal
correlations - carry chemically relevant information that
is lost in passing to the deterministic limit. Specifically,
the turnover kinetics of a single enzyme is compared with
mesoscopic amounts of enzymes to show how deviations
from the MM equation are inherently linked to fluctua-
tions in product formation times.
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Figure 2. Single enzyme kinetics: Left panel shows waiting time distributions for N = 1 enzyme for p = 1, 10, 100 turnovers.
The waiting times, irrespective of the turnover number, are identically distributed. Right panel shows that waiting time
correlations between, first and q = 1, 2, . . . enzymatic turnovers are identically zero for all [S]. Single enzyme turnover kinetics
follows a renewal stochastic process with independent and identically distributed waiting times.

III. STOCHASTIC ENZYME KINETICS

Stochastic enzyme kinetics includes inherent fluctua-
tions at the molecule level by accounting for two im-
portant aspects of molecular noise. These include the
discrete integer changes in the number of enzymes, com-
plexes, products with time, and inherent stochastic char-
acter of each step of the MM mechanism. Both this
aspects are included in the chemical master equation
(CME) formalism of stochastic processes, which provides
a general description for the turnover kinetics of N dis-
crete enzyme molecules [17, 18]. So, while N = 1 yields
“rate equations” for a single enzyme [12, 13], the ther-
modynamic limit of N → ∞ reduces the CME to a set
of rate equations, governed by deterministic mass action
kinetics [8]. In between the extremes of single enzyme
(N = 1) and thermodynamic large (N →∞) limits, the
CME describes the turnover kinetics of mesoscopic en-
zyme concentrations.

The CME encodes mechanistic information from which
waiting time distributions can be derived. The latter
can be obtained from exact stochastic simulations of the
CME [19]. This involves generating a large number of
stochastic trajectories of the MM mechanism, using data
for the number of products versus time to obtain τp for
p = 1, 2, . . ., and histogramming this data to obtain
w(τp;N), for given N and [S]. A similar procedure is
followed to obtain the joint distribution of waiting times.
The means and variances of these distributions provide
kinetic measures that yield the enzymatic velocity and
fluctuations in the catalytic rate for N individual en-
zymes. These, for a single enzyme, are presented below.

A. Single enzyme kinetics

To describe the turnover kinetics of a single enzyme, we
obtain waiting time distributions for first, second, third,
· · · product formation, corresponding to p = 1, 2, 3, . . .

turnovers, using exact stochastic simulations of the CME
[9, 14]. For this we generate typically 106 stochastic
trajectories of the MM mechanism for rate parameters
ka = k2 = 1 and k−1 = 1

2 . The results are shown in Fig.
(2).

The left panel of Fig. (2) shows the temporal vari-
ation of waiting time distributions for a single enzyme.
The waiting times, irrespective of the turnover number
p, are identically distributed. This implies that the dis-
tribution of waiting time between any two consecutive
turnovers, for instance w(τ ;N = 1), is sufficient to de-
scribe the turnover kinetics at the single enzyme level,
and specification of the turnover index p is not necessary.
The right panel of Fig. (2) shows that waiting time cor-
relations between enzymatic turnovers, Cq , are zero for
all q and [S]. Together, these results imply that waiting
times are independently and identically distributed. The
turnover kinetics of a single enzyme, thus, follows a re-
newal stochastic process with 〈τp〉 = 〈τ〉 and 〈Tp〉 = p〈τ〉
[9].

Remarkably, the inverse of the mean waiting time
of a single enzyme exactly recovers the MM equation,
〈τ〉−1 = k2[S]

[S]+KM
. Note, that the classical description

of the steady-state enzymatic velocity is in terms of
the rate of change of the mean number of products
Vss = limt→∞

d〈np(t)〉
dt = Nk2[S]

[S]+KM
. From this, it follows

that Vss = N〈τ〉−1. Using these identities, the classical
steady-state enzymatic velocity can be reinterpreted as

Vss
N

= 〈τ〉−1 =
p

〈Tp〉
=

k2[S]

[S] +KM
(3)

This is the single-enzyme analog of the classical MM
equation, yielding a hyperbolic dependence of 〈τ〉−1 on
substrate concentration [9, 14].

To quantify uncertainty in the waiting time τ , the ran-

domness parameter, r =
〈τ2〉−〈τ〉2
〈τ〉2 , is evaluated from

the mean and variance of w(τ ;N = 1). This yields
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Figure 3. Enzyme kinetics at mesoscopic concentrations: Left panel shows waiting time distributions for N = 50 enzymes for
p = 1, 2, 5, 10, 30, 50 turnovers. The waiting times are non-identically distributed for p� p∗, the transient regime, but become
identically distributed for p � p∗, the steady-state regime. Here, p∗ is the critical turnover number beyond which turnover
time correlations decay. Right panel shows that the scaled enzymatic velocity p/N〈Tp〉 for N = 50 enzymes deviates from the
MM equation in the transient regime, but converges to the MM equation in the steady-state regime.

r < 1 for all [S] [13]. This result is a specific case of
a formal connection between the randomness parame-
ter and network topology, which dictates that a reac-
tion mechanism with n sequentially connected kinetic
states, 1

k−→ 2
k−→ 3

k−→ · · · k−→ n
k−→ n + 1, with expo-

nentially distributed lifetime of each kinetic state, always
yields r = 1

n [20]. Here, n represents the number of rate
determining steps in a linear reaction network. Thus,
r = 1

n is the minimum amount of uncertainty that can
be captured by the randomness parameter for networks
with linear topologies. A generalization of this to lin-
ear networks, in which all (but the last) nearest neighbor
transitions are reversible and occur with arbitrary rates,
1 
 2 
 3 
 · · · 
 n → 1, also yields r < 1. Thus,
irrespective of the number of kinetic intermediates, their
connectivity with respect to each other, and rates of tran-
sition between neighboring states, r ≤ 1 for all networks
with linear topologies [15, 16].

The observation of r > 1 in recent kinetic measure-
ments on an MM enzyme, thus, rules out MM networks
with linear topologies, and suggest that MM networks
with branches need to be considered [13].

B. Enzyme kinetics at mesoscopic concentrations

In between the classical limit of thermodynamically
large number of enzymes and a single enzyme, lies meso-
scopic number of enzymes. To obtain waiting time dis-
tributions for mesoscopic concentrations, we carry out
exact stochastic simulations of the CME [9, 14]. The
results are presented in Figs. (3) and (4).

The left panel of Fig. (3) shows the temporal varia-
tion of waiting time distributions for increasing turnover
numbers. The right panel shows, for the same turnover
numbers, the variation of the enzymatic velocity of N
discrete enzymes, p

N〈Tp〉 , with substrate concentration.
Interestingly, for turnover numbers much less than the

critical turnover p∗ , p � p∗, the waiting times are
non-identically distributed and the MM equation is not
obeyed. For p � p∗, the renewal turnover statistics and
the MM equation are asymptotically recovered.

To understand this, the left panel of Fig. (4) shows the
variation of waiting time correlations between enzymatic
turnovers Cq as a function of q = 1, 2, . . .. For mesoscopic
amounts of enzymes, temporal correlations between enzy-
matic turnovers, though appreciable for p� p∗, become
negligible for p � p∗. Here, p∗ is the critical turnover
number beyond with turnover time correlations decay.

Together, these results imply that the critical turnover
number demarcates a transient regime p � p∗ from a
steady state regime p� p∗ [14]. In the transient regime,
turnover kinetics is non-renewal, where waiting times are
non-independent and non-identically distributed, and the
MM equation is violated. In the steady-state regime,
turnover kinetic acquire a renewal character and the MM
equation is exactly recovered. The non-renewal nature
of the turnover kinetics implies that 〈Tp〉 6= p〈τp〉. For
mesoscopic amounts of enzymes, then, the steady-state
enzymatic velocity can be reinterpreted as

Vss = lim
p→∞

p

〈Tp〉
=

Nk2[S]

[S] +KM
. (4)

Note that the above expression is only valid for p � p∗,
where Cq = 0.

For the MM mechanism, the waiting times between
enzymatic turnovers are anti-correlated, Cq < 0. This
implies that a long (or short) first waiting time (com-
pared to its mean value) is more likely to be followed
by a short (or long) second waiting time. This mem-
ory effect, is shown as the heat map of joint probability
distribution w(τ1, τ2) in Fig. (4) inset.
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Figure 4. Left panel shows temporal correlations between τ1 and τq with q = 1, 2, . . . waiting times. The waiting times are
anticorrelated, where a short (or long) first waiting time is more likely to be followed by a long (or short) second waiting time
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continuously in time.

C. The classical limit from molecular perspective

To understand how the classical limit of enzyme kinet-
ics can emerge from molecular kinetics, we show in the
right panel of Fig. (4), the variation of 〈τp〉 for first ten
product turnovers, as a function of increasing N . For
N = 1, since Cq = 0, the mean waiting times are identi-
cal 〈τp〉 = 〈τ〉, and the MM equation, 〈τ〉−1 = k2[S]

[S]+KM
,

is always obeyed.
For N > 1, there emerge two kinetic regimes - a tran-

sient regime for p � p∗ , and a steady-state regime for
p � p∗. In the transient regime, non-identical mean
waiting times 〈τp〉 become progressively shorter with in-
creasing N and p. In the steady-state regime, similarly,
there is an N -fold decrease in the mean waiting time 〈τ〉.
The discrete turnover events acquire a deterministic char-
acter, with the increase in N , as waiting times between
consecutive products become shorter, and the number of
products in a small time interval become progressively
larger.

In the limit of macroscopic amounts of enzymes N �
1, thus, waiting times become infinitesimally small, prod-
ucts appear to form continuously in time, and the tran-
sient regime becomes too short to be experimentally ac-
cessible. In this classical limit, kinetic data for the “ini-
tial” mean rate of product formation yields the steady-
state enzymatic velocity. From the molecular perspec-
tive, the absence of temporal correlations between enzy-
matic turnovers in the steady-state regime, implies that
the MM equation is obeyed.

IV. CONCLUSIONS

In this mini-review, a stochastic reformulation of the
MM kinetics for a single and mesoscopic amounts of
enzyme(s) has been presented. An analysis of intrin-
sic temporal fluctuations, through the probability dis-
tributions of waiting times, shows that the MM equa-
tion is always violated in the transient regime. This
regime, characterized by temporal correlations between
enzymatic turnovers, while absent for a single enzyme, is
unattainable in the classical limit. In both these limits,
thus, the MM equation, is exactly obeyed.

At mesoscopic concentrations, the transient regime
is observably large, and temporal correlations between
enzymatic turnovers yields a molecular memory effect
in which the time duration of the first turnover influ-
ences the time duration of subsequent turnovers. In the
presence of molecular memory, the MM equation is not
obeyed at the molecular level. This effect, due to molec-
ular cooperativity, leads to a slowing down of the MM
kinetics in the transient regime. The critical turnover
time beyond which the correlation decays and the molec-
ular memory fades marks the time scale for the crossover
from a transient regime where the MM equation is vio-
lated, to a a steady-state regime where the MM equation
is recovered exactly at the molecular level.

From these general results, we conclude that for meso-
scopic amounts of enzymes, there emerges a transient
regime in which enzymatic turnovers are correlated in
time, and the the MM equation, derived using time scale
separation, is always violated.
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