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Abstract: Bessel beams (BBs) appear immune to diffraction over finite propagation distances
due to the conical nature of light propagation along the optical axis. This offers promising
advantages in laser fabrication. However, BBs exhibit a significant intensity variation along the
direction of propagation. We present a simple technique to engineer the axial intensity of the BB
over centimeters-long propagation distances without expansion of the incoming laser beam. This
method uses two diffractive optical elements (DOEs), one converts the input Gaussian intensity
profile to an intermediate intensity distribution, which illuminates the second DOE, a binary
axicon. BBs of desired axial intensity distribution over few centimeters length can be fabricated.
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1. Introduction

Bessel beams (BB) have an elongated axial light intensity distribution that is immune to diffraction
over finite propagation distances. The analytical expression of the BB intensity [1] was refined in
ref. [2], where it was demonstrated that the zeroth order BB is a member of a special class of
solutions to the Helmholtz equation that are propagation invariant.
The transverse intensity profile of the BB follows a zeroth order Bessel function, which has

a high intensity central peak surrounded by number of concentric rings. Unlike a traditional
Gaussian beam, whose beam waist diverges, the transverse intensity profile of the BB remains
unchanged as it propagates. The ideal BB with rings extending infinitely in the radial direction
maintains constant axial intensity (an infinite amount of energy). Therefore, only radially truncated
approximations of BBs are realized. Bessel beams also exhibit another interesting property known
as self-healing, i.e., the ability of the beam to reconstruct after encountering an obstacle. Owing
to these special properties, these beams are being used as an alternative to Gaussian beams in
many applications such as optical manipulation [3], high precision hole drilling [4] and light
sheet microscopy [5]. Several techniques have been proposed to generate these beams: refractive
axicons [6], diffractive axicons [7] and annular apertures [8].

Even though the above mentioned techniques can be used to generate Bessel-like beams, they
all suffer from non-uniformity of intensity along the axis. The axial intensity variations along
the axis limits applicability of these beams. Several techniques have already been reported to
create BBs with specific axial intensity profiles [9, 10]. An axicon with an annular aperture
and a logarithmic phase profile has been proposed to flatten [11] the axial intensity of the
Bessel-like beams. It was shown that by superposing a finite number of BBs with different
longitudinal wave numbers, one can produce arbitrary desired axial intensities known as “frozen
waves” [12]. For emerging industrial applications of laser dicing, drilling, and inscription of
optical elements, an axial control of beam intensity and axially moving focus actuated by a
transverse acoustical wave in the lens [13] are among actively researched applications. Using
BBs for material modification [14,15], it is preferable to have simple optical elements, which can
be directly inserted into the laser’s Gaussian-like beam to generate BBs.

Here, we demonstrate a technique that uses two diffractive optical elements (DOEs), where the
first DOE converts the incident Gaussian beam into an intermediate intensity distribution which
illuminates the second DOE, a diffractive axicon, that produces the desired on-axis intensity. In
this manner, the final axial intensity can be engineered to have any desired variation by suitably
adjusting the intensity output of the first DOE. This is demonstrated with examples of: (i) a
linearly increasing, (ii) an uniform, and (iii) exponentially increasing axial intensity distributions.
The DOEs were designed and the axial intensity outputs were simulated. Simulation results
were compared with experimental results for the case (i). The DOEs were fabricated using
electron beam lithography (EBL) and desired on-axis intensity profiles were achieved over long
propagation distances of few centimeters.



Fig. 1. (a) Refractive axicon ray tracing for the Gaussian input; DOF is the depth of focus.
(b) Analytical (line) and Fresnel integral simulated (dots) axial intensity of the Bessel beam
generated by an axicon with radius R = 2 mm and α = 1.6◦.

2. Theory: Bessel beam

Axicons - conical lenses - are optical elements that have rotational symmetry about the z-axis
(Fig. 1). They generate a quasi-Bessel beam throughout their depth of focus (DOF) region.
Beyond the DOF, the beam gradually transforms into a ring of constant width and increasing
the radius as it propagates. The important parameters that characterize an axicon are its front
face radius, R, the cone angle, α, and the refractive index, n (Fig. 1). These parameters together
determine the length of the DOF of the axicon.
Consider the input light beam to be a collection of rays traveling parallel to the z-axis. All

these rays refract at the conical surface of the axicon towards the axis with the same angle θ. All
the rays at one radial distance, come to focus at one point on the axis. The rays incident at the
extreme of the axicon (i.e., the furtherest radial distance) determine the DOF of the axicon, as
shown in Fig. 1. Using Snell’s law, sin θ = n sinα and applying the small angle approximation
for α, the DOF is found to be:

DOF =
R

(n − 1)α . (1)

Even though the axicon generates a BB, the intensity along the axis is not uniform within the
DOF. To demonstrate this, we consider a standard Gaussian intensity profile for the incident
beam, i.e.,

Iin(r) = I0 exp

(
−2r2

w2
0

)
, (2)

wherew0 is the beamwaist (radius), I0 is the peak intensity of theGaussian beam and r =
√

x2 + y2

is the radial distance from the z-axis. To derive an analytical expression for the on-axis intensity,
we consider a thin annular ring of width dr, inner radius r and outer radius r + dr on the front
surface of the axicon. The amount of power passing through this annular ring is given by:

Pring(r) = I0 exp

(
−2r2

w2
0

)
[π(r + dr)2) − πr2] ≈ I0 exp

(
−2r2

w2
0

)
2πrdr . (3)

This power gets spread out along a length dz on the z-axis. Therefore, the axial intensity is given
by AI(z) = Pring(r)/dz. Dividing both sides of Eq. 3 with dz and substituting r = z(n − 1)α



Fig. 2. Simulation. The phase of DOE1 (a) and intensity (b) profiles created at the front
surface of axicon 10 cm behind the DOE1. The phase span in (a) is 0 − 2π. (c) Intensity
profile along the central line AA’ shown in (b).

from Eq. 1 gives:

AI(z) = I0 exp

(
−z2(n − 1)2α2

w2
0

)
2πz(n − 1)2α2 (4)

From Eq. 4, it can be seen that the on-axis intensity of a BB generated using an axicon is directly
related to the input intensity profile Iin(r). Equation 4 can be generalized for any arbitrary input,
Iin, as:

AI(z) = MIin(z(n − 1)α)z, (5)

where M = 2π(n − 1)2α2 is a constant for the designed axicon. It should be noted that Eq. 5
should be used to compute the on-axis intensity only for 0 < z <DOF.
To confirm the validity of this equation, we have compared the axial intensity derived from

Eq. 5 with the Fresnel simulations of a diffractive axicon for a Gaussian input shown in Fig. 1(b).
The axicon parameters used were: R = 1 mm and α = 1.6◦, which results in a DOF of 3.5 cm
useful for practical applications. Simulated results were in good agreement with analytical
calculations.

3. Samples and fabrication

The DOEs were designed with a diameter of 2 mm operating at the wavelength of 633 nm.
Polymethylmethacrylate (PMMA) resist 950 K A8 (MicroChem GmbH) was used as the electron
beam lithography (EBL) resist. Indium tin oxide (ITO) coated glass plate was used as a substrate.
The ITO layer prevents charging during EBL writing. Presence of the ITO layer decreased the
transmission to 85% for 633 nm. The EBL parameters were as follows: acceleration voltage
10 kV, aperture 30 µm and dose 70 µC/cm2. The DOEs were developed in a mixture of methyl
isobutyl ketone (MIBK) and isopropyl alcohol (IPA) at ratio 1:3 for 50 s followed by cleaning in
IPA for 30 S.

4. Results and Discussion

The relationship between the input (lateral) intensity to the diffractive axicon (DOE2) and the axial
intensity was derived by using the geometrical law of energy conservation. DOE1 transforms a
Gaussian beam into the desired intermediate intensity profile at the plane of the diffractive axicon.
Its phase profile is calculated using the simplified mesh technique [16] or the Gechberg-Saxton



Fig. 3. Fresnel simulation (same method as in Fig. 1) of linearly increasing axial intensity
and beam cross section in yz-plane.
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Fig. 4. Simulation results. (a) Phase profile of DOE1 with random phase, which is a standard
feature of a pure phase distribution generated by the G-S algorithm. This pattern is more
complex to fabricate and it is more susceptible to scattering. (b) Intensity profile created at
the front surface of axicon, 10 cm behind DOE1. (c) Intensity profile along the central line
AA’ cross section shown in (b).

(G-S) algorithm [17]. The output is simulated by calculating the intensities at different planes
along the beam propagation direction using the Fresnel diffraction integrals [18]. The DOEs were
fabricated using EBL. With this method, desired on-axis intensity profiles were achieved over
long propagation distances of few centimeters.

4.1. Engineering the axial intensity

For an axicon, the on-axis intensity rises to a peak and gradually declines towards the end of
the DOF (Fig. 1(a)), when the incident beam is Gaussian-like. Therefore, one can only utilize
these beams over a very limited axial region, where the intensity might be considered as uniform.
Alternately, the beams could be used in applications where uniformity is not important. As it was
shown, the the on-axis intensity is directly linked to the incident intensity profile through Eq. 5.
Therefore, this relationship can be used to back calculate the input intensity Iin(r) that gives the
desired AI(z). As most laser sources will have a Gaussian intensity profile, we need to design an
optical element DOE1 that coverts the Gaussian to the desired Iin(r).
A technique to engineer the axial intensity using two DOEs is proposed next. The first DOE

transforms the Gaussian beam into an intermediate intensity Iin(r) at the plane of the second
DOE, which is a diffractive axicon. We have used simplified mesh technique [16] to compute the
phase profile (φ(x, y)) of DOE1.



Fig. 5. Fresnel simulation of the Bessel beam. (a) Uniform axial intensity, (b) parabolically
increasing axial intensity with beam cross section in yz-plane shown above.

Fig. 6. (a) Microscope images of fabricated diffractive axicon designed for R = 1 mm and
DOF = 3.5 cm. (b) Depth profile measured with confocal microscope.

4.1.1. Simulation: a linearly increasing axial intensity

For a linearly increasing axial intensity, the axial intensity is:

AI(z) = az, (6)

where a is a positive constant. We get the desired input intensity for the diffractive axicon, by
substituting this in Eq. 5:

Iin(r) =
a
M
, (7)

i.e., a flat-top beam. Since the input and the desired output intensities are known, they can be used
to calculate the phase distribution that would convert one to the other. While the G-S algorithm
is perfect for such problems, it generates a random phase variation, which leads to scattering in
practical systems. In order to avoid this, the calculated phase distribution should be continuous.

In the simplified mesh technique, the incident and output beams are each divided into a mesh
consisting of zones of equal power. Eikonal equations [19] are used to connect the input to the
output zones. The phase distribution φ(x, y), required to produce the desired output is obtained
by solving these equations [16, 20].
Since the energy in each zone in the input plane is directed to a similarly located zone in the

output plane and as the equations are solved simultaneously, the phase obtained is continuous.
It should be pointed out that this technique is useful in cases, where the meshes are easy to
construct.



Fig. 7. (a) Experimental setup. (b) Flat top intensity profile. (c) Intensity plotted along the
central line of (b).

The input Gaussian beam waist was chosen as 1.1 mm to match the laser beam used in the
experiment. DOE1 creates a circular flat-top beam. Simulated Iin(r) at the input of DOE2 and
the on-axis intensity are shown in Figs. 2 and 3, respectively.

4.1.2. Simulation: an uniform axial intensity

For many practical applications the desired is the uniform axial intensity is generated using:

AI(z) = az for 0 < z < d1;
= a for d1 < z < DOF;

(8)

where a is a positive constant. The on-axis intensity is constant between the axial points d1 and
the depth of focus DOF. The desired Iin(r) to create this axial intensity is:

Iin(r) =
(n − 1)α

M
1
r
, (9)

which is a hyperbolic intensity profile. In this case, the phase profile φ(x, y) that transforms
the input Gaussian beam into into the desired intensity profile was computed using the G-S
algorithm. This is because the mesh of the output beam was more complicated for this intensity
distribution. The corresponding Fresnel simulations are shown in Fig. 4. Simulated on-axis
intensity is presented in Fig. 5(a). Such intensity distribution when the high intensity is not
located at the very tip of axicon (z = 0) but is transfered to the axial position z = d1 is very useful
for high-power laser cutting and welding applications due to reduction of optical dama.

4.1.3. Simulation: a parabolic axial intensity

Finally, a parabolic axial intensity profile can be realized:

AI(z) = az2, (10)

where a is a positive constant. The desired Iin(r) to get this axial intensity is,

Iin(r) =
az
M
, (11)



Fig. 8. On-axis intensity variation after DOE2. The solid line shows the simulated and dotted
circles show the experimentally measured axial intensity when the flat-top beam was incident
on DOE2. The dotted triangles curve shows the experimental results for an incident Gaussian
beam.

which is a radially increasing intensity distribution. The simulated axial intensity is shown in
Fig. 5(b).

4.2. Fabricated Bessel beam generator

The experimental setup used for characterisation of the fabricated optical elements is shown in
Fig. 7(a). A collimated beam from a He-Ne source with 1/e2 diameter of 1.1 mm was passed
through the DOE1. This DOE1 was designed to create the desired Iin(r) at the distance of 10 cm
behind the element, at the location of DOE2 (such alignment of elements is suitable for practical
application in laser structuring). Care has been taken to align the center of both DOE1 and DOE2.
The on-axis intensity was measured by moving a CCD camera along the axis using a translation
stage.

DOE1 and DOE2 were fabricated using a Raith 150-Two EBL system. The confocal microscope
images of the diffractive axicon and its profile are shown in Fig. 6.

The experimental results of the Gaussian to flat-top beam conversion with DOE1 are shown in
Fig. 7(b). Measured values of the on-axis intensity for the Gaussian and flat-top incidence are
summarised in Fig. 8. The axial intensity within the first 1.5 cm could not be measured as the
CCD sensor housing had a depth of ≈ 1.5 cm within the C-mount.
We used two binary DOEs written on ITO coated borosilicate glass substrate in tandem to

achieve desired axial intensity profile. The theoretical maximum transmittance of each of these
DOEs is 81% at the used wavelength of 632 nm which results in an over all efficiency of 65%.
Further reduction in efficiency due to diffraction losses is a drawback of this technique as the
DOEs are binary in nature. This situation can be improved by fabricating multilevel 3D DOEs
using advanced fabrication techniques such as a grayscale EBL, scanning tip method for 3D
structuring of resist, e.g., using NanoFrazor, or polymerization via direct laser writing [21]. Flat
meta-optical elements [22] can also be used to fabricate these DOEs, which offer high resolution
spatially varying phase that can minimize diffraction losses. Higher efficiencies could be achieved
by depositing an anti-reflection coating on the DOEs. Since the purpose of DOE1 is only to
generate an intermediate Iin(r) for a predetermined axial-intensity and does not essential for
generation of the BB, the DOF ranging from few millimeters-to-centimeters can be tuned just by
changing the DOE2.
Typically it is difficult to manufacture refractive axicons with cone angles less than ∼ 1◦



which puts a limitation on the length of few millimeters of DOF. With proposed technique longer
DOFs up to centimeters are possible as the cone angle is related to the number of rings of the
diffractive axicon, which can be easily fabricated with available micro/nano-lithography tools. As
this technique does not use any spatial light modulators for beam shaping, the two compact DOEs
can be directly incorporated easily into any practical laser fabrication or imaging application.

5. Conclusions

A simple method to engineer the axial intensity of the BB, using two simple DOEs, over longer
lengths 3.5 cm is demonstrated. To the best of our knowledge this is the first time, engineering
of the beam intensity has been done over such large distances. This method is particularly
advantageous over methods that use spatial light modulators, as those devices are expensive and
difficult to include in industrial applications. We have designed DOEs to generate BBs with a
linearly increasing axial intensity and with the uniform axial intensity. Experimental results show
a good agreement with simulations.
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