Header menu link for other important links
X
Engineered In Vitro Models of Tumor Dormancy and Reactivation
, L. Sperduto John, J. Farino Cindy, H. Slater John
Published in Springer Science and Business Media LLC
2018
Volume: 12
   
Issue: 1
Abstract

Metastatic recurrence is a major hurdle to overcome for successful control of cancer-associated death. Residual tumor cells in the primary site, or disseminated tumor cells in secondary sites, can lie in a dormant state for long time periods, years to decades, before being reactivated into a proliferative growth state. The microenvironmental signals and biological mechanisms that mediate the fate of disseminated cancer cells with respect to cell death, single cell dormancy, tumor mass dormancy and metastatic growth, as well as the factors that induce reactivation, are discussed in this review. Emphasis is placed on engineered, in vitro, biomaterial-based approaches to model tumor dormancy and subsequent reactivation, with a focus on the roles of extracellular matrix, secondary cell types, biochemical signaling and drug treatment. A brief perspective of molecular targets and treatment approaches for dormant tumors is also presented. Advances in tissue-engineered platforms to induce, model, and monitor tumor dormancy and reactivation may provide much needed insight into the regulation of these processes and serve as drug discovery and testing platforms.

About the journal
PublisherData powered by TypesetSpringer Science and Business Media LLC
Open AccessNo