Experimental and numerical study of single and double-wall square tube under axial compression was carried out at a displacement rate of 100 mm/min. Two configurations of double-wall tube, viz., parallel and diamond were explored. During axial compression of double-wall tubes, crumpling takes place either at same end or at opposite ends for the two tubes. Deformation at the same end absorbs 3–5% more energy than opposite end crushing. For the same type of crumpling, diamond arrangement absorbs 5–8% more energy than parallel configuration. Two different lengths of unequal tubes for parallel and diamond arrangement were examined. It was observed that unequal length tubes improve crashworthiness characteristics. © 2021, Springer Nature Singapore Pte Ltd.