Header menu link for other important links
X
Elastic properties of graphene flakes: Boundary effects and lattice vibrations
Published in
2010
Volume: 82
   
Issue: 19
Abstract
We present a phenomenological theory together with explicit calculations of the electronic ground-state energy, the surface contribution, and the elastic constants ("Lamé parameters," i.e., Poisson ratio, Young's modulus) of graphene flakes on the level of the density-functional theory employing different standard functionals. We observe that the Lamé parameters in small flakes can differ from the bulk values by 30% for hydrogenated zigzag edges. The change results from the edge of the flake that compresses the interior. When including the vibrational zero-point motion, we detect a decrease in the bending rigidity, κ, by ∼26%. The vibrational frequencies flow with growing N due to the release of the edge-induced compression. We calculate the corresponding Grüneisen parameters and find good agreement with previous authors. © 2010 The American Physical Society.
About the journal
JournalPhysical Review B - Condensed Matter and Materials Physics
ISSN10980121
Open AccessNo