
Computers and Mathematics with Applications 53 (2007) 329–344

www.elsevier.com/locate/camwa

Efficient random walks in the presence of complex
two-dimensional geometries

Prabhu Ramachandran∗, M. Ramakrishna, S.C. Rajan

Department of Aerospace Engineering, IIT Madras, Chennai 600 036, India

Received 13 September 2005; accepted 27 February 2006

Abstract

This paper details an efficient algorithm for particles undergoing random walks in the presence of complex, two-dimensional,

solid boundaries. The scheme is developed for the simulation of vortex diffusion using the random vortex method. Both vortex

blobs and sheets are handled. The relevant modifications for using the algorithm with the vorticity redistribution technique are also

discussed. The algorithm is designed to be used in the framework of an existing fast multipole implementation. A measure for the

geometric complexity of a body is introduced and the algorithm’s efficiency is studied as various parameters are changed for bodies

of varying complexity.

c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Random walk; Vortex diffusion; Domain decomposition; Geometric complexity

1. Introduction

The primary aim of this paper is to present an efficient algorithm for particles undergoing a random walk in the

presence of complex two-dimensional geometries. This has immediate application to the simulation of vortex diffusion

in the vicinity of complex solid bodies.

Vortex methods [1,2] are grid free, particle based and are typically used to solve time dependent, incompressible,

viscous fluid flows. These methods discretize the flow into interacting elements of vorticity called vortex blobs and/or

vortex sheets. Vortex blobs are usually circular in shape. Vortex sheets are flat and usually [3] have zero thickness.

These vortex elements are tracked in time as per the governing differential equations. The computation typically

involves two steps: convection and diffusion. Convection involves the computation of the velocities induced by the

constituent vortex elements on each other and the effect of the solid boundaries. Using the computed velocity field,

the vorticity is convected in time. This can be performed very efficiently using various acceleration techniques [4–6].

Complicated geometries do not usually pose severe problems in this step.

The second computational step involves the diffusion of the vortex elements. There are several techniques for

vortex diffusion. The random vortex method (RVM) introduced by Chorin [7] is based on the fact that the diffusion

∗ Corresponding address: Department of Aerospace Engineering, IIT Bombay, Mumbai 400076, India.
E-mail address: prabhu@aero.iitb.ac.in (P. Ramachandran).

0898-1221/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2006.02.050



330 P. Ramachandran et al. / Computers and Mathematics with Applications 53 (2007) 329–344

of vorticity in a fluid of viscosity ν can be approximated by giving the vortex particles a random displacement with

a zero mean and total variance 2νt , where t is time. Therefore, during each time step, each particle must be given an

independent random displacement with zero mean and variance 2ν∆t , where ∆t is the time step. To account for the

boundary layer, Chorin [3] proposed a vortex sheet algorithm and introduced the concept of a “numerical layer”. This

is a thin layer around the body and the vortex sheets in this layer are only given a diffusion displacement normal to

the local surface. If a blob enters this region, it is to be converted into a sheet of corresponding strength. Conversely,

if a sheet leaves this layer, it is converted to a blob. The references [3,2,8,9] provide more details on the theory and

the implementation of the RVM.

Computationally, the difficulty with the RVM in the presence of arbitrary geometries is that the vortex elements

may penetrate the solid bodies or even go across them due to their random displacements. When a vortex particle

strikes the surface of a body, the usual practice is to reflect the blobs specularly. Some researchers [10], delete any

particles that enter the body. Irrespective of the scheme being used, it is difficult to efficiently determine whether the

particle strikes or crosses a complicated solid body.

Deterministic diffusion schemes for vortex methods simulate diffusion without using a probabilistic approach.

These methods do not suffer from the noise present in the RVM. The Particle Strength Exchange (PSE) method

due to Degond and Mas-Gallic [11] and the Vorticity Redistribution Technique (VRT) due to Shankar and Van

Dommelen [12,13] are commonly used methods. Both algorithms produce very accurate results [14,12]. However,

these methods are computationally more expensive than the RVM. Complex geometries also cause complications for

these schemes. Ploumhans et al. [15,16] have developed a method to handle the accurate redistribution of vorticity

using the PSE scheme in the presence of arbitrary bodies. Their method is specifically tailored to the PSE scheme. The

VRT is similar in principle to the PSE. In order to simulate diffusion, one distributes the circulation of a given vortex

blob to other blobs that are located within a multiple of the diffusion length scale,
√

Kν∆t , where K is a constant

chosen [13] as 12. A linear programming problem is solved in order to determine the amounts of circulation that are

to be distributed. If no solution is possible, new vortices of zero strength are added adaptively until the solution is

feasible. In [17] an overview of the VRT is provided. The VRT does not require special treatment at the boundaries,

except that one must ensure the obvious condition that there is no transfer of vorticity across a boundary. In the

presence of complex geometries one has to find particles in a neighbourhood of the diffusing vortex element so that

the line between the particles is not intersected by a boundary. In general this is not easy to determine.

In this paper an efficient methodology is developed for handling the above difficulties with diffusion in the presence

of arbitrary two-dimensional shapes. Certain ideas from the fast multipole algorithms are used in order to make the

computations more efficient.

Other work reported in literature that address diffusion in the vicinity of arbitrary geometry do not quantify

geometric complexity. This paper provides a simple measure of this geometric complexity. The algorithm developed

here is shown to scale efficiently as this complexity increases. The method is first described in detail using the random

vortex method and is later extended to the vorticity redistribution technique.

The basic idea behind the algorithm is to discretize the geometry into linear segments. The domain containing the

blobs and solid boundaries is then decomposed into a quad-tree of cells, much like the computational cells of the fast

multipole methods [18,4,5,19]. The particles are then tracked along the cells as they move. If the particle strikes a

body it is reflected appropriately. Sheet–Blob conversion issues are also considered. The algorithm is designed so that

it is possible to extend an existing adaptive fast multipole method implementation.

It is to be noted here that the present work does not propose a new diffusion scheme. The aim of the paper is to

provide an efficient means to use existing diffusion schemes in the presence of complex geometries. The main aims

of the paper are as follows.

• Provide an efficient algorithm to handle randomly moving particles in the presence of complex geometries.

• Apply the algorithm to the random vortex method and show how to adapt it for use with the VRT.

• Use components of the fast multipole algorithm in order to perform efficient domain decomposition. In the process

the paper also provides a generalized version of the domain decomposition for source and target particles similar

to the work of Strickland and Baty [20].

• Provide a simple measure for geometric complexity.

• Demonstrate that the algorithm works efficiently for complex geometries.



P. Ramachandran et al. / Computers and Mathematics with Applications 53 (2007) 329–344 331

The algorithms developed in this paper are somewhat involved and detailed descriptions are necessary in order to

make it easy for the reader to understand and implement them. A description of the present algorithm is available with

a brief introduction on vortex methods as an internal report [21] by the same authors.

2. Vortex diffusion in the presence of arbitrary boundaries

Irrespective of the diffusion technique used, there are important issues that need to be considered when diffusing

vorticity in the presence of arbitrary boundaries. For the RVM, the sheets are constrained to a random displacement

perpendicular to their plane. Further, the presence of the numerical layer requires that the blobs be converted to sheets

and vice versa. To this end, one is required to track the particles and reflect them as and when they strike a solid surface.

For simple geometries this can be trivial. For arbitrary bodies it can become highly complicated and inefficient to do

this. The conversion of blobs to sheets and vice versa complicates the situation further. The VRT or any similar scheme

requires particles within some radius of a diffusing particle to be identified. The line connecting the diffusing particle

and its neighbors must not intersect any solid boundaries. The list of interacting particles must be carefully chosen.

Hence, it is clear that in order to simulate the flow past arbitrarily shaped bodies, an efficient algorithm to deal with

these complications must be obtained. The following are important issues to be considered when developing such an

algorithm.

1. Discretization of the body geometry: In the present work this is done by discretizing the body into a set of linear

panel elements.
2. Ensuring that the particle paths do not penetrate solid walls: In general it is important to be able to check if an

arbitrary line segment intersects part of the boundary.
3. Particles may have extent: These particles have to be handled carefully because it is to be ensured that no part of

the particle penetrates the surface. Vortex blobs are typically circular and vortex sheets are oriented line segments.
4. The entire procedure must be computationally efficient and not unduly hard to program.

The techniques to deal with the above are first discussed for the RVM. These can be modified to work for the VRT.

The basic idea is as follows. The body geometry is discretized into linear panels. The domain of diffusing particles is

split based on a modification of the adaptive fast multipole method (AFMM) [4]. The particles that strike a panel are

reflected specularly. Particles that enter or leave the numerical layer are converted to sheets or blobs respectively. The

methodology is now discussed in greater detail.

2.1. Domain decomposition

The most important step in the efficient formulation of the problem is to perform a domain decomposition. An

adaptive quad-tree structure is used to organize the interacting particles and panels. It is noted that a quad-tree structure

is also used in adaptive fast multipole methods (AFMM). Hence an effort is made to draw an analogy between the

presently developed algorithm and the one used in the AFMM. It is shown that the AFMM domain decomposition can

be generalized and used for both the present scheme and for the AFMM.

The domain is split up into cells that contain all the particles (blobs and sheets) and the panels. Depending on the

number of vortex elements and panels in a particular cell, it may be split into four daughter cells. An unsplit cell is

referred to as a childless or leaf cell. The split cell is called a parent. A branch cell is synonymous with a parent cell.

The cell splitting can also be controlled based on the size of the cell.

The first cell, that contains all the particles and panels is defined to be at level 0. If a cell is at level l, cells of the

next level l +1 are obtained by splitting it into four daughter cells. Consider a cell b at a level l. The colleagues of cell

b are defined as all the cells at the same level l that share either a side or corner with it. This is illustrated in Fig. 1.

In order to simplify and generalize the subsequent discussions, the particles are viewed as causes or effects. As

causes, they influence the effects. The effects are merely influenced by the causes. Treating the particles in this

manner results in a very general algorithm for the domain decomposition that can be used efficiently in a wide

variety of schemes. Consider the following example where the AFMM is used to compute velocities due to blobs.

The computational domain contains blobs and passive particles. The passive particles by definition are effects as

they do not induce a velocity on anything. The blobs influence all particles (blobs and passive particles). Therefore,

the blobs are causes and both the blobs and passive particles are effects. This example brings out the fact that the

interacting elements have two types of manifestations, causes and effects.



332 P. Ramachandran et al. / Computers and Mathematics with Applications 53 (2007) 329–344

Fig. 1. The colleagues of cell b.

The general case is complicated by the addition of sheets and panels. In the present case of diffusion using the

RVM, in the presence of arbitrary geometries, the following points are to be noted.

1. Blobs do not influence the random walk of other blobs.

2. Blobs and sheets are influenced by panels.

(a) Blobs and sheets can intersect panels.

(b) The terminal position of a blob may be in the numerical layer of a panel, resulting in its conversion to a sheet.

Similarly, the terminal position of a sheet might be outside the numerical layer resulting in its conversion to a

blob.

Therefore the panels are the cause elements and everything else is an effect element. Generally, the number of causes

and effects are not the same. In the present case the number of effects (blobs and sheets) far exceed the number of

causes (panels).

The idea behind the cell splitting is similar to that used in fast multipole techniques and is based on the proximity

and number of the interacting cause and effect elements. For the case of a diffusing particle, given a particle path, one

has to determine if the path will intersect the body. The following points are to be noted.

1. As the particle passes through a cell, it is required to check if its path intersects with any of the panels in that cell. If

there are many panels in a cell then there are more intersection checks that have to be made. Hence, it is a good idea

to reduce the size of the cell and thereby reduce the number of checks in that cell. It is to be noted that if the cell size

is too small (i.e. much smaller than the length of the path), then creating more cells would mean that the particle

path is to be traced through more number of cells (tracking a particle through cells also involves computational

effort). In practice an optimal choice of cell size is to be made based on a few numerical experiments.

2. If there are very few panels and particles in a cell it is efficient to leave the cell as it is.

3. If a cell b contains a large number of causes (panels) and very few effects (particles) and if a neighbor c contains a

large number of effects then it is likely that a particle present in c will enter cell b. By splitting b the intersection

checks made on all such particles entering from a neighbor may be reduced.

4. Just as in the previous case, if a cell b contains a large number of effects and few causes then the decision to split

it depends on the nature of its colleagues.

The domain decomposition used by the AFMM as applied to blobs and tracer particles can be expressed in terms

of causes and effects as follows.

A. If there are a large number of causes and effects in a cell, then it would be inefficient to perform a direct computation

between the cause and effect elements in the cell. Therefore the cell needs to be split into daughter cells.

B. If there are a very small number of causes and effects in the cell, then it is faster to perform the direct computation

between the cause and effect elements in the cell rather than further subdividing the cell. Therefore the cell should

be left alone and stored as a leaf/childless cell.

C. If there are a large number of cause elements but small number of effects in the cell b, then the decision to split

depends on the nature of its colleagues. This is because, if there are a larger number of effects in any of the

colleagues, c, then it would be expensive to do the computations between the causes in cell b and the effects in c.

Hence, if any of the colleagues c, of cell b have a large number of effects, then cell b is split into daughter cells.



P. Ramachandran et al. / Computers and Mathematics with Applications 53 (2007) 329–344 333

Fig. 2. The shaded region indicates the region between two panels which does not belong to either panel.

This will reduce the number of computations that have to be performed between the causes of cell b and the effects

in c. If there are no such colleague cells then the cell b can be stored as a leaf/childless cell.

D. Similarly, if there are a large number of effect elements but small number of causes in the cell b, then it should be

split if any of its colleagues c, have a large number of causes. If there are no such colleague cells then the cell b

can be stored as a leaf/childless cell.

As opposed to the traditional domain decomposition employed in the AFMM, where only causes (blobs, charges,

etc.) are considered, the above domain decomposition (A through D) can handle situations where the velocity on blobs

and passive particles are computed.

Clearly, there is a direct correspondence between items 1 through 4 and A through D in the above discussion.

Hence, the same domain decomposition algorithm can be used without loss of efficiency for both the present scheme

and fast multipole methods. In [22,23] the authors apply this domain decomposition algorithm to a fast multipole

scheme for panel methods. Strickland and Baty [20] also propose a similar scheme to handle independent “source”

(cause) and “target” (effect) fields. Their scheme creates separate cells for the sources and targets whereas the present

scheme creates a single set of cells with each cell containing both causes and effects.

Using such a domain decomposition algorithm one constructs a mesh of childless cells that divides the particles

based on their proximity and number. In the present case, for the efficient treatment of diffusion, the existence of a

panel in a cell is determined by some representative point of the panel. For example the center of the panel can be

used. Since the panels have extent, a single point representation of the panel is insufficient because one has to check if

the path of a particle intersects the panel. It is possible that a cell does not contain the representative point and yet has

the panel passing through it. This problem is solved by associating a panel with more than one cell and is discussed

in the next section.

2.2. Domain decomposition in the vicinity of a panel

As the panel has extent and in the case of the RVM, the panel has a numerical layer associated with it, it must be

treated as a box. This box has a length equal to that of the panel and a height equal to that of the numerical layer. If

the body is curved, there are further complications since the region between two boxes as indicated in Fig. 2 does not

belong to either box. A blob entering this region will not be converted into a sheet. This problem can be alleviated by

using a trapezium instead of a rectangle for the box. The trapezium can be found by extending the top side of each

box till they intersect. Then the sides of the trapezium are bounded by the panel, the plane parallel to the panel at the

height of the numerical layer and the other two sides are shared with neighboring boxes. The resulting trapezium is

henceforth called a viscous box. Even if the panels move/deform, since the motion of the panel is known, the new

viscous box can be easily obtained.

It is to be noted that Fig. 2 is for the case of a convex surface. For a concave surface, the viscous boxes will be

formed by the intersection of the top sides of the viscous boxes.

Once the body geometry is specified, the geometry of the viscous boxes are known. Using an implementation of

the domain decomposition algorithm discussed in Section 2.1, the domain is first decomposed in terms of the panel

centers or some representative point, called the control point, inside the viscous box. Thus, each viscous box is initially

identified with one childless cell. Due to the extent of the viscous box, parts of it will also be in other cells. In Fig. 3

the viscous box is initially assigned to cell 1 alone. All its neighboring cells also contain parts of the viscous box and

this information must be updated in those cells. A cell is said to contain a viscous box if a side of the box passes

through the cell. All the childless cells are modified based on this.



334 P. Ramachandran et al. / Computers and Mathematics with Applications 53 (2007) 329–344

Fig. 3. A viscous box passing through various cells.

The following procedure is applied to modify the childless cells that are created by the domain decomposition.

A viscous box is considered. For each of these boxes the control point is within some cell created by the domain

decomposition. Starting at the control point, a path is traced to an edge of the box. The path continues along lines

constituting the trapezium. In this process, the different childless cells that are traversed are modified to reflect the

existence of a part of this viscous box in them. Care is to be taken to avoid repetitions when the cell already contains

the particular box. The procedure is illustrated in Fig. 3, where the viscous box passes through the cells numbered

1 through 6. After performing the domain decomposition only cell 1 will contain the particular viscous box. After

performing the above mentioned procedure, cells 2, 3, 4, 5 and 6 are also made to contain part of the viscous box. The

process is repeated for all the viscous boxes. This procedure will fail if a cell is completely enclosed by the viscous

box because in that case no side of the trapezium will pass through the cell. This can be easily prevented by enforcing

the condition that every cell has a side larger than the smallest side of all the trapezia.

The pseudo-code for tracking a side of the viscous box is given in Algorithm 1. z1 and z2 are the end points of the

line (side of the viscous box) that are being tracked. The most vital component in this algorithm is the one that tracks

the side of the trapezium through the various cells using the FindNextCell function. It is evident that this tracking

algorithm is also important for the case of the random walk of particles. The details of the algorithm for tracking a

line segment are elucidated first.

Algorithm 1 TrackLine(box, z1, z2, C)

NextCell = FindNextCell (z1, z2, C)

if NextCell 6= C then

if NextCell does not contain box then

Set box in NextCell.

end if

TrackLine(box, z1, z2, NextCell)

end if

The current discussion is restricted to two dimensions and hence the complex plane is used to describe the

algorithm. Let the start and end points of the straight line being tracked be labelled z1 and z2 respectively, where

z is the complex coordinate. Let z12 be the line joining z1 and z2. Assume that the tracking is started at a childless cell

C which contains the point z1.

It is determined if the point z2 lies within the current cell C . If it does, then the line segment z12 is wholly in the

cell C . If it does not, then it crosses over into one of the colleagues of C , intersecting the side of the cell at ztmp. This

side identifies the colleague C1 as shown in Fig. 4. Then, the childless cell Ctmp that contains ztmp is found. This will

be either C1 or one of C1’s descendents or one of its ancestors. In Fig. 4, Ctmp is one of C1’s descendents. In order to

continue tracking from the cell Ctmp, the process is repeated with C = Ctmp and z1 = ztmp. In this fashion, the cells



P. Ramachandran et al. / Computers and Mathematics with Applications 53 (2007) 329–344 335

Fig. 4. Schematic of a line passing through various cells. The line joining z1 and z2 originates in the cell C and passes through the descendents of

its colleague C1.

through which z12 passes can be found. The pseudo-code to find the next cell (FindNextCell) is given in Algorithm 2.

Algorithm 2 FindNextCell(z1, z2, C)

if Line z12 crosses any side of C then

Find the side, S, of C , that the line z12 crosses.

Find intersection of S and z12 and store as ztmp.

Find the colleague, C1, of C , that shares S.

Find the childless ancestor or descendent Ctmp, of C1, that contains ztmp.

z1 = ztmp

return Ctmp.

else

return C

end if

Using implementations of the above algorithms it is easy to find all the cells that contain parts of a viscous box.

After applying the algorithms to all the viscous boxes, it is possible to check for intersections of particle paths with

the viscous boxes in each cell. The details of this methodology as applied to the RVM are discussed next.

2.3. Diffusion using the random vortex method

Diffusion of blobs and sheets using the RVM is accomplished by giving them random displacements. The sheets

are given displacements perpendicular to the local panel surface and the blobs are given random displacements in each

coordinate direction (x and y in two dimensions). The paths of the diffusing blobs and sheets are to be checked for

intersections with any panel. Clearly, the displacement of the blob or sheet at a given time step is a straight line. If a

blob enters a viscous box it is to be converted to a sheet and vice versa. A variant of the Algorithms 1 and 2 are used

here and described below. The following observations need be noted before the algorithm is presented. Every blob is

initially associated with a childless cell of the mesh. As the cells are critical to the tracking algorithm, the diffusion is

done one cell at a time. It is also to be remembered that one side of each viscous box is associated with a linear panel

that represents the solid surface. The other sides of the box are used to represent the numerical layer.

A blob in a childless cell, C , is considered. It’s initial position is z1 and the final position is z2. The line joining the

two points, z12, is tracked through all the childless cells in a manner similar to the Algorithm 1. This is also illustrated

in Fig. 4. First, it is determined if the point z2 lies within the current cell C . If it does then the blob is checked for

reflections with panels inside the current cell. If the point z2 is not inside the cell C , then the line segment z12 crosses

the cell. Therefore, the segment of z12 inside the current cell is found using ztmp obtained from Algorithm 2. This

segment is checked for intersections with all panels in the current cell. If there is no intersection then the algorithm

proceeds from the next cell. If there is an intersection, the reflected path is computed. The same algorithm is then

applied to the reflected path. The pseudo-code embodying the above discussion is given below.

The final value of z2 is the final position of the particle. The methodology to check for intersections between the

particle path and the panels is discussed next. For the case illustrated in Fig. 5, the panel associated with the viscous



336 P. Ramachandran et al. / Computers and Mathematics with Applications 53 (2007) 329–344

Algorithm 3 CheckPath(z1, z2, C)

if Line z12 crosses any side of C then

Find the side, S, of C , that the line z12 crosses.

Find intersection of S and z12 and store as ztmp.

Last = f alse

else

ztmp = z2

Last = true

end if

if Line joining z1 and ztmp intersects any panel in C then

Find the panel that is intersected first.

Find reflected ray and store the path in new z1, z2.

CheckPath(z1, z2, C)

else if Last == f alse then

Find the colleague, C1, of C , that shares S.

Find childless descendent or ancestor Ctmp, of C1, that contains ztmp.

z1 = ztmp

CheckPath(z1, z2, Ctmp)

end if

Fig. 5. Illustration of algorithm used to check intersections of blobs with a panel.

box and the relevant points are transformed to a local coordinate system. If the line joining z1 and z2 is the path of

the particle, it is evident that it is not always necessary to compute the value of xint, the point where the line intersects

the x axis. One can eliminate quite a few intersection checks by looking at the relative signs of y1 and y2. Therefore,

in the present implementation, the first check is to see if an intersection is possible. If it is, then the value of xint is

computed and compared to see if 0 ≤ xint ≤ l where l is the length of the panel. In some cases there can be more

than one panel in the same cell that the line crosses. In such a case all the intersecting panels are considered and the

panel that has the closest intersection point is to be chosen for the reflection and the corresponding distance is given by,
√

(xint − x1)2 + y2
1 . The intersection point is given as (xint, 0) and the final point is reflected such that z2 = (x2, −y2).

It is possible to use a different reflection scheme or even delete the intersected blob, as done in [10].

The same algorithm can be used for the sheets. However, it can be simplified since the displacement of the sheets

is only perpendicular to the local surface. The terminal position of the particle determines whether it is a sheet or a

blob. If sheets are not used at all as in [10,24–26] then the complications due to the conversion are removed.

Usually, vortex blobs have a finite core and it may be necessary to ensure that the blob core does not penetrate a

panel. In such a case the intersection check must be done by using the points closest to the panel and not the center



P. Ramachandran et al. / Computers and Mathematics with Applications 53 (2007) 329–344 337

Fig. 6. Illustration of algorithm used to check intersections of blobs having a finite core radius, δ, with a panel.

of the blob. In local coordinates this reduces to the bottom of the blob as shown in the Fig. 6. This can be easily

incorporated in the present algorithm by doing the following. In Fig. 6, instead of considering the actual heights in

the local coordinate system, the radius of the blob, δ, is subtracted from the heights and the resulting line is used to

perform the check. This merely requires two extra subtractions. However, a blob with a core does require little more

care than this. Since the blob has extent, it is not sufficient to check for intersections inside the current cell alone.

One must also check for intersections in all cells that the blob will pass through by virtue of its extent. This is done

by treating the blob as a square, finding all the cells that it influences as it passes through a cell and checking for

intersections with panels in each of them. This is not difficult to do but does require some care and effort in order to

be performed efficiently. It also increases the computational time taken by the algorithm since the number of cells to

consider is larger.

One final point to note is that there are cases where the angle between two adjacent panels is very small and forms

a concave region. If a particle having a finite core radius performs a random walk into this region, it is possible for

it to become stuck between the two panels as it approaches the intersection of the two panels. To avoid this case one

must store the length of the path between two consecutive reflections. If the length is reducing and tending to zero the

particle could be placed at the corner without undergoing any further reflections. Alternatively, the particle may be

reflected along the bisector of the angle between the two panels.

In this fashion, the collisions of moving particles with the solid boundary are handled. Using the algorithms

discussed above, it is clear that vortex diffusion in the presence of arbitrary boundaries can be carried out when

using the RVM. The algorithm is also immediately applicable to particle advection. In this case, the displacements of

the particles are not drawn from a random number generator but depend on the velocity field and time step. By using

these displacements it is possible to perform advection in the presence of complex geometries. In the next section the

modifications to the algorithm in order to handle the VRT are discussed.

2.4. Diffusion using the vorticity redistribution technique

In the VRT, neighboring particles of a given particle are defined as those which lie within a radius,
√

Kν∆t . The

vorticity of a particle is to be redistributed to its neighbors. To successfully implement the VRT in the presence of

arbitrary boundaries it is imperative that one does not redistribute vorticity to particles that are separated by a solid

boundary. Hence, given two interacting particles, it is required to check if the line z12 joining the particles intersects

any panel. The check is simpler here, since unlike the RVM, the length of z12 is bounded by
√

Kν∆t . Further, if the

line joining any two particles intersects a panel, then the recipient particle can be immediately rejected. There are also

no conversion and reflection issues. Similarly, when new particles are to be introduced by the diffusion procedure,

checks can be applied so that the new particles are not introduced across a boundary. It is apparent that the algorithms

developed for the RVM can be modified and used for the VRT.



338 P. Ramachandran et al. / Computers and Mathematics with Applications 53 (2007) 329–344

Fig. 7. Cd versus T curves for an impulsively started cylinder at Re = 1000. T = Ut/R where U is the free stream velocity, R the radius of the

cylinder and t time in seconds. The circles are the values obtained by Koumoutsakos and Leonard [14] and the lines represent the computations

in [27].

The domain decomposition for the VRT will be slightly different from the RVM since for each diffusing particle,

neighboring particles have to be found efficiently. Therefore, a cell must be split into children depending on the

number of panels and blobs in it (i.e. both of them must be cause elements for the domain decomposition algorithm).

If the smallest cell size is not smaller than
√

Kν∆t , then only the colleagues of the cells need be checked for

neighboring particles. The viscous box height can also be chosen as
√

Kν∆t . After refining the mesh, all blobs

that are within a viscous box can be identified and tagged. Consequently, only tagged blobs need be checked for

intersections with panels. If a blob is not tagged, then it can safely diffuse to the particles in its vicinity. This also

holds when new particles are introduced. The modified algorithms can now be applied to the VRT in the presence of

arbitrary boundaries.

The next section demonstrates the utility and capabilities of the algorithms developed here using numerical

computations.

3. Numerical results

The utility and accuracy of the developed algorithm in simulating well-known benchmark problems is first

demonstrated. The flow past an impulsively started circular cylinder in an infinite mass of stationary fluid is considered

as a benchmark problem. This is a well studied problem and extensive computational data is available. In [9], the

authors simulate diffusion using the RVM and employ the developed algorithm to handle diffusion. Preliminary

results of their computations are compared with results from the high accuracy simulations of Koumoutsakos and

Leonard [14]. The agreement is found to be reasonable. Subsequently, in [27], high resolution simulations are

performed using the RVM for diffusion along with the algorithm detailed in the present work. The algorithm is

applied to both the advection and diffusion of the particles. The results from these computations are compared with

those of Koumoutsakos and Leonard [14] who employ the PSE technique to simulate diffusion. Their computations

are considered to be a DNS of the problem. In Fig. 7, the drag coefficient is plotted versus a non-dimensional time.

The solid line plots the pressure drag and the dashed line plots the friction drag. The symbols represent results from

Koumoutsakos and Leonard [14]. Clearly, the agreement is very good. It is important to note that the agreement is

excellent for both the pressure and friction drag. This shows that the developed algorithm captures the diffusion of

vorticity accurately, while being efficient and applicable to arbitrary geometries.

In order to demonstrate the efficiency of the algorithm developed, a complex body geometry is considered.

Particles are distributed on the surface of the body and diffused using random walks. The computational time

taken by the algorithm for a fixed number of time steps is plotted as various parameters are varied. In order to



P. Ramachandran et al. / Computers and Mathematics with Applications 53 (2007) 329–344 339

Fig. 8. Illustration of the geometry chosen for study at level 1 and 2.

Table 1

Geometric complexity of the body

Construction level Number of sides Geometric complexity, C

0 3 1

1 12 3

2 48 11

3 192 43

4 768 171

characterize the geometric complexity of the body, a measure for the geometric complexity is necessary. Using a

fractal dimension in this context is not useful because geometries considered in such computations are not truly

fractal and can at best be finite iterations of a fractal construction. Using a complexity measure from information

theory (e.g. Kolmogorov complexity) also does not seem appropriate for the present study. The following properties

for the geometric complexity seem desirable:

1. The measure must be purely geometric and must not depend on the number of panels used to discretize the body.

2. The measure must be a scalar and insensitive to rotation, translation and scaling.

3. If the number of bodies is multiplied by an integer k, then the measure must also scale by k.

4. The measure must be easy to compute.

A simple measure for the geometric complexity, C, of a body that satisfies all of the above can be defined as

follows. Let G be the sum of the absolute change in the angle of inclination of the tangent as the contour of the body

is traced. Consider an equilateral triangle, if one starts at a vertex and traces the contour of the body, it is clear that

at each vertex, the inclination of the tangent changes by 2π/3 rad. There are three such vertices and therefore for an

equilateral triangle, G = 2π . In similar fashion it can be seen that for simple geometries like triangles, rectangles,

closed convex polygons and circles, G = 2π . Hence, the geometric complexity is defined in terms of G as C = G/2π .

Evidently, this measure is incapable of differentiating between a circle and a convex polygon. However, for a closed

body that has concave depressions and convex projections, it does show an increase in complexity. Any concavity or

projection complicates the intersection algorithm because such regions would increase the number of intersections

that a randomly diffusing particle would make with the body.

For the present study, in order to construct geometries with varying complexities easily, a fractal construction is

chosen. At level 0 of the construction, an equilateral triangle is considered. Each side of the triangle is split in the

manner of a Koch snowflake [28]. The first and second levels of construction are shown in Fig. 8. One can easily

compute the complexity of such a body at any level of construction. Table 1 shows the variation of complexity as the

number of levels of construction of the body shown in Fig. 8 increases. As is evident, the complexity of the body

increases rapidly.

In order to test the present scheme, point vortices are distributed on the inner or outer surface of the body. The

particles are diffused and the computational time taken is plotted as different parameters are varied. Since we are

interested in testing the random walk algorithm alone, no convection is performed. Figs. 9 and 10 show the particles

and the body used after 50 time steps. In Fig. 9 the particles are placed on the outer surface of the body and diffused.

In Fig. 10 the particles are distributed on the inner surface of the body. 49 152 particles are used and the body has 576

equal sized panels. The body chosen is at level 3 and has a geometric complexity of 43. As is evident, none of the

particles cross the body. The maximum number of cause and effect particles allowed per cell is fixed for all simulations



340 P. Ramachandran et al. / Computers and Mathematics with Applications 53 (2007) 329–344

Fig. 9. Simulation of diffusion outside the body at level 3 of its construction. 49 152 vortex blobs are used in the simulation. The blobs are initially

distributed on the outer surface of the body. The non-dimensional width of the body is 1. The figure is a plot at the end of 50 time steps.

Fig. 10. Simulation of diffusion inside the body at level 3 of its construction. 49 152 vortex blobs are used in the simulation. The blobs are initially

distributed on the inner surface of the body. The non-dimensional width of the body is 1. The figure is a plot at the end of 50 time steps.

as 10. The non-dimensional length of a side of the equilateral triangle that is used to generate the body (i.e. the body

at level 0) is unity. For simplicity, no sheet–blob conversion is performed. In order to stress-test the algorithm, the

viscosity ν, and the time step ∆t are chosen such that large random displacements are generated. In the present work

ν and ∆t are chosen such that the standard deviation of the random displacement is σ/L =
√

2ν∆t/L = 0.1, where L

is the length of the side of body. This is 10% of the size of the body and is quite a large displacement. The computations

in [14] for the flow past a cylinder at a Reynolds number of 40 use a ∆t of 0.02. Simulating this using the RVM would

therefore require the generation of random displacements having a σ/L of about 0.032. The present displacement is

about 3 times larger and therefore seems a reasonable choice to use when testing the diffusion algorithm.

To study the efficiency of the algorithm, the computational time is plotted against the complexity of the body in

Fig. 11. For each body of given complexity the number of panels used is 768. The panels are equally sized. 49 152

vortex particles are used. The complexity of the body varies from 1 to 171. All other parameters are held fixed. The

dashed line is for the internal diffusion case and the solid line is for the external diffusion case. It is clear that despite

the great increase in complexity, there is only a 15% increase in the computational time. Due to more number of

reflections, the internal diffusion case takes more computational time.



P. Ramachandran et al. / Computers and Mathematics with Applications 53 (2007) 329–344 341

Fig. 11. Plot showing the variation of time taken for 50 time steps versus geometric complexity of the body. 49 152 vortex blobs are used in the

simulation and 768 equal sized panels are used for the body.

Fig. 12. Plot showing the variation of time taken for 50 time steps versus number of panels used. 49 152 vortex blobs are used in the simulation

and the complexity of the body is 43 (i.e. the body is at level 3 of the fractal construction).

Fig. 12 plots the variation of the computational time as the number of panels is changed for a given number of

particles (49 152) and complexity (43). Here again, despite a seven fold increase in number of panels there is only

a 25% change in the time taken. As the number of panels increases, the time taken increases almost linearly. This

indicates that the algorithm is efficient. Fig. 13 plots the variation of the computational time versus number of blobs

used in the simulation. As expected, this is linear. 576 equal sized panels are used for the body and the complexity of

the body chosen is 43.

For a simulation of diffusion inside the body at level 3 (complexity 43) with 768 panels and 49 152 particles

the maximum number of cause and effect particles is chosen as 1000. This ensures that there is only one cell in

the computation and hence all the particles are checked for intersections with all the panels. It is seen that this

computation takes more than 45 times the time taken when the maximum number of causes and effects is set to

10. This clearly demonstrates the efficiency of the new procedure as compared to naive intersection checks without

any domain decomposition.

In order to demonstrate the speed of the algorithm in realistic situations the uniform flow past two different complex

body shapes is simulated. The reason for the simulations are two fold. The first is to demonstrate that the algorithm

works in a realistic situation with advection and sheet blob conversions even when complex shapes are considered. The

second is to provide an estimate of the efficiency of the algorithm as compared to the other computations (like the fast

multipole velocity evaluation) involved in the simulation. For the simulation, an adaptive fast multipole method [4],

using the modified domain decomposition has been implemented to compute the velocity due to the blobs on each



342 P. Ramachandran et al. / Computers and Mathematics with Applications 53 (2007) 329–344

Fig. 13. Plot showing the variation of time taken for 50 time steps versus number of blobs used in the simulation. 576 equal sized panels are used

in the simulation and the complexity of the body is 43 (i.e. the body is at level 3 of the fractal construction).

Fig. 14. Vorticity distribution for flow past the body at T = 1.32.

other. A linear vortex panel method is used to satisfy the no penetration condition on the boundary. A fast multipole

technique [22] is also used to evaluate the velocity field due to the panels. Results for the random vortex diffusion

scheme are shown. In the first case, the body has a geometry as shown in Fig. 14. 434 equal sized panels are used to

discretize the shape. The viscous boxes use the same panels as the ones used to satisfy the no penetration on the body.

For the simulation, the relevant parameters are chosen as Re = 1000 and ∆T = 0.0044, where T = Ut/R, U is the

free stream velocity and R is the radius of the cylinder. The numerical layer height is taken as ǫ = 0.011 units. The

resulting vorticity distribution at the end of 301 time steps is shown in Fig. 14. There are about 25 000 particles in the

flow at this time. The red colored blobs and yellow colored sheets represent clockwise vorticity. The blue blobs and

cyan sheets represent anti-clockwise vorticity. The strength of each blob is 7.868 × 10−4 units. As is evident, none

of the particles have entered the body, indicating a successful implementation of the diffusion algorithm. At the end

of 301 time steps, (i.e. a total time of T = 1.32), the computational time taken by the diffusion algorithm is about

3.44% of the total time taken by the fast multipole method. This corresponds to 2.5% of the time taken for the entire

simulation.



P. Ramachandran et al. / Computers and Mathematics with Applications 53 (2007) 329–344 343

Fig. 15. Vorticity distribution for flow past a complex shape at T = 2.5.

In Fig. 15 the vorticity distribution for the flow past the shape given in Fig. 8 at level 2 and having complexity of 11

is shown. 576 equal sized panels were used to discretize the body. The flow is at an angle of 45◦ to the horizontal. The

Reynolds number is based on the width of the body. The flow parameters are chosen such that the Reynolds number

is 1000. The figure shows the vorticity distribution at the end of 1000 time steps using a ∆T = 0.0025. At this time

there are about 45 000 particles in the flow. It is evident that none of the particles have entered the body. For this

simulation, the time taken for the diffusion algorithm is about 2.1% of the time taken for the fast multipole algorithm

and only 1.6% of the total simulation time.

Considering the fact that the shapes are arbitrary, the above times for the two different simulations are certainly

acceptable. From the earlier discussions, it is evident that an increase in the number of panels or geometric complexity

will not change the computational time of the diffusion significantly. It is also evident that once a wake structure is

created, the diffusion algorithm will perform more efficiently. This is because a greater fraction of the particles are in

the wake and these particles require fewer intersection checks due to their distance from the body.

4. Conclusions

In this paper a new and efficient technique for random walks in the presence of arbitrary body geometries in

two dimensions has been successfully developed. Since the technique uses existing components of the adaptive

fast multipole algorithm, it is easier to implement. The method has been shown to work for flows using the RVM

for diffusion. It is easy to modify the algorithm developed here to work for the vorticity redistribution technique.

The modifications are also discussed. A measure for the geometric complexity of a body is introduced. The paper

demonstrates that the entire scheme is very efficient. In principle, it should be possible to extend this work to three

dimensions but this will necessarily be more involved and complex.

Acknowledgement

The authors would like to thank Prof. Vinita Vasudevan of the Department of Electrical Engineering, IIT-Madras,

for her suggestions.

References

[1] G.-H. Cottet, P. Koumoutsakos, Vortex Methods: Theory and Practice, University Press, Cambridge, March 2000.

[2] E.G. Puckett, Vortex methods: An introduction and survey of selected research topics, in: R.A. Nicolaides, M.D. Gunzburger (Eds.),

Incompressible Computational Fluid Dynamics — Trends and Advances, Cambridge University Press, 1991, p. 335.

[3] A.J. Chorin, Vortex sheet approximation of boundary layers, Journal of Computational Physics 27 (3) (1978) 428–442.

[4] J. Carrier, L. Greengard, V. Rokhlin, A fast adaptive multipole algorithm for particle simulations, SIAM Journal on Scientific and Statistical

Computing 9 (4) (1988) 669–686.

[5] L. van Dommelen, E.A. Rundensteiner, Fast, adaptive summation of point forces in the two-dimensional Poisson equation, Journal of

Computational Physics 83 (1989) 126–147.

[6] C.R. Anderson, An implementation of the fast multipole method without multipoles, SIAM Journal on Scientific and Statistical Computing

13 (4) (1992) 923–947.



344 P. Ramachandran et al. / Computers and Mathematics with Applications 53 (2007) 329–344

[7] A.J. Chorin, Numerical study of slightly viscous flow, Journal of Fluid Mechanics 57 (4) (1973) 785–796.

[8] A.Y. Cheer, Unsteady separated wake behind an impulsively started cylinder in slightly viscous fluid, Journal of Fluid Mechanics 201 (1989)

485–505.

[9] P. Ramachandran, M. Ramakrishna, S.C. Rajan, Particle based flow solvers for incompressible flows in two dimensions: Impulsively started

flow past a circular cylinder, Journal of the Aeronautical Society of India 53 (2) (2001) 102–110.

[10] N.R. Clarke, O.R. Tutty, Construction and validation of a discrete vortex method for two-dimensional incompressible Navier–Stokes

equations, Computers and Fluids 23 (6) (1994) 751–783.

[11] P. Degond, S. Mas-Gallic, The weighted particle method of convection–diffusion equations, part 1: The case of an isotropic viscosity, part 2:

The anisotropic case, Mathematics of Computation 53 (188) (1989) 485–526.

[12] S. Shankar, A new mesh-free vortex method. Ph.D. Thesis, The Florida State University, FAMU-FSU College of Engineering, 1996.

[13] S. Shankar, L. van Dommelen, A new diffusion procedure for vortex methods, Journal of Computational Physics 127 (1996) 88–109.

[14] P. Koumoutsakos, A. Leonard, High-resolution simulations of the flow around an impulsively started cylinder using vortex methods, Journal

of Fluid Mechanics 296 (1995) 1–38.

[15] P. Ploumhans, G.S. Winckelmans, J.K. Salmon, Vortex particles and tree codes: I. flows with arbitrary crossing between solid boundaries and

particle redistribution lattice; II. vortex ring encountering a plane at an angle, in: A. Givoannini, G.-H. Cottet, Y. Gagnon, A.F. Ghoniem,

E. Meiburg (Eds.), Vortex Flows and Related Numerical Methods III (Proceedings of the Third International Workshop on Vortex Flows and

Related Numerical Methods Toulouse, France, August 1999), in: European Series in Applied and Industrial Mathematics, ESAIM, vol. 7,

1999, pp. 335–348.

[16] P. Ploumhans, G.S. Winckelmans, Vortex methods for high-resolution simulations of viscous flow past bluff bodies of general geometry,

Journal of Computational Physics 165 (2000) 354–406.

[17] K. Takeda, O.R. Tutty, D.A. Nicole, Parallel discrete vortex methods on commodity supercomputers; an investigation into bluff body far

wake behaviour, in: Vortex Flows and Related Numerical Methods III, (Proceedings of the Third International Workshop on Vortex Flows

and Related Numerical Methods Toulouse, France, August 1999), in: European Series in Applied and Industrial Mathematics, ESAIM, vol.

7, 1999, pp. 418–428.

[18] L. Greengard, V. Rokhlin, A fast algorithm for particle simulations, Journal of Computational Physics 73 (1987) 325–348.

[19] J. Makino, Yet another fast multipole method without multipoles — pseudo-particle multipole method, Journal of Computational Physics 151

(2) (1999) 910–920.

[20] J.H. Strickland, R.S. Baty, Modification of the Carrier, Greengard and Rokhlin FMM for independent source and target field, Journal of

Computational Physics 142 (1) (1998) 123–128.

[21] P. Ramachandran, M. Ramakrishna, S.C. Rajan, An efficient vortex diffusion algorithm for flow past arbitrary bodies in two dimensions.

Technical Report AE:CFL:TR:2001:1, IIT-Madras, Computers and Fluids Lab, Dept. Aerospace Eng. IIT-Madras, Chennai, INDIA - 600

036, 2001.

[22] P. Ramachandran, S.C. Rajan, M. Ramakrishna, A fast, two-dimensional panel method, SIAM Journal on Scientific Computing 24 (6) (2003)

1864–1878.

[23] P. Ramachandran, S.C. Rajan, M. Ramakrishna, A fast multipole method for higher order vortex panels in two dimensions, SIAM Journal on

Scientific Computing 26 (5) (2005) 1620–1642.

[24] H. Lin, M. Vezza, R.A. McD Galbraith, Discrete vortex method for simulating unsteady flow around pitching aerofoils, AIAA Journal 35 (3)

(March 1997) 494–499.

[25] I. Taylor, M. Vezza, Prediction of unsteady flow around square and rectangular cylinders using a discrete vortex method, Journal of Wind

Engineering and Industrial Aerodynamics 82 (1999) 247–269.

[26] I. Taylor, M. Vezza, Calculation of the flow around a square section cylinder undergoing forced transverse oscillations using a discrete vortex

method, Journal of Wind Engineering and Industrial Aerodynamics 82 (1999) 271–291.

[27] P. Ramachandran, Development and study of a high-resolution two-dimensional random vortex method. Ph.D. Thesis, Department of

Aerospace Engineering, IIT-Madras, 2004.

[28] H.-O. Peitgen, H. Jurgens, D. Saupe, Chaos and Fractals: New Frontiers of Science, Springer-Verlag, New York, 1992.


	Efficient random walks in the presence of complex two-dimensional geometries
	Introduction
	Vortex diffusion in the presence of arbitrary boundaries
	Domain decomposition
	Domain decomposition in the vicinity of a panel
	Diffusion using the random vortex method
	Diffusion using the vorticity redistribution technique

	Numerical results
	Conclusions
	Acknowledgement
	References


