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Abstract—In this paper, we present an efficient technique for map-
ping a backpropagation (BP) learning algorithm for multilayered neural
networks onto a network of workstations (NOW’s). We adopt a vertical
partitioning scheme, where each layer in the neural network is divided
into p disjoint partitions, and map each partition onto an independent
workstation in a network of p workstations. We present a fully distributed
version of the BP algorithm and also its speedup analysis. We compare the
performance of our algorithm with a recent work involving the vertical
partitioning approach for mapping the BP algorithm onto a distributed
memory multiprocessor. Our results on SUN 3/50 NOW’s show that we
are able to achieve better speedups by using only two communication
sets and also by avoiding some redundancy in the weights computation
for one training cycle of the algorithm.

Index Terms—Backpropagation algorithm, distributed memory mul-
tiprocessors, multilayered neural networks, network of workstations,
network partitioning, pattern partitioning, performance analysis.

I. INTRODUCTION

Artificial Neural Networks (ANN’s) have recently been shown to
be powerful computational models that can effectively address com-
plex pattern classification and pattern recognition problems. Due to
their adaptive, self-organizing, fault-tolerant, and nonlinear features,
ANN’s are emerging as an attractive technology for potential artificial
intelligence [4], [7], [30], [31], [36], [39] and signal processing
applications [9], [12], [13], [19], [26], [28], [33], [41]. Since they
require large computational resources, the usual approach adopted
for studying ANN’s is to simulate them on conventional uniprocessor
high speed computers. However, these simulations are limited by the
speed and storage capacity of the computer. Parallel implementation
of ANN’s offers a natural way out of this problem for meeting
both the speed and storage requirements. Parallel implementation
models take advantage of the several parallel computational structures
inherent in ANN’s to achieve high processing rates. As a result,
ANN’s have been implemented on several commercially available
multiprocessor platforms, such as the Connection Machine [1], [3],
Warp [27], MPP [13], and BBN butterfly [5], and also on several
different architectures, such as systolic arrays [17], [18], hypercubes
[15], [41], [23], reduced mesh of trees [19], reconfigurable array
processor [32], and SIMD arrays [33].

One class of ANN’s that has been widely studied is the multi-
layered feedforward neural networks. Typically, the network consists
of a set of input nodes that constitute theinput layer, one or more
sets of intermediate nodes that constitute thehidden layers, and a
set of output nodes the constitute theoutput layer. The input signal
propagates through the network in the forward direction, on a layer-
by-layer basis. The backpropagation (BP) algorithm [16], [29] is one
of the most popular supervised (represented by a set of input-output
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examples) training algorithms for multilayered feedforward neural
networks. It has been used for a large number of practical applications
such as speech processing [29], [30], sonar/radar target detection [9],
[10], [28], control [22], [24], and medical imaging [25]. The BP
algorithm is unfortunately computationally intensive. As a result of
this, there have been several investigations into developing parallel
formulations of this algorithm for a diverse range of parallel archi-
tectures, such as linear arrays, meshes, and hypercubes. However,
due to the high cost of these machines, computing on a network of
workstations (NOW’s) is proving to be an economical alternative for
a number of scientific and engineering applications. The viability of
(network) computing on a NOW’s has been established for many
large scientific and engineering applications [34]. It has been shown
that, for a small number of processors, computing on a NOW’s
(RS/6000) for these applications is quite competitive with hypercube
multiprocessors [34]. The most important feature of this type of
(network) computing is that it enables the use of existing resources.
Furthermore, these resources can be shared with other applications
that require them.

Some recent simulations of neural networks on distributed-memory
message-passing multiprocessors (DMM’s) have been reported in the
literature in [6] and [20]. They consider the mapping of generic
neural network models and models employing BP algorithms for
learning, respectively, onto transputer-based DMM’s. Their approach
is based on systolic algorithms, which do not exploit the architectural
features of DMM’s. In [8] and [35], they also consider DMM’s for
neural network simulations. However, they assume that the network
can be partitioned into groups of neurons such that the connectivity
between the neurons within a group is much higher than the overall
network connectivity, an assumption which does not suitably model
fully connected neural networks. In [37] and [38], they study the
mapping of a BP algorithm onto transputer-based DMM’s. In this
paper, we discuss the design and implementation issues in mapping a
BP algorithm onto a NOW’s. We also study the performance of our
formulation on an Ethernet network of Sun 3/50 workstations.

The paper is organized as follows. In Section II, we introduce
the BP algorithm and discuss the issues involved in parallelizing
the algorithm. In Section III, we describe our distributed algorithm
and analyze its time complexity. In Section IV, we present our
performance results and compare them with a recently proposed BP
algorithm implemented on DMM’s [38]. Finally, in Section V we
make some concluding remarks.

II. THE BACKPROPAGATION ALGORITHM

The BP algorithm is a supervised training algorithm for multilay-
ered feedforward neural networks. The training data consists of many
pairs of input/output training patterns. The trained neural network is
then used later in the retrieval phase to process real test patterns and
yield classification results. We have employed the BP algorithm for
training a fully connected multilayered neural network. The critical
issue in executing this BP algorithm on a distributed system of
NOW’s is determining how to map the neural network onto the
processors of the distributed system to minimize execution time. In
this section, we will introduce the fully connected multilayered neural
network, describe the sequential BP algorithm for its training, and
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Fig. 1. A fully connected multilayered neural network.

discuss various parallel formulations of the BP algorithm available
in the literature.

A. The Multilayered Neural Network

The neural network for which we consider mapping the BP
algorithm is a fully connected multilayered neural network. The
network consists ofL layers as shown in Fig. 1. The bottom layer
(l = 1) is the input layer and the top layer(l = L) is the output
layer. The remaining intermediate layers are called hidden layers.
The lth layer hasnl neurons. Each neuron in a layer is connected to
all of the other neurons in the previous and next layers. Associated
with each neuroni in layer l is an activation valueai(l) and an error
value�i(l): Attached with each connection between neuronj in layer
(l + 1) and neuroni in layer l is a weightwji(l):

B. The Sequential BP Algorithm

The BP algorithm is a supervised training algorithm which uses a
set of input/output training patterns to train a multilayered neural
network. The training can be viewed as a procedure to find a
set of weights for the network. The algorithm has three phases:
feedforward execution, backpropagation of error, and weight update.
In the feedforward phase, the input portion of a training pattern is fed
to the input layer of the network. It is propagated through the layers
to compute the activation values of the nodes in each layer. The
difference between the activation values of nodes in the output layer
and the expected output value (output part of the training pattern)
defines the error in the output layer. In the backpropagation of error
phase, the error in the output layer is propagated to the nodes in the
layers below it to compute the error associated with each neuron in
the layers below. The third phase updates the weights based upon the
new error and activation values.

In the feedforward execution phase, the activation value of a neuron
j at layer(l + 1); denoted byaj(l + 1); is given by the following

Fig. 2. Forward execution phase.

feedforward equation,

aj(l+ 1) = f

n

i=1

wji(l) � ai(l) + �j(l+ 1) ;

j = 1; � � � ; nl+1 and l = 1; � � � ; L� 1;

(1)

wheref is a nonlinear sigmoid function of the formf(x) = (1 +
e�x)�1: This is represented in Fig. 2. We note that the computation
of the activation value of a neuron in layer(l+1) is a function of the
activation values of all the neurons in layerl and the weight values
of the connections joining them, i.e., the input weights of the neuron.

The second phase involves the comparison between the actual
output pattern and the desired one, and the propagation of the error,
which is governed by the following equations:

�i(l) = [ti(l)� ai(l)] � [ai(l) � (1� ai(l))]; l = L (2)

=

n

j=1

�j(l+ 1) � wji(l)

� [ai(l) � (1� ai(l))]; l = L� 1; � � � ; 1 (3)

where �i(l) is the error value of neuroni in layer l and ti(L) is
the desired value of neuroni in the output layer. We note that the
computation of the error value of a neuron in layerl is a function of
the error values of all the neurons in the layer(l+1) and the weight
values of the connections joining them, i.e., the output weights of
the neuron.

In the final phase, weight updates are performed according to the
following equation:

�wji(l) = � � �j(l+ 1) � ai(l) (4)

where � is the learning rate. We see that the weight update of a
connection between a neuron in layer(l + 1) and a neuron in layer
l is a function of the error value of the neuron in layer(l + 1) and
the activation value of the neuron in layerl: The second and third
phases are depicted in Fig. 3. We also see from this figure that the
second and third phases can be combined into a single phase, called
the backward execution phase.
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Fig. 3. Backward execution phase.

C. Parallel Schemes for BP Algorithm

In this section we present a brief taxonomy of the existing schemes
to parallelize a BP algorithm. Fig. 4 gives a classification of the
existing BP algorithms. We notice that the parallelization schemes
for a BP algorithm can be broadly classified into four categories:
network partitioning, pattern partitioning, hybrid partitioning integrat-
ing the previous two strategies, and heuristic partitioning schemes.
The network partitioning schemes take advantage of the inherent
parallelism in the node and the weight value computations present
in the BP algorithm. These schemes distribute both the nodes and the
weights of the network to different processors. This distribution of
nodes and weights can be carried out in various ways. Nodes of the
multilayered network can be either completely partitioned, i.e., each
node is assigned to a different processor [1], or can be partitioned
using the vertical sectioning scheme where each processor gets some
nodes from each layer [37], [38]. The weights of the neural network
can be partitioned using four strategies: complete partitioning, inset
grouping, outset grouping, and checkerboarding. Complete partition-
ing allocates one processor per weight [1] and exploits maximum
concurrency in the weights computation but suffers from heavy com-
munication overhead. The inset and outset grouping schemes are used
with the vertical sectioning scheme for partitioning the nodes. Each
processor keeps either the input or the output weights connecting all
the nodes mapped onto it. We note that while inset grouping reduces
communication during the activation value computation (forward
phase) [40], the outset grouping decreases communication overhead
during the error propagation phase (backward phase). Both inset and
outset grouping can be combined to increase efficiency in both the
forward and backward phases [37], [38], though this introduces an
additional overhead in maintaining the consistency of the redundant
weight sets. Checkerboarding partitions the weights of a neural
network by grouping the rows and the columns of the weight matrix.
It has been used for systolic arrays connected in a mesh configuration
[18] and for the nCUBE, a hypercube configuration [15].

Pattern partitioning divides the pattern set equally among all
processors. This division of the patterns can be achieved either by

replicating the network nodes and weights at each processor, where
each processor carries out the forward and backward phases for the
local set of patterns [35], or by pipelining the computation at each
layer, i.e., while one pattern is being processed in some layer, another
pattern can be processed in the preceding layer [18].

Hybrid schemes combine pattern partitioning with network par-
titioning. For example, some implementations include, pipelining
combined with vertical sectioning [18], combining vertical sectioning
with pattern partitioning involving network duplication [40], and
checkerboarding combined with the network duplication scheme [15].

Heuristic partitioning techniques involve the use of heuristics for
partitioning the neural network graph for mapping onto a general or
specific architecture represented by a processor graph [8], [18], [35].
These techniques try to find an efficient way of partitioning/mapping
the neural graphs in such a way that it reduces the inter-processor
communication and balances the load on the processors.

In this paper, we employ a vertical sectioning scheme for parti-
tioning the nodes, and a combination of inset and outset grouping of
weights, for efficient mapping of multilayered neural network onto a
NOW’s. This scheme is particularly suitable for a NOW’s, because
it is architecture independent.

D. Training Regimes

There are two variations in training regimes available in the
literature for training a neural network using a BP algorithm: the
per-pattern or data-update training regime and the set-training or
the block-update training regime. In the per-pattern training regime,
the weight changes computed for a particular pattern are affected
before processing the next pattern [29]. We note that the per-
pattern training regime is not amenable for the pattern partitioning
mapping technique for parallelization of the BP algorithm. The set-
training regime accumulates the weight changes over a set of patterns
before applying these to update the weight values [15]. Set-training
regimes can be utilized with both the pattern partitioning and the
network partitioning schemes for mapping the BP algorithm onto a
multiprocessor. The set-training scheme may produce results which
differ from the results obtained by the per-pattern training regime
and may also take a greater number of iterations than the per-pattern
training regime for convergence, a fact ignored by many researchers
while presenting performance comparison figures. We have used the
per-pattern training regime for training our network.

III. OUR DISTRIBUTED ALGORITHM

We now investigate a distributed implementation of the BP algo-
rithm on a NOW’s for training a fully connected multilayered neural
network. In this section, we first describe our partitioning strategy,
then discuss our fully distributed implementation, and finally present
a speedup analysis for the algorithm.

A. Partitioning Scheme

We have used a vertical partitioning scheme for partitioning the
node set of the multilayered neural network in our implementation.
We have used a per-pattern training regime to train the neural network
and only a network partitioning scheme can be used for per-pattern
training of a neural network. In the vertical partitioning scheme, each
layer (l); having nl neurons, is divided intop partitions, wherep
is the number of processors in our distributed implementation. Each
partition hasnl=p neurons that are assigned to a processor as shown
in Fig. 5. We have adopted a combination of the inset grouping and
outset grouping for partitioning the weight set of the neural network.
Each processor maintains in its local memory the activation values,
the error values, and the input and the output weight vectors of
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Fig. 4. Classification of the various BP algorithms.

Fig. 5. Vertical partitioning of a multilayered neural network.

the assigned neurons. We observe that the input weight values of
neurons in layer(l+ 1) are the output weight values of the neurons
in layer l; and, hence, in our scheme, the same weight value is stored
at two processors. Even though, this partitioning scheme results in
the duplication of weight values, we prevent inconsistency amongst
them by employing recomputation of the weights and thus avoid
communication of the weight values during the execution of the
algorithm. We also note that all the activation values and the error
values are completely partitioned intop disjoint sets.

B. The Distributed Algorithm

Since we have employed a partitioning strategy where the neural
network is partitioned intop subnetworks and then mapped ontop
processors, each processor is required to cooperate with every other
processor to simulate the complete network. Every processor in the
distributed system executes the three phases mentioned in Section II-
B, but some inter-processor communication is required to acquire the
activation and error values of neurons present on other processors
as the data in a layer is distributed to all the processors. Thus, each

phase is conceptually divided into two subphases: communication
and computation. As noted earlier, the second and third phases of
the BP algorithm can be combined into a single phase. Hence, we
present our distributed algorithm in only two phases, which we call
the forward execution phase and the backward execution phase. We
will discuss below the necessary computations and communications
involved in both the phases of our algorithm.

The Forward Execution Phase:In this phase, the activation values
of all the neurons in the hidden layers and the output layer are
computed. To compute the activation value of a neuroni in layer
l; ai(l); we require the activation values of all the neurons in layer
(l � 1) and the input weights of the neuroni (1). So, before we
start computing the activation values of the neurons on a processor
for the layerl; we broadcast the activation values of all the neurons
present on the local processor in layer(l� 1) and receive broadcasts
from all the other(p � 1) processors. After this communication
step is complete, all the processors will have all activation values
of the neurons in layer(l � 1); so that the activation values of the
neurons local to the processor for layerl can be computed. This
broadcast and receive step, in which a set of distinct messages initially
residing at each processor is disseminated so that eventually a copy
of each message resides with all the processors, is calledall-to-all
broadcasting(AAB) [16]. For an Ethernet network of workstations
(NOW’s), this can be achieved inp steps, one for broadcasting the
local values and(p� 1) steps to receive messages from the rest of
the processors. We describe our algorithm for the forward execution
phase below.

Distributed forward execution algorithm
Read the input pattern.
for (start = 1 to (L� 1)) do

stop= start +1:
Broadcast local activation values ofstart layer.
Receive activation values from the other

(p� 1) processors.
Compute activation values ofstop layer.

The Backward Execution Phase:As seen earlier, the backward
execution phase comprises the back propagation of the error at the
output layer and the update of weights. After the completion of the
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forward execution phase we have the activation values of the neurons
in the local processor for the output layer. So, for the neurons in
the output layer, we can compute the error values using (2). When
computing the error value�i(l) for a neuroni local to the processor
for a layerl; we require the error values at all the neurons in the layer
(l+1) and the output weights of the neuroni (3). Hence, in this phase,
too, we have to execute a similar broadcast/receive step as in the
previous phase, for broadcasting the error values at neurons local to
the processor for the layer(l+1) and receiving the same from all the
other(p�1) processors. For updating a weightwji(l) of a connection
joining a neuronj in layer (l+1) and a neuroni in layer l; we need
the error value at the neuronj and the activation value of the neuroni:
We observe that, the activation values of the neurons in the layerl are
propagated to all the processors in the forward execution phase and
the error values of the neurons in the layer(l+1) are propagated to
all the processors in the backward execution phase. Hence, we avoid
communication of any activation or error values while updating the
weight values. Starting from layer(L�1); for all layers until the input
layer, at every step we update the output weights of neurons local
to the processor for the current layerl and the input weights of the
neurons local to the processor for layer(l+ 1): Hence, at each step,
we compute the input and output weights of all the neurons mapped to
the local processor, connecting the current layerl and the layer(l+1):
At the end of this phase, each weight has been computed twice: once
as an output weight and once again as an input weight. Assume that
neuronj in layer (l + 1) and neuroni in layer l are mapped onto
processorpx and processorpy; respectively. The difference in weight,
�wji(l); can be computed at processorpx; if the processor knows
the activation valueai(l) since it already has the error value�j(l+1)
stored locally with it. Similarly, the same difference,�wji(l); can be
computed at processorpy; if it knows the error value�j(l+1); since
it already has the activation valueai(l) stored locally with it. Both the
above updates are identical and the consistency of the two updates
is guaranteed, as the weight update value computed in both cases
uses the same error and activation values for computation. We have
also carefully avoided recomputing the weights joining the neurons
present on the same processor. For a given processor, for weights
between the layer(l+1) and layerl; we compute the weight change
for all the weights which connect a neuron local to the processor and a
neuron which is mapped onto some other processor, and for weights
which connect local neurons, we compute the weight change only
once. In earlier implementations [37], [38], the weights connecting
the local neurons were updated twice, once as an input weight to
neurons in the layer(l + 1) and the next time as an output weight
to neurons in the layerl: We save on recomputation of the weights
connecting the local neurons as these are computed only once. We
present our algorithm for the backward execution phase as follows.

Distributed backward execution algorithm
Compute error values of the local neurons at the
output layer.
for (stop= L to 2) do

start= stop�1:
if (start > 1) do

Broadcast local error values ofstop layer.
Receive error values from other processors.
Compute error values for thestart layer.

for (j = 1 to nstop) do
for (i = 1 to nstart) do

if (i == local or j == local)
updatewji(start).

We notice from the above (distributed forward and backward
execution) algorithms that we require two sets of communications,

one in the forward execution phase for the activation values, and
the other in the backward execution phase for the error values.

C. Improvements Over a Recent Algorithm

As mentioned earlier, we adopted a simple vertical partitioning
scheme for mapping the multilayered neural network onto a NOW’s.
One critical issue here is that of mapping the data, especially the
weights, onto the processors of the network. A partitioning scheme in
which the processor keeps either the input or the output weights of the
neurons mapped onto it incurs a significant amount of communication
overhead in the backpropagation or the feedforward cases [23], [40].
The logical extension to this scheme is to keep both the input and
the output weights of the neurons in the same processor [37]. Here
too, there is heavy communication overhead incurred in order to
maintain consistency among the replicated weight set, if weights
are to be communicated. A modification to the above is proposed
in [38], where weight recomputation is suggested as a compromise
for weight communication in order to update the duplicated weight
set. This algorithm makes use of three sets of communication,
each in the forward execution, error propagation, and weight update
phase, and four sets of computation for one training cycle of the
algorithm which consists of activation values, error values, and weight
update computations. Our algorithm makes use of only two sets of
communications, one each in the forward execution and backward
execution phases; moreover, it also avoids some redundancy in
weight update during the weight recomputation phase, per cycle
of the algorithm. We also employ a grouped-broadcast strategy to
broadcast all the values at a processor, instead of the one-by-one
AAB employed in [37], to reduce the communication setup time.

The following are the improvements of our algorithm over a
recent algorithm [37], [38] available in the literature employing a
vertical partitioning scheme for a distributed implementation of the
BP algorithm.

1) Our algorithm uses only two sets of communication, com-
pared to the three sets of communication used by the earlier
algorithm.

2) We also save on the computation of the weights, by avoid-
ing recomputing weights joining the neurons on the same
processor.

3) We employ grouped-broadcast strategy, to broadcast all the
values at a processor, instead of the one-by-oneAAB; to
reduce the communication setup time.

D. Speedup Analysis

For the time complexity analysis of our model we assume a fully
connected multilayered neural network with L layers and, without loss
of generality,n neurons per layer. The neural network is partitioned
vertically into p partitions and mapped ontop processors with one
partition per processor. There aren=p neurons from each layer per
processor.

The time required for the sequential execution of the BP algorithm
on a uniprocessor for one layer can be represented asT1 = t1+t2+t3;
whereti is the time taken to execute theith phase of the BP algorithm
for the layer. The times can be approximately expressed as follows:

t1 =n � (n �Ma + F )

t2 =n � (n �Ma)

t3 =n � (n �Ma)

T1 = t1 + t2 + t3

=n � (3 � n �Ma + F ) (5)
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whereMa is the time taken for one multiply and one add function for
multiplying and adding two floating point numbers, and F is the time
taken to execute the sigmoid function. We have ignored for simplicity,
and without loss of generality, the time taken for the addition of�;
the neuron threshold value.

We now analyze our distributed algorithm having two phases, the
forward execution and the backward execution. The time taken for
executing our distributed BP algorithm for a layer ofn=p neurons
on p processors can be represented as,Tp = t01 + t02; wheret0i is the
time taken for the execution of theith phase on a processor, which
can be expressed as follows:

t01 =AAB(p) +
n

p
� (n �Ma + F )

t02 = AAB(p) +
n

p
� (n �Ma)

+
n

p
� n � 2�

1

p
�Ma

=AAB(p) +
n

p
� 3 � n �Ma �

n

p
�Ma

Tp = t01 + t02

=2 � AAB(p) +
n

p
� 4 � n �Ma + F �

n

p
�Ma (6)

We will now take a look at theAAB employed by our algorithm.
We too assume as in [38] a single-port communication, where, each
workstation in the NOW’s can send/receive one unit of message
on its communication port at a given instance of time. This sets
a lower bound ofO(p) for theAAB; because each workstation has
to receive data from all the other(p � 1) workstations. This bound
for AAB can be achieved on an Ethernet NOW’s. The unit of time
for sending/receiving one unit of data (a floating point number) is
defined asC: We have assumed a grouped broadcast for modeling
communication, where all the values on a processor are grouped
together and broadcast as one message. This reduces the overhead
for processing each broadcast. Hence anAAB(p) to broadcast a
message of sizen=p to all thep processors, can be represented by,
AAB(p) = C � p � f(n=p); where f(n=p) represents the scaling
of the grouped broadcast as the items in the group to be broadcast
are increased. Normallyf(n=p) is much less thann=p which is the
worst case for one-by-oneAAB(p):

From (5) and (6), speedup,Sp; of our algorithm can be formulated
as below:

Sp=
T1
Tp

=
n � (3 � n �Ma + F )

2 � AAB(p) +
n

p
� 4 � n �Ma + F �

n

p
�Ma

=
n � (3 � n �Ma + F )

2 � C � p � f
n

p
+

n

p
� 4 � n �Ma + F �

n

p
�Ma

� by AAB(p) = C � p � f
n

p

=
n � (3 � n �Ma + � �Ma)

2 � � � p �Ma � f
n

p
+

n

p
� 4 � n �Ma + � �Ma �

n

p
�Ma

(by C = � �Ma; F = � �Ma)

=
n � (3 � n+ �)

2 � � � p � f
n

p
+

n

p
� 4 � n �+� �

n

p

(7)

TABLE I
CHARACTERISTICS OF THEAPPLICATION

In (7) the most important parameter is the communica-
tion/computation ratio�: It lies between 0.5 and 256 for various
currently available architectures. For a NOW’s this value is very
high and lies in the range 32–256.

IV. PERFORMANCE EVALUATION

In this section we present the results obtained from implementing
our distributed algorithm on a network of Sun workstations. We
compare the results with those obtained by Yoonet al. [38]. We also
conduct an analytical comparison of the two algorithms for studying
the scaleup of the algorithms with an increasing number of processors
and size of the neural network.

A. Experimental Comparison

In this subsection we present the performance of our algorithm on
a NOW’s and also compare the results with a recently proposed BP
algorithm for a DMM [38]. We implemented both algorithms on a
10 Mb/s Ethernet network of Sun 3/50 workstations. We conducted
several experiments to obtain a suitable value for�: We have found
that for a groupedAAB; the cost of communication is 50 to 60 times
the cost of a multiply-and-add operation, given the size of messages
in our experiments. Since the variation in the cost of communication
is very small with an increase in the size of the message for a grouped
AAB; we have assumed the value ofC � f(n=p) to be 55, for our
analytical studies. We have kept the value of� at 40 as in the earlier
implementation [38]. We have tested the algorithms for classifying
arabic numeral digits. The characteristics of the application are listed
in Table I. Binary images of the numbers are used as inputs to a
neural network with 3 layers.Structure represents the number of
neurons in the input, the hidden, and the output layer. We evaluated
the performance of the algorithms for classifying6�8 numbers (Num
6 � 8) and 12 � 12 numbers (Num 12 � 12):

Fig. 6 shows the speedup of the algorithms for the application
(Num 6 � 8). We observe from the graph that, our experimental
values closely agree with the analytical curve. The difference in
the analytical and experimental speedup can be attributed to the
assumptions made to simplify the derivation of the speedup factor.
We ignore the processing time for�; and deal with a simplified
communication to computation ratio while computing the speedup
factor for our distributed algorithm. We have experimented with small
values in the number of processors to fully exploit the power of the
distributed system, i.e., to keep the processors uniformly balanced
[15], [38]. It is seen that, with an increase in the number of processors,
the vertical partitioning scheme does not uniformly balance the
distributed system, resulting in degradation in performance [15].

Fig. 7 shows the speedup of the algorithms for the (Num12� 12)
application. We see that, for a small value in the number of processors,
our algorithm shows only slight improvement over the algorithm of
Yoon et al. because there is much less communication overhead, and
the slight gain is attributed to the saving in the recomputation step. As
the number of processors increases, the performance of our algorithm
improves. The experimental curve tends to agree with the analytical
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Fig. 6. Experimental speedup for Num6 � 8:

Fig. 7. Experimental speedup for Num12 � 12:

plot, with a marginal error, attributed to simplification steps during
the speedup factor derivation. We used log-log graphs to plot the
relative performance of the two algorithms [2].

B. Analytical Comparison

Because of system limitations such as main memory size and the
broadcast packet size, we could not study the experimental scaleup
of our algorithm. We have, however, compared the analytical models
of our algorithm and the algorithm of Yoonet al. [38] to study the
speedup of the algorithms against the number of processors and the
number of neurons in the neural network. Equation (7) gives the
speedup analysis for our algorithm. The speedup analysis for the
algorithm of Yoonet al. can be found in [38]. We have assumed
f(n=p) to be equal to(n=p); when comparing the two analytical
models. The theoretical speedups for both the algorithms for various
� values are shown in Fig. 8, whenn = 2048 neurons/layer and
� = 40: The graph clearly shows that our algorithm performs better

Fig. 8. Analytical speedup whenn = 2048:

Fig. 9. Analytical speedup whenp = 64:

than the algorithm of Yoonet al., especially for higher number
of processors and large� values. Note that for loosely coupled
distributed systems, the� values are very high. We had an�
value of 55 for workstations without math co-processors. With faster
processing workstations, the� values tend to be higher, and hence
the need for having an algorithm minimizing the communication
overhead. We also note from the graph that there is a cost-effective
number of processors depending upon the� values, where, even if
more processors are added to the simulation, the speedup ratio does
not increase significantly.

Fig. 9 shows the comparison of the speedups of the algorithms
versus the size of the neural network, whenp; the number of
processors, is fixed at 64. We note that the speedup is heavily
influenced by� when the size of the network is small, and, hence,
for smaller values ofn; our algorithm performs better than the
algorithm of Yoonet al.Similarly for larger values of� our algorithm
performs better than their algorithm, because of the saving in the
communication. We plotted the above graphs too on the log-log scale.
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V. CONCLUSIONS

We have presented an efficient distributed algorithm for implement-
ing the BP algorithm for training neural networks on a network of
Sun 3/50 workstations. We have used the vertical partitioning scheme
to map the multilayered neural network onto the NOW’s, since a
vertical partitioning scheme is amenable for per-pattern training of a
multilayered neural network.

We have compared the results obtained from our implementation
with a recent algorithm suggested by Yoonet al. [38], employing
vertical partitioning scheme for implementation on a distributed
memory multiprocessor. Because of hardware limitations we could
not study the scaleup of our algorithm on the NOW’s. Hence, we
also conducted analytical studies to compare the speedup of the two
algorithms with the increase in the number of processors and with
the increase in the size of the neural network.

Our experimental and analytical results show that we are able
to achieve better speedups than the algorithm of Yoonet al. We
improved the communication time by using only two sets of commu-
nication instead of three used by Yoonet al., per cycle of the training
algorithm. We also made saving in computation by eliminating some
redundancy in the recomputation step during computation of the
weights. We also made use of a groupedAAB to broadcast all the
values on a processor as a group, to decrease the setup time for
communication.
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