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Using a second-quantized many-electron Hamiltonian, we obtain (a) an effective Hamiltonian suitable
for materials whose electronic properties are governed by a set of strongly correlated bands in a
narrow energy range and (b) an effective spin-only Hamiltonian for magnetic materials. The present
Hamiltonians faithfully include phonon and spin-related interactions as well as the external fields to
study the electromagnetic response properties of complex materials and they, in appropriate limits,
reduce to the model Hamiltonians due to Hubbard and Heisenberg. With the Hamiltonian for narrow-
band strongly correlated materials, we show that the spin-orbit interaction provides a mechanism for
metal-insulator transition, which is distinct from the Mott-Hubbard (driven by the electron correla-
tion) and the Anderson mechanism (driven by the disorder). Next, with the spin-only Hamiltonian,
we demonstrate the spin-orbit interaction to be a reason for the existence of antiferromagnetic phase
in materials which are characterized by a positive isotropic spin-exchange energy. This is distinct
from the Néel-VanVleck-Anderson paradigm which posits a negative spin-exchange for the existence
of antiferromagnetism. We also find that the Néel temperature increases as the absolute value of the
spin-orbit coupling increases. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4945705]

I. INTRODUCTION

To study the electromagnetic response properties of
complex materials, it is frequently useful to employ
effective Hamiltonians,1–19 notable examples of which are
the Hubbard’s model for strongly correlated electrons1–3 and
the Heisenberg’s spin-only model for magnetic materials.4–7

What remains mostly absent in the contemporary discourse
on effective Hamiltonian based theory of correlated electrons,
notwithstanding a number of studies in the past,10–25 is a
systematic account of various spin-related interactions. In
fact, it is not very obvious as to how one may systematically
improve starting from the model Hamiltonians such as those
of Heisenberg, Hubbard and others that faithfully takes
into consideration a variety of spin-related interactions. The
objective of the present work is to bridge this significant gap.
Why is this important? To be specific, it is today urgent to fully
understand the detailed nature and the exact mathematical
expressions for interactions involving the spin angular
momentum of electrons such as the spin-orbit, spin-phonon,
and the spin exchange couplings among others, for they
herald a rich variety of physical processes within the complex
material which are amenable to external control (mechanical
as well as electromagnetic) and a complete understanding
of which would unravel the necessary mechanistic paths for
designing smart materials of well-defined functionalities, as
recent works on quantum magnetism, spintronics, and other
research areas have revealed.26–40 The importance of spin-
orbit interactions has also been emphasized in condensed
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matter wherein such interactions lead to exotic topological
insulating electronic phases observed in real materials.41–43

To fulfil the objective, therefore, we systematically reduce
the many-electron Hamiltonian in the frequency-specific
Lorentz gauge to advance a variety of effective Hamiltonians
suitable for complex materials that include important spin-
related interactions in a rigorous fashion. To this end, we
have followed the minimalist program of Hubbard1 and
Heisenberg4 among others,2,3,5–7,44,45 but with a number of
significantly new ideas. We first use, following the works
of Hubbard1 and Anderson,6 a complete set of one-particle
Wannier states and obtain the Hamiltonian in the second-
quantized form. To reduce the dimensionality of the Hilbert
space, we follow two distinct lines of approaches keeping in
view the present day interests on complex materials. In the
first, following Hubbard and others,1–3,9–12 we specialize in
materials for which interacting electrons form a disjoint set
of strongly correlated narrow energy bands and, through a
sequence of well-defined approximations, we finally obtain
an effective Hamiltonian, especially suitable for insulators
and poor conductors, that rigorously includes important
spin and phonon related interactions. Next, we reduce the
second-quantized Hamiltonian to obtain an effective spin-only
Hamiltonian, akin to the Heisenberg model,4–7 that faithfully
includes the effects of spin-orbit and spin-phonon interactions.
By definition, the effective Hamiltonians obtained here, in
appropriate limits, recover the Heisenberg, Hubbard, and
related Hamiltonians that are in frequent use today.1–7,9–19

As immediate applications of the effective Hamiltonians
advanced here, we address two important classes of problems
in complex materials. First, we use the Hamiltonian for
strongly correlated narrow energy bands and ask: Does
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the spin-orbit interaction play a role in metal–insulator
transitions? As the present work reveals, the spin-orbit
interaction tends to favour the material to be insulating
in character and therefore it provides a mechanism for
metal–insulator transitions, which is distinct from the
well-known Mott-Hubbard (driven by the strong electron
correlations of electrostatic origin)1,46 and the Anderson
mechanism (driven by the disorder).47 Next, we use the
effective spin-only Hamiltonian and address the question:
Does the antiferromagnetic phase exist in a magnetic material
that is characterized by a positive-definite spin-exchange
coupling between the nearest neighbour lattice sites? As
we will see presently, the answer is in the affirmative and
it is the spin-orbit interaction that provides the necessary
mechanism for the existence of the antiferromagnetic phase in
magnetic systems if the exchange couplings are positive. This
is significant for it has long been believed, through the works
of Néel,48 Van Vleck,49 and Anderson,6 that the exchange
coupling parameter in the standard Heisenberg model must
be negative for the existence of the antiferromagnetic phase.
The paper is organized as follows. In Section II, we introduce
a many-electron Hamiltonian that includes electron-phonon
interaction. In Section III, we construct effective one-electron
states (delocalized as well localized) for periodic crystalline
lattices and use the set of localized states to obtain a second-
quantization form of the many-electron Hamiltonian, which
is specially suitable for insulators. In Section IV, we obtain
a variety of effective Hamiltonians for complex materials. In
Section V, we use the effective Hamiltonians to study the
role of spin-orbit interaction in metal-insulator transitions and
magnetic phase transitions. Finally, we close the paper with a
brief discussion on the future outlook.

II. MANY-ELECTRON HAMILTONIAN

To obtain the Hamiltonian for a system consisting of N

electrons and M nuclei (spin 1/2) in the presence of external

electromagnetic fields, we begin with the one-particle Dirac-
Pauli equation which reads as follows (see supplementary
material, Section I for the derivation of semi-relativistic
Hamiltonian50):

Ĥ =
1

2m0


(

p⃗ − qA⃗
)2
− q~

(

σ⃗ · B⃗
)


+ qφ

+
~q

4m2
0c2

σ⃗ ·

∇⃗φ ×

(

p⃗ − qA⃗
)
. (1)

We now decompose the scalar and vector potentials
as follows: φ(r⃗) = φ(ext)(r⃗) + φ(int)(r⃗) and A⃗(r⃗) = A⃗(ext)(r⃗)

+ A⃗(int)(r⃗) = A⃗(ext)(r⃗) + A⃗
(int)
space(r⃗) + A⃗

(int)
spin(r⃗), where φ(ext)(r⃗) and

A⃗(ext)(r⃗), respectively, are the scalar and vector potentials due
to the external electromagnetic fields. φ(int)(r⃗) is the scalar
potential, and A⃗

(int)
space(r⃗) and A⃗

(int)
spin(r⃗) stand, respectively, for

the vector potentials due to the spatial and spin degrees
of freedom of the dynamic charged particles, the explicit
expressions of which, in the frequency-specific Lorentz gauge
(∇⃗ · A⃗ (r⃗ ,ω) −

�
iω/c2

�
φ (r⃗ ,ω) = 0), are as given below (see

supplementary material, Section VII for electromagnetic
potentials in the Lorentz gauge50)

φ(int)(r⃗) =

N+M


j=1

qj

4πϵ0

cos
�
ω
c

�⃗
r − r⃗ j

��
�⃗
r − r⃗ j

� , (2)

A⃗
(int)
space(r⃗) =

µ0

4π

N+M


j=1

qj

m j

cos
�
ω
c

�⃗
r − r⃗ j

��
�⃗
r − r⃗ j

� p⃗j, (3)

A⃗
(int)
spin(r⃗) =

µ0

4π

N+M


j=1

cos
(

ω

c

�⃗
r − r⃗ j

�) m⃗
(spin)
j
× (r⃗ − r⃗ j)�⃗

r − r⃗ j

�3 . (4)

We now use the Lorentz gauge to evaluate the kinetic energy
operator as (p⃗ − qA⃗)2 = p2 − q(p⃗ · A⃗ + A⃗ · p⃗) + q2A2 = p2

− i~(∇⃗· A⃗) + 2A⃗ · p⃗ + q2A2 = p2 − (q~ω/c2)φ − 2qA⃗· p⃗ + q2A2

and express the total Hamiltonian as a sum of one-particle
Hamiltonians in Eq. (1) as follows:

Ĥ =

N+M


i=1

p2
i

2mi

−
N+M


i=1

qi

mi

A⃗(ext)(r⃗i) · p⃗i +
N+M


i=1

q2
i

2mi

(

A⃗(ext)(r⃗i) + A⃗(int)(r⃗i)
)2

−
N+M


i=1

~qi

2mi

σ⃗i · B⃗(ext)(r⃗i) +

N+M


i=1

qiφ
(ext) (r⃗i) +

N+M


i=1

~qi

4m2
i
c2
σ⃗i ·


∇⃗φ(ext)(r⃗i) × p⃗i



+

N+M


i=1

qiφ
(int)(r⃗i) +

N+M


i=1

~qi

4m2
i
c2
σ⃗i ·


∇⃗φ(int)(r⃗i) × p⃗i


−

N+M


i=1

qi

mi

A⃗(int) (r⃗i) · p⃗i −
N+M


i=1

~qi

2mi

σ⃗i · B⃗(int)(r⃗i)

−
N+M


i=1

~qi

4m2
i
c2
σ⃗i ·


∇⃗φ(int)(r⃗i) × qi A⃗

(int)(r⃗i)

−

N+M


i=1

~qi

4m2
i
c2
σ⃗i ·


∇⃗φ(ext)(r⃗i) × qi A⃗

(int)(r⃗i)


−
N+M


i=1

~qi

4m2
i
c2
σ⃗i ·


∇⃗φ(int)(r⃗i) × qi A⃗

(ext)(r⃗i)

−

N+M


i=1

~qi

4m2
i
c2
σ⃗i ·


∇⃗φ(ext)(r⃗i) × qi A⃗

(ext)(r⃗i)

. (5)

Eq. (5) is the complete many-body Hamiltonian for a
collection of spin-1/2 charged particles in the presence of
external electromagnetic fields. As it stands, Eq. (5) is too

general and complex, and therefore it is important to identify
terms that may be frequently useful for a variety of materials
of interest. For example, the 3rd term in Eq. (5) is quadratic
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in the vector potential whereas the 10th-12th terms are a
product of spin angular momentum and spin/orbital angular
momentum. These quadratic terms may safely be ignored in
the first approximation. In 13th-14th terms, the external vector
potential A⃗(ext)(r⃗), which is expected to be small in magnitude
under the weak-field limit, interacts with the spin via the
gradient of the scalar potentials, which is also expected to be
small for slowly varying fields, and hence we ignore them here.

As we are here concerned with problems involving electrons,
we now substitute the expression for the scalar and vector
potentials due to the dynamic electrons from Eqs. (2)-(4)
in Eq. (5) and ignore the nuclear kinetic energy (justified
under the Born-Oppenheimer scheme) and the nuclear-nuclear
repulsion energy which is just a constant number for electronic
problems. The simplified operator for correlated electrons is
then given as follows:

Ĥ =

N


i=1


p2
i

2m
− *.,

M


j=1

z ja
(1)
u cos


ω
c
|r⃗i − R⃗j |


|r⃗i − R⃗j |

+/-
− e φ(ext)(r⃗i) +

e

m
A⃗(ext)(r⃗i) · p⃗i + 2µB s⃗(i) · B⃗(ext)(r⃗i) −

ea
(2)
u

2
s⃗(i) ·


∇⃗φ(ext)(r⃗i)


× p⃗i



+
*.,

M


j=1

z ja
(1)
u a

(2)
u

2
f (r⃗i, R⃗j)s⃗

(i) ·

(r⃗i − R⃗j) × p⃗i

+/-
 +

N


i=1

N


j,i


a
(1)
u

2

cos
�
ω
c
|r⃗i − r⃗ j |

�
|r⃗i − r⃗ j |

−
au

4


f (r⃗i, r⃗ j)s⃗

(i) ·
�
(r⃗i − r⃗ j) × p⃗i

	
+ f (r⃗ j, r⃗i)s⃗

( j) ·
�
(r⃗ j − r⃗i) × p⃗j

	

+
au

2

cos
�
ω
c
|r⃗i − r⃗ j |

�
�⃗
ri − r⃗ j

�3 
s⃗(i) ·

�
(r⃗i − r⃗ j) × p⃗j

	
+ s⃗( j) ·

�
(r⃗ j − r⃗i) × p⃗i

	 , (6)

where

f (r⃗i, r⃗ j) =
1�⃗

ri − r⃗ j

�2

cos

�
ω
c

�⃗
ri − r⃗ j

��
�⃗
ri − r⃗ j

� +
ω

c
sin

(

ω

c

�⃗
ri − r⃗ j

�) .
Here, a

(1)
u =

e2

4πϵ0
, a

(2)
u =

~

m2c2 , and au = a
(1)
u × a

(2)
u (the Planck

constant, h = 2π~; m = the rest mass of the electron,
e = the modulus of the electronic charge, c = the speed of
light in vacuum, µB = e~

2m = the Bohr magneton, and ϵ0 = the
dielectric constant in vacuum). In Eq. (6), we have dropped
the many-body momentum correlation that arises due to
A⃗
(int)
space (r⃗) as given in Eq. (3), which may be of importance

for diamagnetic materials. The first seven terms in Eq. (6)
are one-electron operators and they, respectively, represent
the kinetic energy, electron-nucleus attraction (at finite
frequency), interaction of electrons with the external scalar
potential, interaction of the electronic momentum with the
external vector potential, interaction of electron spin with
the external magnetic field, the coupling of electronic spin
with the linear momentum of the electron that is mediated
by the external scalar potential, and the spin-orbit coupling
(SOC) in which the spatial angular momentum refers to
the axis formed by the coordinate of the electron relative
to the coordinate of the nucleus. Other physically distinct
mechanisms of SOC are given by the last two terms of
Eq. (6) wherein the spatial angular momentum refers to the
axis formed by the coordinate of the electron relative to the
coordinates of other electrons and therefore these SOCs are
in essence mediated by the electron correlations which are
expected to be significant particularly for strongly correlated
materials. We parenthetically note that the last two terms of
the Hamiltonian in Eq. (6), respectively, give rise to the idea of
what is frequently known as the spin-own-orbit and spin-other-
orbit interactions. Finally, the eighth term of Eq. (6) is the

repulsion between electron-pairs, which is a finite frequency
extension of the Coulomb’s law of electrostatics. To account
for the dynamical nature of the lattice, we follow Bardeen and
co-workers44,45 and introduce a mechanism of the electron-
phonon interaction, the final expression of which, in terms
of phonon annihilation

�
bg⃗ λ

�
and creation operator

(

b
†
−g⃗ λ

)

, is
given as follows (see supplementary material, Section III for
the derivation of electron-phonon interactions50):

Ĥelectron−phonon =

N


i=1



g⃗,λ


Ĥ

(e−p;a)
{i, g⃗,λ}

+ Ĥ
(e−p;b)
{i, g⃗,λ}

 (

bg⃗ λ + b
†
−g⃗ λ

)

.

(7)

Finally, we add Eq. (7) in Eq. (6) to obtain the complete
many-electron Hamiltonian that recognizes the non-adiabatic
phonon-related electronic processes in the material.

III. BASE KETS AND SECOND QUANTIZATION

To obtain a second-quantized form of the Hamiltonian,
one must first choose a complete set of one-particle base
kets and such a choice in a many-electron theory is often
dictated by the physical problem at hand. For example, it
is frequently convenient to use localized functions (Wannier
construction,51,52 for example) to describe the insulators and
poor conductors, whereas the delocalized Bloch waves are
generally found useful for conducting materials. In other
situations, one may also use a mixed set of kets that include
both localized and delocalized functions. We here discuss
the explicit construction of a set of effective one-electron
quantum states (both localized and delocalized) for a periodic
crystalline material, to be used in the second quantization
framework. As it is well-known, effective one-electron states
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for a periodic lattice take the Bloch’s form as follows:

ψn

(

r⃗ , k⃗
)

= ei k⃗ ·r⃗eiφ
(

k⃗
)

ηn
(

r⃗ , k⃗
)

, (8)

where k⃗ stands for the Bloch wave vector (real-valued),
spanning the first Brillouin zone (FBZ) and ηn(r⃗ , k⃗) satisfies
the periodicity of the lattice, that is, ηn(r⃗ + d⃗, k⃗) = ηn(r⃗ , k⃗)

where d⃗ is a lattice vector. φ(k⃗) is a phase (real-valued)
associated with the kth Bloch state and the integer n stands
for a triplet of quantum numbers, defining the energy band.
We here adopt the orthonormality condition: ⟨ψn′(k⃗

′)|ψn(k⃗)⟩

= δ(k⃗ − k⃗ ′) δnn′, which implies (2π)3⟨ηn′(k⃗)|ηn(k⃗)⟩V = Vδnn′,
the integration over the primitive unit cell volume, V . For a
particular k⃗, ηn(r⃗ , k⃗) is the solution of the following effective
one-electron equation:

~
2

2m

(

∇⃗ + i k⃗
)2
+ En

(

k⃗
)

− Veff (r⃗)


ηn

(

r⃗ , k⃗
)

= 0, (9)

where m is the mass of the electron and En(k⃗) is the
allowed electronic band energy. Veff (r⃗) in Eq. (9) is the
effective potential energy, which may be taken as the sum
of electron-nucleus attraction, nucleus-nucleus repulsion and
the (non-linear) Hartree-Fock potential, VHF (r⃗) or a Kohn-
Sham potential of the density functional theory. As one can
easily show, VHF (r⃗) satisfies the periodicity of the lattice. To
solve Eq. (9) algebraically, we expand |ηn(k⃗)⟩ as follows:
|ηn(k⃗)⟩ =

N
m=1 Cnm(k⃗)| χm⟩ where the ket | χm⟩ must satisfy

the periodicity of the lattice, that is, χm(r⃗ + d⃗) = χm(r⃗).
Assuming orthonormality over the primitive unit cell volume,
it is convenient to choose ⟨r⃗ | χm⟩ = V−1/2 exp(ig⃗m · r⃗), where
g⃗m is the reciprocal lattice vector (real-valued). Using | χm⟩ as
a basis, we now diagonalize Eq. (9) to obtain the eigenvalues
En(k⃗) and the eigenvector elements Cnm(k⃗), and therefore
Eq. (8) takes the following form:

ψn

(

r⃗ , k⃗
)

= V−1/2
N


m=1

Cnm

(

k⃗
)

eiφ
(

k⃗
)

ei
(

k⃗+g⃗m
)

·r⃗ . (10)

Following Wannier,51 we now construct a linear combination
of Eq. (10) as follows:

Φ
d⃗n

(r⃗) =

N


m=1

fnm
(

r⃗ − d⃗
)

ei g⃗m ·r⃗ , (11)

where

fnm
(

r⃗ − d⃗
)

=
1

(2π)3/2


FBZ

d3k ei k⃗ ·
(

r⃗−d⃗
)

eiφ
(

k⃗
)

Cnm

(

k⃗
)

,

(12)

where the vector d⃗ locates the lattice point at which
Φ

d⃗n
(r⃗) is centred. Also, the set Φ

d⃗n
(r⃗) is ortho-normal

over the energy bands as well as the lattice vectors, that is,
⟨Φ

d⃗′n′|Φd⃗n
⟩ = δnn′δd⃗d⃗′. Evidently, it is the quantity Cnm(k⃗),

and hence Veff (r⃗) in Eq. (9) that finally determines the
extent to which the function Φ

d⃗n
(r⃗) will be localized in

the region around r⃗ = d⃗. Let us suppose that φ(k⃗) = 0
and Cnm(k⃗) is a constant, say, (2π)3/2, in which case
Eqs. (11) and (12) yield: Φ

d⃗n
(r⃗) = Sinc(x − dx)Sinc(y

− dy)Sinc(z − dz), where π(x − dx)Sinc(x − dx) = sin[(2N

+ 1)π(x − dx)/ax] and ax is the length of the primitive unit

cell in the Cartesian x-direction. For a general situation, when
Cnm(k⃗) is not a constant, |Φ

d⃗n
⟩ will fundamentally inherit the

oscillatory and simultaneously decaying feature of the tail of
the Sinc function, albeit in a subtle form, and this, in fact,
is necessary to ensure that the set |Φ

d⃗n
⟩ remains orthogonal

over the lattice vectors.53 In any event, Eqs. (10) and (11),
respectively, represent a complete set of delocalized and
localized effective one-electron quantum states, which may be
used, within the second-quantization framework, to study the
electronic properties of metals and insulators, respectively.

As we have noted above, the function Φ
d⃗n

(r⃗) in Eq. (11)
may exhibit, for a given Veff(r⃗) in Eq. (9), an oscillatory
and simultaneously decaying feature, away from the lattice
point r⃗ = d⃗. In a specific application, it may be desirable to
suppress this oscillation, particularly in the region beyond the
individual primitive unit cell volume. Such a localization, as
we discuss below, may be achieved by using an appropriate
filter in Eq. (12). An ideal filter, in the present context, would
produce a new set of one-electron states, all well-confined in
the real space within the primitive unit cells located at various
lattice sites. However, a necessary consequence of the filter is
that the new set of states will no longer be orthogonal over
the lattice vectors d⃗. If so desired, then, one may use the
method of symmetric orthogonalization due to Lowdin54 and
transform the new set to yet another new set of states that are
orthonormal over the lattice vectors, d⃗, as well as the band
indices, n. Let us now introduce a filter Γnm(k⃗; ϵ⃗) and redefine
Eq. (12) as shown below

f̃nm
(

r⃗ − d⃗; Γ
)

=
1

(2π)3/2


FBZ

d3k ei k⃗ ·
(

r⃗−d⃗
)

× Γnm
(

k⃗; ϵ⃗
)

eiφ
(

k⃗
)

Cnm

(

k⃗
)

. (13)

That is, the essential effect of a filter is to rescale the
elements Cnm(k⃗) of Eq. (10), such that the resulting function
f̃nm(r⃗ − d⃗; Γ) will have the structure of the Sinc function
centred at r⃗ = d⃗, superimposed with an envelope, which is
decaying with a characteristic length scale as defined by the
damping variable ϵ⃗ of the filter function, Γnm(k⃗; ϵ⃗). With
f̃nm(r⃗ − d⃗; Γ) in Eq. (13), Eq. (11) produces a non-orthogonal
set of one-electron states Φ̃

d⃗n
(r⃗; Γ), which, upon symmetric

orthogonalization, defines a new set of one-electron states as
follows:

Φ
(new)

d⃗n
(r⃗; Γ) =



d⃗′

(S−1/2
n )

d⃗d⃗′ Φ̃d⃗′n (r⃗; Γ) , (14)

where

(Sn)d⃗d⃗′ = ⟨Φ̃
d⃗n
(Γ)|Φ̃

d⃗′n(Γ)⟩. (15)

It is easy to verify that ⟨Φ(new)

d⃗′n′
(Γ)|Φ

(new)

d⃗n
(Γ)⟩ = δnn′δd⃗d⃗′. We

may now use one-electron states in Eq. (14) as a basis to
construct a second-quantized form of the many electron
Hamiltonian, suitable particularly for insulators. For the
symmetric orthogonalization process in Eq. (14) to succeed,
we note, the overlap matrix in Eq. (15), if required, must be
made non-singular, using, for example, the method of singular
value decomposition. The nature of the overlap matrix in
Eq. (15) and the consequent localization characteristics of
the resulting one-electron states |Φ

(new)

d⃗n
(Γ)⟩ in Eq. (14) are
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critically dependent upon the choice of the filter function
Γnm(k⃗; ϵ⃗). In what follows, we discuss the possible choices
for the filter function that one may introduce in a specific
application.

We first note that the filter, beside the damping parameter
ϵ⃗ , is a function of the Bloch wave vector k⃗ and the
indices n and m, as displayed in Eq. (13). In the first
approximation, we may consider the filter to be the same
for all n and m, that is, Γnm(k⃗; ϵ⃗) = Γ(k⃗; ϵ⃗) = exp(ln[Γ(k⃗; ϵ⃗)]).
Formally, therefore, this filter results by simply adding an
imaginary quantity, −i ln[Γ(k⃗; ϵ⃗)], to the real-valued phase,
φ(k⃗), of the Bloch states in Eq. (10). For example, the
choice ln[Γ(k⃗; ϵ⃗)] = −(ϵ2

xk2
x + ϵ

2
yk2

y + ϵ
2
zk2

z) amounts to a filter
function that is Gaussian in nature. Accordingly, f̃nm(r⃗ − d⃗)

in Eq. (13) will exhibit a curve that is centred at r⃗ = d⃗ with
a Gaussian-like profile, and therefore |Φ̃

d⃗n
⟩, resulting from

Eq. (11), would be localized like a Gaussian, within the
primitive unit cell, located at the lattice point d⃗. We may now
use this |Φ̃

d⃗n
⟩ in Eq. (14) to obtain a new set of orthogonal

one-electron states.
As an alternative, let us choose an arbitrary function,

hn(r⃗), which is localized within a primitive unit cell, located
at the lattice point d⃗. Let us now obtain the filter, using the
information available in Eq. (10), as defined below

Γnm

(

k⃗
)

=

N


p=1

Cpm(k⃗)

Cnm(k⃗)



ψp

(

k⃗
) ��� hn



. (16)

As we have noted above, the effect of the filter is to simply
rescale Cnm(k⃗) of Eq. (10) and therefore we have the following
expression for a non-orthogonal one-electron states of the
Bloch class, emerging from Eq. (10)

ψ̃n

(

r⃗ , k⃗
)

= V−1/2
N


m=1

Γnm

(

k⃗
)

Cnm

(

k⃗
)

eiφ
(

k⃗
)

ei
(

k⃗+g⃗m
)

·r⃗ . (17)

With Eq. (16), Eq. (17) takes the following form:

ψ̃n

(

r⃗ , k⃗
)

=

N


p=1

anp

(

k⃗
)

ψp

(

r⃗ , k⃗
)

, (18)

where anp(k⃗) = ⟨ψp(k⃗)|hn⟩. As Eq. (18) reveals, the effect
of the filter as given in Eq. (16) is to linearly transform the
orthogonal set of Bloch states in Eq. (10) to a non-orthogonal
set of the same Bloch class. We now use the method of
symmetric orthogonalization54 to obtain, using ψ̃n(r⃗ , k⃗) in
Eq. (18), a new set of orthogonal states of the Bloch class as
follows:

ψ
(new)
n

(

r⃗ , k⃗
)

=

N


p=1

(S
−1/2

k⃗
)np ψ̃p

(

r⃗ , k⃗
)

, (19)

where

(S
k⃗
)np = ⟨ψ̃n(k⃗)|ψ̃p(k⃗)⟩. (20)

Finally, we use Eq. (19) to construct the Wannier-like one-
electron states, localized at the lattice point d⃗, as given below

Φ
(new)

d⃗n
(r⃗) =


FBZ

d3k e−i k⃗ ·d⃗ ψ
(new)
n

(

r⃗ , k⃗
)

. (21)

We may now use |Φ
(new)

d⃗n
⟩ in Eq. (21) as a basis to construct

a second-quantized form of the many electron Hamiltonian.
Now, if we restrict the summation in Eqs. (16), (18), and (19)
to a subset, J, of the energy bands (that is, p = 1, J), where
J is less than N , and accordingly the index n in Eqs. (18)
and (19) is restricted to the number J, then we will obtain
the class of localized Wannier-like states, as advanced by
Vanderbilt and co-workers.52 It should, however, be noted that
the symmetric orthogonalization process for a subset J of the
energy bands, as shown in Eq. (19), may sometimes fail due to
the presence of singularities in the overlap matrix in Eq. (20).
A notable example of the occurrence of such singular overlap
is the topological insulator.52,55 In such circumstances, the
filter function as given in Eq. (16) may not be optimal. As
yet another alternative, one may use other filter techniques
such as those based on distributed approximating functionals,
as pioneered by Kouri and co-workers,56,57 to obtain a set
of orthonormal one-electron states, which are well-localized
within the primitive unit cell volume. We parenthetically note
that the use of filters to suppress the oscillatory behaviour and
localize the Wannier-like one-electron base kets completely
within the volume of the unit cell, located at various lattice
sites, is not essential, though it may be desirable in specific
instances. In any event, the complete set of orthonormal one-
electron base kets as given in Eq. (11), the localization features
of which are determined, if the phase φ

(

k⃗
)

is zero, solely by

the coefficients, Cnm

(

k⃗
)

, which are the eigenvector elements
of Eq. (9), would, in general, continue to serve the purpose,
we stress.

Finally, assuming Eq. (11) or Eq. (14) or Eq. (21)
as a basis, we obtain the second-quantized form of the
Hamiltonian in Eqs. (6) and (7), which is suitable, in particular,
for insulators. The details of the second quantization are
presented in the supplementary material (see supplementary
material, Section IV for the derivation of the second-quantized
Hamiltonian50) and the final results are summarized in Tables I
and II.

IV. EFFECTIVE HAMILTONIANS

The Hamiltonian as given in Tables I and II is still
too complex and it may not be necessary to include all
the terms in a specific application. In the following, we
outline a set of approximations for the Hamiltonian in
Tables I and II, reduce the Hilbert space and finally derive
a number of effective Hamiltonians suitable for a variety of
materials.

A. Strongly correlated narrow energy band systems

We here advance, in the spirit of the classic works of
Hubbard1 and others,2,3,6,9 a simplification scheme for the
Hamiltonian in Tables I and II which may be suitable for
materials that display strong electron correlations among a
set of bands within a narrow energy range. Let us first
consider the one electron operators in Table I. The 1st term
represents a combination of the kinetic energy, electron-
nucleus attraction, the coupling of electronic momentum with
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TABLE I. One-electron operators of the total Hamiltonian.

S.No. Terms of the Hamiltonian Remarka

1


d⃗1,n1
t
(1)

d⃗1n1
n̂
d⃗1n1

ĤDiag

2


d⃗1,σ1,
n1,n2

t
(2)

{d⃗1n1}|{d⃗1n2}
c
†
d⃗1σ1;n1

c
d⃗1σ1;n2

ĤBT

3


d⃗1,d⃗2,
n1,n2,σ1

t
(3)

{d⃗1n1}|{d⃗2n2}
c
†
d⃗1σ1;n1

c
d⃗2σ1;n2

ĤHopping

4


d⃗1,n1
t
(4)

d⃗1n1
sz
d⃗1n1

ĤZeeman

5


d⃗1,n1,n2
t
(5)

{d⃗1n1}|{d⃗1n2}

(

c
†
d⃗1α;n1

c
d⃗1α;n2

−c†
d⃗1β;n1

c
d⃗1β;n2

)

6


d⃗1,d⃗2,
n1,n2,

t
(6)

{d⃗1n1}|{d⃗2n2}

(

c
†
d⃗1α;n1

c
d⃗2α;n2

−c†
d⃗1β;n1

c
d⃗2β;n2

)

7


d⃗1,n1
t
(7)

d⃗1n1
sz
d⃗1n1

ĤSOC1

8


d⃗1,n1
t
(8)

d⃗1n1
s+
d⃗1n1

9


d⃗1,n1
t
(9)

d⃗1n1
s−
d⃗1n1

10


d⃗1,n1,n2
t
(10)

{d⃗1n1}|{d⃗1n2}

(

c
†
d⃗1α;n1

c
d⃗1α;n2

−c†
d⃗1β;n1

c
d⃗1β;n2

)

11


d⃗1,n1,n2
t
(11)

{d⃗1n1}|{d⃗1n2}
c
†
d⃗1α;n1

c
d⃗1β;n2

12


d⃗1,n1,n2
t
(12)

{d⃗1n1}|{d⃗1n2}
c
†
d⃗1β;n1

c
d⃗1α;n2

13


d⃗1,d⃗2,
n1,n2

t
(13)

{d⃗1n1}|{d⃗2n2}

(

c
†
d⃗1α;n1

c
d⃗2α;n2

−c†
d⃗1β;n1

c
d⃗2β;n2

)

14


d⃗1,d⃗2,
n1,n2

t
(14)

{d⃗1n1}|{d⃗2n2}
c
†
d⃗1α;n1

c
d⃗2β;n2

15


d⃗1,d⃗2,
n1,n2

t
(15)

{d⃗1n1}|{d⃗2n2}
c
†
d⃗1β;n1

c
d⃗2α;n2

16


d⃗1, d⃗2,
n1,n2,
σ1



g⃗ , λw
(8)

{d⃗1n1}|{d⃗2n2}||{g⃗ λ}

(

bg⃗ λ+b
†
g⃗ λ

)

c
†
d⃗1σ1;n1

c
d⃗2σ1;n2

ĤEP

17


d⃗1, d⃗2,
n1,n2,
σ1,σ2



g⃗ , λw
(9)

{d⃗1σ1;n1}|{d⃗2σ2;n2}∥{g⃗ λ}

(

bg⃗ λ+b
†
g⃗ λ

)

c
†
d⃗1σ1;n1

c
d⃗2σ2;n2

ĤSP

a ĤDiag= diagonal energy, ĤBT= electronic band transition at a lattice site,
ĤHopping= electron hoping among the lattice sites, ĤSOC1= spin-orbit coupling
ĤZeeman= interactions of electron spin with the external magnetic field,
ĤEP= electron-phonon interaction and ĤSP= spin-phonon interactions.
d⃗ = lattice vector, n = band index and σ = spin.

the external vector potential and the acceleration of electron
due to the external scalar potential. As the bands belong to
a narrow energy range, the term t

(1)

d⃗1n1
in the 1st term is not

expected to vary appreciably when the lattice vector d⃗1 and
the band n1 change and therefore it may be approximated as

a constant. With a constant t
(1)

d⃗1n1
, the number operator n̂

d⃗1n1
,

when summed over d⃗1 and n1, measures the total number of
electrons within the narrow energy range. Consequently, the
1st term would effectively give a constant energy contribution
to the total Hamiltonian which we can safely ignore from
further considerations. Physically, this means that there is no
escape for electrons from the band belonging to the narrow
energy range. The 2nd and 3rd terms, respectively, stand for
the inter-band electronic transitions (within the narrow energy
range under study) at the same lattice point (a non-adiabatic
process) and the electron hopping from one lattice point to
the other, both are mediated by a number of sources such as
the electron-nucleus attraction, the external scalar potential,

and the external vector potential (see supplementary material,
Section IV for the detailed expression50). The 2nd term may be
ignored if we consider only adiabatic processes in the material,
whereas the hopping term gets simplified if there is no external
electromagnetic field. Terms 4th, 5th, and 6th in Table I
display the interactions of external magnetic field with the
spin angular momentum of electrons; of these the 5th and 6th
terms are non-vanishing only when the external magnetic field
is spatially dispersive (see supplementary material, Section IV
for the detailed expression50). And therefore, in the first
approximation, we may assume the external magnetic field
to be spatially non-dispersive (t(4) is then simply equal to
2µB B(ext)) and accordingly we retain only the 4th term. Terms
from 7th to 15th stand for a variety of physical processes
that arise due to the interaction of spin with the spatial
motion of electrons. Of these, the 7th-9th terms refer to the
Thomas precession of the individual spins interacting with the
internal magnetic field originating from the orbital motion of
the charged particles and they are therefore analogous to the
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TABLE II. Two-electron operators of the total Hamiltonian.

S.No. Terms of the Hamiltonian Remarka

1


d⃗1n1
u
(1)

d⃗1n1
n̂
d⃗1α;n1

n̂
d⃗1β;n1

ĤCorr

2


d⃗1,σ1,σ2,
n1,n2

u
(2)

{d⃗1n1}|{d⃗1n2}
n̂
d⃗1σ1;n1

n̂
d⃗1σ2;n2

3


d⃗1,d⃗2,
n1,n2
σ1,σ2

u
(3)

{d⃗1n1}|{d⃗2n2}
n̂
d⃗1σ1;n1

n̂
d⃗2σ2;n2

4 −


d⃗1,σ1,σ2,
n1,n2,

u
(4)

{d⃗1n1}|{d⃗1n2}
c
†
d⃗1σ1;n1

c
d⃗1σ2;n1

c
†
d⃗1σ2;n2

c
d⃗1σ1;n2

5 −


d⃗1,d⃗2,
n1,n2
σ1,σ2

u
(5)

{d⃗1n1}|{d⃗2n2}
c
†
d⃗1σ1;n1

c
d⃗1σ2;n1

c
†
d⃗2σ2;n2

c
d⃗2σ1;n2

6


d⃗1,n1,n2

(

u
(6)

{d⃗1n1}|{d⃗1n2}
+u

(7)

{d⃗1n2}|{d⃗1n1}

)

n̂
d⃗1n2

sz
d⃗1n1

ĤSOC2

7


d⃗1,d⃗2,
n1,n2

(

u
(8)

{d⃗1n1}|{d⃗2n2}
+u

(9)

{d⃗2n2}|{d⃗1n1}

)

n̂
d⃗2n2

sz
d⃗1n1

8


d⃗1,n1,n2

(

u
(10)

{d⃗1n1}|{d⃗1n2}
+u

(11)

{d⃗1n2}|{d⃗1n1}

)

n̂
d⃗1n2

s+
d⃗1n1

9


d⃗1,d⃗2,
n1,n2

(

u
(12)

{d⃗1n1}|{d⃗2n2}
+u

(13)

{d⃗2n2}|{d⃗1n1}

)

n̂
d⃗2n2

s+
d⃗1n1

10


d⃗1,n1,n2

(

u
(14)

{d⃗1n1}|{d⃗1n2}
+u

(15)

{d⃗1n2}|{d⃗1n1}

)

n̂
d⃗1n2

s−
d⃗1n1

11


d⃗1,d⃗2,
n1,n2

(

u
(16)

{d⃗1n1}|{d⃗2n2}
+u

(17)

{d⃗2n2}|{d⃗1n1}

)

n̂
d⃗2n2

s−
d⃗1n1

a ĤCorr= electron-pair repulsion and ĤSOC2= spin-orbit interaction.
d⃗ = lattice vector, n = band index and σ = spin.

standard l⃗ · s⃗ coupling in the atomic system. We must retain
these terms to study the effects of the interaction between
the spatial and spin angular momenta on material properties.
Analogous to the 3rd term, 10th-12th terms describe the
inter-band transitions (nonadiabatic) involving spins (α → α,
β → β, β → α and α → β) occurring at a given lattice point
and hence may be ignored in the first approximation. The 13th-
15th terms give a further mechanism of hopping from one
lattice point to another with and without spin-flip processes
that are mediated by the spin-orbit coupling, which we ignore
here. Finally, 16th and 17th terms, respectively, provide the
mechanism of electron-phonon and spin-phonon couplings,
of which the former plays an important role in the charge

transport processes and the latter is significant for magnetic
properties of matter and therefore we consider them here in
the Hamiltonian. We next consider the terms that involve the
coordinates of two-electron as given in Table II. In general, we
intuitively expect the repulsion among electrons belonging to
the same lattice site and the same band, which the 1st term in
Table II represents, to be much more profound in comparison
to other processes involving two-electrons. And hence, we
may neglect Table II, except the 1st term, completely. Finally,
the Hamiltonian may be further simplified if we consider
the interactions only between the neighbouring lattice points.
With the series of approximations outlined above, a much
simpler effective Hamiltonian is given below

Ĥ =




d⃗1, d⃗2



n1,n2,σ1

t
{d⃗1n1}|{d⃗2n2}

c
†
d⃗1σ1;n1

c
d⃗2σ1;n2

+


d⃗1n1

u
d⃗1n1

n̂
d⃗1α;n1

n̂
d⃗1β;n1

+ 2µB B(ext)


d⃗1,n1

sz
d⃗1n1
+



d⃗1,n1

Λ
(z)

d⃗1n1
sz
d⃗1n1

+


d⃗1,n1

Λ
d⃗1n1

s+
d⃗1n1
+



d⃗1,n1

Λ
∗
d⃗1n1

s−
d⃗1n1
+



d⃗1, d⃗2,
n1,n2,
σ1



g⃗,λ

ϵ
(ep)

{d⃗1n1}|{d⃗2n2}∥{g⃗ λ}

(

bg⃗ λ + b
†
g⃗ λ

)

c
†
d⃗1σ1;n1

c
d⃗2σ1;n2

+


d⃗1, d⃗2,
n1,n2,
σ1,σ2



g⃗,λ

Λ
(ep)

{d⃗1σ1;n1}|{d⃗2σ2;n2}∥{g⃗ λ}

(

bg⃗ λ + b
†
g⃗ λ

)

c
†
d⃗1σ1;n1

c
d⃗2σ2;n2

, (22)

where the symbol


d⃗1, d⃗2



in Eq. (22) means that the inter-site
hopping takes place only between the neighbouring lattice
points. To be consistent with the standard notation in the
literature, we have changed the symbols while writing Eq. (22)

as follows: (a) t(3) = t, (b) u(1) = u, (c) t(4) = 2µB B(ext), (d)
t(7) = Λ(z), (e) t(8) = Λ, (f) t(9) = Λ∗, (g) w(8) = ϵ (ep), and (h)
w(9) = Λ(ep). Λ∗ is the complex conjugate of Λ. We note
that the Hamiltonian in Eq. (22), in the absence of phonons
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and spin-orbit couplings, reduces to the Hubbard model for
strongly correlated electrons where the symbols t and u,
respectively, stand for the hopping and electron repulsion.1

Eq. (22) thus represents a minimal extension of the Hubbard
model,1 which may be fruitfully utilized for practical studies
on complex materials.

B. Effective spin-only Hamiltonian

To study the magnetic properties of complex materials, it
is frequently desired to have a Hamiltonian that involves only

the spin degree of freedom of electrons (or quasi-particles),
and that, at the same time, includes other essential physical
processes of interest in magnetism. We implement such a
program here by a systematic reduction of the Hamiltonian
in Tables I and II. The reduction program, in essence,
follows the classic works of Heisenberg and others,4–7,58 but it
differs in the detailed physical content of the Hamiltonian we
advance here. As detailed in the supplementary material (see
supplementary material, Section V for the derivation of the
spin-only Hamiltonian50), the final expression for the effective
spin-only Hamiltonian takes the following form:

Ĥ
(eff)
spin = −



d⃗1,d⃗2



i∈x, y,z
J
(i)

d⃗1d⃗2
Si

d⃗1
Si

d⃗2
+



d⃗1

Λ⃗d⃗1
+ 2µB B⃗(ext) +




g⃗ λ

Ω⃗
d⃗1g⃗ λ

(

bg⃗ λ + b
†
g⃗ λ

)


 · S⃗d⃗1

+


d⃗1,d⃗2

D⃗
d⃗1d⃗2
·

S⃗
d⃗1
× S⃗

d⃗2


+



i, j ∈x, y,z



d⃗1,d⃗2

Γ
i, j

d⃗1d⃗2
Si

d⃗1
S
j

d⃗2
, (23)

where J
(i)

d⃗1d⃗2
= J

(dir)

d⃗1d⃗2
− J

(ind)

d⃗1d⃗2
− Γi, i

d⃗1d⃗2
. D⃗

d⃗1d⃗2
and Γi, j

d⃗1d⃗2
, respec-

tively, are the antisymmetric and symmetric anisotropic spin
exchange involving a pair of lattice sites.7,58,59 B⃗(ext) is the
external magnetic field and Ω⃗

d⃗1g⃗ λ
stands for the spin-phonon

coupling energy. The term Λ⃗
d⃗1
· S⃗

d⃗1
in Eq. (23) arises due

to the Thomas precession of the individual spins interacting
with the internal magnetic field originating from the orbital
motion of the charged particles and therefore Λ⃗

d⃗1
is analogous

to the standard spin-orbit coupling energy of the atomic
system. To our knowledge, the importance of Λ⃗

d⃗1
· S⃗

d⃗1
has not

been fully recognized in the literature. Eq. (23) represents a
generic spin-only Hamiltonian that may fruitfully be utilized
in a practical study on magnetic materials. A remark on the
sign of J

d⃗1d⃗2
in Eq. (23) is in order here. J

(dir)

d⃗1d⃗2
is related

to w(10)

{d⃗1n1}{d⃗2n2}|{d⃗1n1}{d⃗2n2}
(see supplementary material, Eqs.

(66), (86), and (94)50) which is given as follows:

w(10) =


{d⃗1n1}
(i){d⃗2n2}

( j) ���a
(1)
u

2

cos
�
ω
c
|r⃗i − r⃗ j |

�
|r⃗i − r⃗ j |

���
× {d⃗1n1}

( j){d⃗2n2}
(i)


. (24)

The one-particle Wannier state ���d⃗n


appearing in Eq. (24) is

expected to be strongly localized at the lattice point d⃗. As an
example of a localized state, let us consider the sinc function,

which in one dimension reads as eiθ 1
|d(x)−xi |

sin

( ���d(x)−xi���
Lx

)

where d(x) is the x-component of the lattice vector d⃗, xi is
the x-coordinate of the ith electron and Lx is much less than
the lattice constant. In fact, Lx → 0 limit will yield the ideal
localization. It is then clear that the dominant contribution
to the integral in Eq. (24) will come from the values of
the integrand in the small region surrounding the lattice
points, and in this small region the frequency-modulated
Coulomb repulsion and the product of four sinc functions,
for example, should be positive definite. As a result, w(10) in
Eq. (24) and hence J

(dir)

d⃗1d⃗2
is expected to be a positive quantity.

Furthermore, the indirect exchange coupling J
(ind)

d⃗1d⃗2
here arises

from the second-order perturbation correction and therefore
the magnitude of J

(ind)

d⃗1d⃗2
is expected to be smaller than the

magnitude of J
(dir)

d⃗1d⃗2
, at least for insulators and poor conductors.

That means, the total exchange coupling J
d⃗1d⃗2
= J

(dir)

d⃗1d⃗2
− J

(ind)

d⃗1d⃗2
is expected to be a positive quantity. This is in contrast to
the interpretation of J

d⃗1d⃗2
in the Heisenberg model4,5 where

it is treated both as a positive entity and a negative entity.
We finally note that Eq. (23), in the absence of spin-orbit and
spin-phonon couplings, reduces to the Heisenberg model for
magnetic materials.4–6

V. APPLICATIONS

As definite applications of effective Hamiltonians
presented above, we now consider two simple problems of
complex materials wherein the role of spin-orbit interactions
is manifestly distinct and non-trivial. In Section V A below, we
study a simplified one-dimensional form of the Hamiltonian
for strongly correlated materials as given in Eq. (22) and
address the question if the spin-orbit interaction provides a
possible route for metal-insulator transition. In Section V B,
we use a simplified one-dimensional form of the spin-only
Hamiltonian as given in Eq. (23) and demonstrate the spin-
orbit interaction to be a reason for the existence of the
antiferromagnetic phase in materials that are characterized
by a positive spin-exchange couplings between the nearest
neighbour lattice points.

A. Spin-orbit interaction: Metal-insulator transition

We consider an one-dimensional from of the Hamiltonian
in Eq. (22) with nearest neighbour hopping interaction
wherein the system is half-filled (that is, the number of
lattice points is equal to the number of unpaired electrons)
and the phonon-related processes are absent. In such
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a situation, the Hamiltonian takes the following simple
form:

Ĥ = t

N


m=1



σ

c†mσcm+1σ

+ t∗
N


m=1



σ

c
†
m+1σcmσ + u

N


m=1

n̂mαn̂mβ

+

(

Λ
(z)

2
+ µB B(ext)

) N


m=1

(

c†mαcmα − c
†
mβcmβ

)

+Λ

N


m=1

c†mαcmβ + Λ
∗

N


m=1

c
†
mβcmα. (25)

Notably, the Hamiltonian in Eq. (25) carries a simplified
treatment of SOC (represented by the symbol Λ), in the
absence of which it reduces to the standard one-dimensional
Hubbard model in the presence of the external magnetic
field.1 To get an insight into the nature of metal-insulator
transition, we compute the electronic band-gap as a function
of a dimensionless variable that depends upon the spin-orbit
coupling. The third term of the Hamiltonian in Eq. (25),
which represents the electron pair repulsion at a lattice point,
is quadratic in the one-particle density operator and this

makes the exact diagonalization of the Hamiltonian a difficult
mathematical task. To circumvent this, we here use the mean
field approximation as explained below. Let us first consider
the following operator identity involving the product of two
number operators:

n̂mαn̂mβ = n̂mα



n̂mβ

�
+ n̂mβ ⟨n̂mα⟩ − ⟨n̂mα⟩



n̂mβ

�
+ [⟨n̂mα⟩ − n̂mα][



n̂mβ

�
− n̂mβ]. (26)

In the mean field approximation, the last term that represents
a product of fluctuations in the densities is negligible.1 We
also assume ⟨n̂mσ⟩ = nσ for all lattice indices m. Next,
we introduce the Fourier transformation of the fermionic
operators as below

c†mσ =
1
√

N



k ∈B.Z .

c
†
kσ

e−ikdm

and

cmσ =
1
√

N



k ∈B.Z .

ckσeikdm (27)

where dm = ma with m = integer and a = lattice constant.
We now substitute Eqs. (26) and (27) in Eq. (25) and use the
definition of the number operator n̂kσ = c

†
kσ

ckσ to obtain the
Hamiltonian in Eq. (25) in the following form:

Ĥ =


k ∈B.Z .



σ

�
teika + t∗e−ika

�
n̂ka + unα



k ∈B.Z .

n̂kβ + unβ



k ∈B.Z .

n̂kα − D(T)

+

(

Λ
(z)

2
+ µB B(ext)

)



k ∈B.Z .

�
n̂kα − n̂kβ

�
+ Λ



k ∈B.Z .

c
†
kα

ckβ + Λ
∗



k ∈B.Z .

c
†
kβ

ckα (28)

=


k ∈B.Z .


teika + t∗e−ika +

Λ
(z)

2
+ µB B(ext) + u

n

2
+ u

m

2


n̂kα

+


k ∈B.Z .


teika + t∗e−ika −

Λ
(z)

2
− µB B(ext) + u

n

2
− u

m

2


n̂kβ + Λ



k ∈B.Z .

c
†
kα

ckβ + Λ
∗



k ∈B.Z .

c
†
kβ

ckα. (29)

In Eq. (28), D(T) = u
N

m=1 ⟨n̂mα⟩


n̂mβ

�
may be considered as a constant energy term and hence we have neglected it

completely. To go from Eq. (28) to Eq. (29), we have introduced nα + nβ = n and nβ − nα = m = −2 ⟨sz⟩, where n and m

represent the average number of electrons at each lattice site and the effective spin magnetic moment (dimensionless) along the
z direction at each lattice site, respectively. The term t in Eq. (29) is related to the hopping probability amplitude which, in
general, is a complex number (tR + it I) and hence we write teika + t∗e−ika = 2 × (tR cos ka − t I sin ka) and simplify Eq. (29) as
follows:

Ĥ =


k ∈B.Z .

Ak n̂kα +


k ∈B.Z .

Bk n̂kβ + Λ


k ∈B.Z .

c
†
kα

ckβ + Λ
∗



k ∈B.Z .

c
†
kβ

ckα, (30)

with Ak =


2 × (tR cos ka − t I sin ka) +

Λ
(z)

2
+ µB B(ext) + u

n

2
+ u

m

2


, (31)

and

Bk =


2 × (tR cos ka − t I sin ka) − Λ

(z)

2
− µB B(ext) + u

n

2
− u

m

2


. (32)

We note that the Hamiltonian in Eq. (30) is now fully decoupled in the k-space. To diagonalize Eq. (30) for a given wave vector
k, we choose the base kets to be c

†
kα

|vac⟩ and c
†
kβ

|vac⟩ and consequently the Hamiltonian in Eq. (30) takes the form of a 2 × 2
matrix whose eigenvalues are as given below
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λ±k =
1
2


(Ak + Bk) ±



(Ak + Bk)
2 − 4

(

AkBk − |Λ|2
)


, (33)

=⇒ ϵ±k = 2 × (t̃R cos ka − t̃ I sin ka) +
1
2

n ±


(

Λ̃(z) + B̃ +
m

2

)2
+ Λ̃2, (34)

where ϵ±
k
= λ±

k
/u, t̃R = tR/u, t̃ I = t I/u, Λ̃(z) = Λ(z)/2u, B̃

= µB B(ext)/u, and Λ̃ = |Λ| /u. We now compute the band gap
to ascertain if the spin-orbit coupling can lead to the metal-
insulator transition. It is clear from Eq. (34) that ϵ+

k
> ϵ−

k
;

that is, ϵ+
k

and ϵ−
k
, respectively, refer to the energies of the

upper and lower bands. The band gap will then be given by
the difference of the minimum of ϵ+

k
and the maximum of

ϵ−
k
. Upon differentiating Eq. (34) with respect to (ka) and

equating to zero, we find the extrema to be of following
types.

Type-1: If t̃R > 0 and t̃ I > 0 and if t̃R > 0 and t̃ I < 0, then
we have the following solutions for the extrema (l = integer):

ka = lπ + sin−1 *..,
−

t̃ I


t̃2
R
+ t̃2

I

+//-
= lπ + cos−1 *..,

t̃R


t̃2
R
+ t̃2

I

+//-
.

The second derivative of ϵ±
k

then determines that both ϵ+
k

and
ϵ−
k

have a maximum when l = 0 and minima when l = ±1.
Type-2: If t̃R < 0 and t̃ I < 0 and if t̃R < 0 and t̃ I > 0, then

we have the following solutions for the extrema (l = integer):

ka = lπ + sin−1 *..,
t̃ I



t̃2
R
+ t̃2

I

+//-
= lπ + cos−1 *..,

−
t̃R



t̃2
R
+ t̃2

I

+//-
.

The second derivative of ϵ±
k

then determines that both ϵ+
k

and
ϵ−
k

have a minimum when l = 0 and maxima when l = ±1.
In both situations, within the first Brillouin zone, we

thus find that the minimum value of ϵ+
k

is

−2


t̃2
R
+ t̃2

I
+

�
Λ̃(z) + B̃ + m

2

�2
+ Λ̃2 and the maximum

value of ϵ−
k

is 2


t̃2
R
+ t̃2

I
−

�
Λ̃(z) + B̃ + m

2

�2
+ Λ̃2. The

band gap, ϵ+
k

�
min − ϵ

−
k

�
max, is then equal to −4



t̃2
R
+ t̃2

I

+ 2
�
Λ̃(z) + B̃ + m

2

�2
+ Λ̃2. We recall that the model

Hamiltonian being studied here defines a material system
that is half-filled and therefore we expect the system to be an
insulator if the band gap is positive. On the other hand, if the
bands are overlapping (the gap being negative) then we expect
the system to be a metal. For the materials to behave as an
insulator, then, the band gap measure, Mbg, must be greater
than unity, where

Mbg =


(

Λ̃
(z) + B̃ +

m

2

)2
+ Λ̃2


/4

�
t̃2
R + t̃2

I

�
. (35)

In Fig. 1, we schematically show the regions of metal and
insulator as a function of the band gap measure. It is evident
from Eq. (35) that the spin-orbit interaction favours the
material to be insulating in character and this is certainly
so if the effective magnetic moment m is zero and there is no
external magnetic field. The present finding is consistent with
a recent study on Mott physics which predicts electrons to be
in metallic and topological band insulator phases at weak and

strong spin-orbit interaction, respectively.60 To conclude, the
spin-orbit interaction provides a viable mechanism of metal-
insulator transition, which is distinct from the well-known
Mott-Hubbard (driven by the strong electron correlations of
electrostatic origin)1,46 and the Anderson mechanism (driven
by the disorder).47 This may be further verified in experiments.

B. Spin-orbit interaction: Magnetic phase transition

Here we study the spin-only Hamiltonian in Eq. (23) for
an one-dimensional spin-S chain with N lattice points in the
presence of external magnetic field which is directed along
the z direction with nearest neighbour exchange interactions,
to understand the significance of spin-orbit interaction in
magnetic phase transitions. It is to be noted that the exchange
parameters J in Eq. (23) is greater than zero. Let us first
consider the situation when the SOC parameter Λ is greater
than zero, in which case the Hamiltonian simplifies as follows:

Ĥ
(eff)
spin = −2J

N


m=1

S⃗m · S⃗m+1 + Λ
(z)

N


m=1

Sz
m

+ 2µBB(ext)
N


m=1

Sz
m. (36)

To diagonalize the Hamiltonian in Eq. (36), we first introduce
the Holstein-Primakoff approximation for the spin angular
momentum operators as follows:61

Sz
m = −S +

1
2
(p̂2

m + q̂2
m − 1),

Sx
m =
√

Sq̂m, and S
y
m = −

√
Sp̂m,

(37)

FIG. 1. Metal-Insulator phase transition. Mbg is the band gap measure, see
Eq. (35).
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where the operators q̂m and p̂m satisfy the following
commutation relations: [q̂m, p̂n] = iδmn, [q̂m, q̂n] = 0 and
[p̂m, p̂n] = 0. The first term of the Hamiltonian in Eq. (36) is
manifestly quadratic, the z-component of which we linearize
using Eq. (37) as shown below

Sz
mSz

m+1 =


−S +

1
2
(p̂2

m + q̂2
m − 1)



×

−S +

1
2
(p̂2

m+1 + q̂2
m+1 − 1)



≈ S2 −
S

2
(p̂2

m + q̂2
m − 1) −

S

2
(p̂2

m+1 + q̂2
m+1 − 1). (38)

We next use the periodic boundary condition on the one-
dimensional lattice with S⃗N+1 = S⃗1 and express the operators
q̂m and p̂m in the Fourier series as shown below61

q̂m =
1
√

N



k

eikmaQ̂k and p̂m =
1
√

N



k

e−ikmaP̂k, (39)

where the k’s lie within the first Brillouin zone and a

is the lattice constant. Notably, the operators P̂k and Q̂k

satisfy the following commutation relations: [Q̂k, P̂k′] = iδkk′,
[Q̂k,Q̂k′] = 0 and [P̂k, P̂k′] = 0. We now use Eqs. (37)-(39) to
transform the Hamiltonian in Eq. (36) to the following form:

Ĥ
(eff)
spin = −2JN S2 − (2µBB(ext) + Λ(z))N S

+ (4JS + 2µBB(ext) + Λ(z))

×


k

1
2
(P̂k P̂−k + Q̂kQ̂−k − 1)

− 2JS


k

(P̂k P̂−k + Q̂kQ̂−k). (40)

We next introduce the magnon creation (a†
k
) and annihilation

(ak) operators as shown below

Q̂k =
1
√

2
(ak + a

†
−k) and P̂k = −

i
√

2
(a−k − a

†
k
). (41)

They are manifestly bosonic in character for they satisfy
the commutation relations: [ak,a

†
k′] = δkk′, [ak,ak′] = 0,

and [a†
k
,a
†
k′] = 0. In terms of the magnon operators, the

Hamiltonian in Eq. (40) assumes the following form:61

Ĥ
(eff)
spin = −2JN S2 − (2µBB(ext) + Λ(z))N S − 2JS



k

cos ka

+


k


4JS(1 − cos ka) + 2µBB(ext) + Λ(z)


a
†
k
ak = A +



k

Eka
†
k
ak, (42)

with Ek =

4JS(1 − cos ka) + 2µBB(ext) + Λ(z)


≈ 2JSk2a2 + 2µBB(ext) + Λ(z), (43)

where A = −2JN S2 − (2µBB(ext) + Λ(z))N S − 2JS


k cos ka,
which is just a constant energy and hence we ignore here.
Eq. (43) provides the necessary expression of the energy for
computing the thermal properties of the spin system. The total
spin angular momentum operator of the system along the z

direction, using Eq. (37), can be written as follows:

Sz
total =

N


m=1

Sz
m = −N S +

N


m=1

1
2
(p̂2

m + q̂2
m − 1)

= −N S +


k

a
†
k
ak . (44)

Hence the total spin angular momentum of the system at a
finite temperature is computed as shown below.


Sz
total

�
= −N S +



k



a
†
k
ak



= −N S +


k

[exp(Ek/kBT) − 1]−1, (45)

where kB = Boltzmann constant. We note that exp(Ek/kBT),
in the low temperature limit, is greater than unity and
therefore [exp(Ek/kBT) − 1]−1 may be approximated as a
exp(−Ek/kBT). Consequently,



Sz

total

�
, in the low temperature

limit, takes the following simple form:



Sz

total

�
= −N S +



k

exp(−Ek/kBT). (46)

We now substitute the expression for the energy Ek from
Eq. (43) in Eq. (46) and compute the total magnetic moment,
M z

total = −2µB


Sz

total

�
, as given below

M z
total = 2N µBS −

µB(N − 1)a
π



πkBT

2JSa2

× exp


−

2µBB(ext) + Λ(z)

kBT


. (47)

The change in total magnetic moment due to the external
magnetic field is an observable quantity which is easily
obtained with Eq. (47) as follows: ∆M z

total = M z
total

�
B(ext)

�
− M z

total

�
B(ext) = 0

�
. Finally, the magnetic susceptibility of

the spin system as a function of temperature is computed as
shown below.

χ(T)|B(ext)=0 =
µ0

volume of the material
lim

B(ext)→0

∆M z
total

B(ext)

=
µ2
B
µ0(N − 1)

volume of the material

×


2
πJSkBT

exp

(

−
Λ

(z)

kBT

)

. (48)

As Eq. (48) reveals, χ(T) has a maximum at T = Tcritical which
we compute as follows:

∂ χ(T)|B(ext)=0

∂T
= 0 =⇒ T = 2

Λ
(z)

kB

= Tcritical. (49)
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FIG. 2. The magnetic susceptibility, χ(T ) multiplied by volume of the material
4µ2

B
µ0(N−1)√

8πJSΛ(z) as a function of the temperature (K). The solid line (red), the

dashed line (blue), and the dotted line (black) curves are for Λ
(z)

kB
= 25 K,

35 K, and 45 K, respectively. The Néel temperature (Tcritical) for the curves is
indicated by the vertical lines at 50 K, 70 K, and 90 K, respectively.

In Fig. 2, we show the magnetic susceptibility, for a given J

and S, as a function of the temperature for different values
of spin-orbit coupling strengths. It is evident from Fig. 2
that the susceptibility first increases with the temperature
and this demonstrates the existence of the antiferromagnetic
phase. Beyond a certain temperature which is determined
by the spin-orbit coupling strength, the susceptibility falls
as the temperature increases and this signals the onset of
a paramagnetic phase. The temperature at which the χ(T)

curves in Fig. 2 assume a maximum value is known as the
Néel temperature which, as also evident from Eq. (49), is a
function of the spin-orbit coupling strength. We note that the
antiferromagnetic phase depicted in Fig. 2 ceases to exist if
the spin-orbit coupling is zero. This result is understandable
as the Hamiltonian in Eq. (36), in the absence of spin-orbit
coupling (Λ(z) = 0), simply reduces to the standard Heisenberg
model with a positive exchange coupling (J) and this model
is known to admit only the ferromagnetic or paramagnetic
phase. The present study thus demonstrates the possibility of
an antiferromagnetic to paramagnetic or ferromagnetic phase
transition that is driven by the spin-orbit interaction. This
is distinct from the Néel-VanVleck-Anderson paradigm,6,48,49

which posits a negative spin-exchange for the existence of
antiferromagnetic phase in the material.

VI. CONCLUDING REMARKS

We now briefly discuss how the present theory of
correlated electrons may be further extended and utilized to
study the structure and various electromagnetic properties
of complex materials. We first note that the many-
electron Hamiltonian in Eq. (5) contains all possible
interactions, within the semi-relativistic regime of quantum
electrodynamics, for a collection of dynamic spin-1/2 charged
particles in the presence of external electromagnetic fields
and hence it is formally complete. In the present study, we
have used Eq. (5) as a starting point to devise, through a

series of simplifying approximations, effective Hamiltonians
that are expected to be useful for studying strongly correlated
materials and interacting quantum spin systems. The model
Hamiltonians that we have presented in Eqs. (22) and (23)
are relatively simple, yet rich in physical content and they
go beyond the models that are frequently being used in the
present day discourse on this subject and therefore we expect
the models in Eqs. (22) and (23) to be useful in addressing
a range of research problems related to the magnetic and
electron transport properties of complex materials, beyond
what may be possible now. For applications here, we have
used simple analytical methods such as the mean-field
approximation to diagonalize the Hamiltonian in Eq. (22)
and the spin wave theory while using Eq. (23) to compute the
magnetic susceptibility. For more accurate studies, it would
be necessary to develop sophisticated analytical tools such
as those based on Green’s functions,62 Bethe ansatz,63 and so
forth. It would also be important to develop accurate numerical
techniques such as matrix diagonalization, time propagation,
Monte Carlo, and so forth involving the model Hamiltonians in
Eqs. (22) and (23) to study large systems. We envisage further
applications of the many-electron Hamiltonian in Eq. (5) in the
following manner. For example, one may choose a number of
necessary terms from Eq. (5) that are expected to be involved
in the physical processes of interest and construct a variety of
model Hamiltonians to study specific classes of phenomena in
complex materials, either by analytical or numerical means.
Model Hamiltonians and their applications in the present study
have been confined mostly to insulators and poor conductors.
It would be of interest to extend the present theoretical
approach to study the dynamics of correlated electrons in
metals. We will report such studies in future. In conclusion,
we have presented a complete quantum mechanical structure
that would be useful to study various electromagnetic response
properties of complex materials.
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