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We study the quantum phase transition of an itinerant antiferromagnet with cubic anisotropy in the
presence of quenched disorder, paying particular attention to the locally ordered spatial regions that
form in the Griffiths region. We derive an effective action where these rare regions are described in
terms of static annealed disorder. A one loop renormalization group analysis of the effective action
shows that for order parameter dimensions p < 4 the rare regions destroy the conventional critical
behavior. For order parameter dimensions p > 4 the critical behavior is not influenced by the rare
regions, it is described by the conventional dirty cubic fixed point. We also discuss the influence of
the rare regions on the fluctuation-driven first-order transition in this system.

I. INTRODUCTION

Quenched disorder can have very drastic influences on
the critical behavior of a system undergoing a continuous
phase transition. According to the Harris criterion1 the
critical behavior of a clean system is unaltered by dis-
order, if the correlation length critical exponent ν obeys
the inequality ν > 2/d, where d is the spatial dimension-
ality of the system. In the opposite case, ν < 2/d, the
clean critical behavior is unstable, and the disorder ei-
ther leads to a new, different universality class, or to an
unconventional critical point, or even to the destruction
of the phase transition.
Another, less well understood consequence of quenched

disorder is the formation of rare locally ordered regions
in the disordered phase. For a transition occuring at a
finite temperature, this can be explained in the follow-
ing way. In general, disorder leads to the suppression of
the critical temperature from its clean value T 0

c to Tc.
In the temperature region between T 0

c and Tc the sys-
tem does not show long-range order. However, there will
be arbitrarily large regions which are devoid of impuri-
ties and thus order locally. The probability of finding
such regions usually decreases exponentially with their
size, they represent non-perturbative degrees of freedom.
These locally ordered regions are known as rare regions,
and the order parameter fluctuations induced by them
as local moments or instantons. Griffiths2 showed that
the rare regions lead to a non-analytic free energy every-
where in the temperature region between T 0

c and Tc, now
called the Griffiths region or Griffiths phase. In generic
classical systems this is a very weak effect, and the non-
analyticity in the free energy is only an essential one.
However, the Griffiths singularities become stronger if the
disorder is spatially correlated. McCoy and Wu3 studied
a two-dimensional Ising model where the disorder is per-
fectly correlated in one spatial direction and uncorrelated
in the other. In this model the rare regions lead to the

divergence of the susceptibility at some temperature Tχ
within the Griffiths region.
A very interesting question is what is the influence of

the rare regions on the critical behavior of a system. Dot-
senko et al.4 studied this question for a weakly disordered
classical ferromagnet. They found that the conventional
theory of critical behavior5 in this system is unstable with
respect to replica symmetry breaking. They also showed
that the rare regions actually induce replica symmetry
breaking perturbations and thus destabilize the conven-
tional critical fixed point. While so far no final conclusion
about the fate of the transition in the weakly disordered
ferromagnet could be reached, the occurrence of replica
symmetry breaking raises the possibility of an unconven-
tional transition with activated scaling, as is believed to
occur in the random field Ising model6.
For quantum phase transitions7 which occur at zero

temperature as a function of some non-thermal control
parameter, one expects an even stronger influence of the
rare regions than for classical transitions. The reason is
that a quantum model with uncorrelated quenched dis-
order is effectively equivalent to a classical model with
the disorder being perfectly correlated in one dimension
(the imaginary time dimension). Fisher8 investigated the
critical behavior of a one-dimensional quantum Ising spin
chain in a transverse field which is equivalent to the clas-
sical McCoy-Wu model. He found that due to the rare
regions the critical behavior is of the activated form. This
has been confirmed by numerical simulations9 which also
suggest10 that this sort of behavior may not be restricted
to one-dimensional systems.
In two recent papers11 we have considered the effect

of rare regions on quantum phase transitions of itiner-
ant electrons in d > 1. We have developed a systematic
approach, representing the local moments by inhomoge-
neous saddle point solutions of the field theory. The in-
teraction between the local moments and the fluctuations
leads to a new term in the effective action which is of the

1



form of annealed static disorder. In the case of the quan-
tum antiferromagnetic transition this new term results in
the destruction of the conventional critical fixed point if
the number p of order parameter components is smaller
than 4. No new fixed point could be identified, the sys-
tem displays runaway flow to large disorder strength. On
the other hand, for the quantum ferromagnetic transition
the rare regions do not affect the critical behavior since
a self-induced long-range interaction suppresses all fluc-
tuations including those produced by the local moments.
In this paper we apply the approach developed in Ref.

11 to a model of an itinerant antiferromagnet with an
additional interaction term with cubic symmetry. This
model is equivalent to a weakly disordered classical fer-
romagnet with cubic anisotropy in which the disorder is
perfectly correlated in some of the spatial dimensions but
uncorrelated in the remaining dimensions. The conven-
tional theory for this model (without taking rare regions
into account) has been developed by Yamazaki, Holz,
Ochiai and Fukuda12.
The purpose for this work is threefold. We want inves-

tigate (i) whether the conventional critical fixed point is
stable under the influence of the rare regions. If it is un-
stable we want to find out (ii) whether a new stable fixed
fixed point exists which describes a rare region driven
transition. Finally we want to study (iii) the influence
of the rare regions on the fluctuation-driven first-order
transition occurring in our system. The layout of the pa-
per is as follows. In Sec. II we derive the effective field
theory by taking into account the disorder induced rare
regions. In Sec. III, we carry out the renormalization
group analysis. Finally, Sec. IV is left for a summary of
our results.

II. AN EFFECTIVE ACTION FOR DISORDERED

ANTIFERROMAGNETS WITH CUBIC

ANISOTROPY

A. The model

In 1976 Hertz13 derived an order parameter field the-
ory for the description of the antiferromagnetic quantum
phase transition of itinerant electrons. Later this model
was generalized to the dirty case by making the distance
from the critical point a random function of position11,14.
Here we consider an extension of this order parameter
field theory by incorporating an additional φ4 term which
possesses a (hyper-)cubic symmetry.
In terms of the p-component order parameter field φ

(with components φi) the total action can be written as

S[φ] = SG[φ] + Sint[φ] + Scubic[φ] , (2.1a)

with the Gaussian part, the interaction part and the cu-
bic anisotropic part given by

SG[φ] =
1

2

∫

dx dy
∑

i

φi(x) Γ(x − y)φi(y) , (2.1b)

Sint[φ] = u

∫

dx
∑

i,j

φi(x)φi(x)φj(x)φj(x) , (2.1c)

Scubic[φ] = λ

∫

dx
∑

i

φi
4(x) . (2.1d)

Here we use a 4-vector notation to combine the real space
coordinate x and imaginary time τ , x = (x, τ),

∫

dx =
∫

dx
∫ 1/T

0 dτ . The bare two point function,

Γ(x− y, τ − τ ′) = Γ0(x− y, τ − τ ′)

+δ(x− y) δ(τ − τ ′) δt(x) , (2.2)

consists of the deterministic part derived by Hertz13

whose Fourier transform reads

Γ0(q, ωn) = t0 + q
2 + |ωn| , (2.3)

and a disorder part in the form of a ”random mass” term.
Here q is the wave vector, ωn is a bosonic Matsubara
frequency and δt(x) is a random function of position and
is endowed with the following statistical properties:

〈δt(x)〉 = 0 , (2.4a)

〈δt(x) δt(y)〉 = ∆ δ(x− y) . (2.4b)

B. Inhomogeneous saddle points and annealed

disorder

In the conventional approach to critical behavior in
systems with quenched disorder5 the disorder average is
carried out at the beginning of the calculation by means
of the replica trick15. A subsequent perturbative analysis
of the resulting, spatially homogeneous effective theory
misses the rare regions we are interested in since they are
non-perturbative degrees of freedom.
We therefore follow the approach developed in Ref. 11,

and work with a particular realization of the disorder
rather than integrating it out. Let us consider spatially
inhomogeneous, but time-independent saddle point so-
lutions of the action (2.1) (time-dependent saddle-point
solutions – if any – will always have a higher free en-
ergy since the disorder is static). Depending on the sign
of the cubic interaction term the structure of the saddle
points in the p-dimensional order parameter space will
be different. When λ > 0 the free energy is minimized
by saddle point solutions that lie on the diagonals of a
p-dimensional hypercube, while when λ < 0 the free en-
ergy is minimized by solutions that lie on the axis of the
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hypercube. In either case the modulus φsp of these min-
imizing saddle point solutions fulfills the equation

(

t0 + δt(x) − ∂2
x

)

|φsp(x)| + 4 ueff |φsp(x)|
3 = 0 ,

(2.5a)

ueff =

{

u+ λ
p for λ > 0

u+ λ for λ < 0
. (2.5b)

Although φsp(x) = 0 is always a solution, there will be
spatially inhomogeneous solutions if δt(x) has sufficiently
deep and wide troughs11. Let us now consider the Grif-
fiths region, i.e. the region where the average distance t0
from the critical point is positive but where there are iso-
lated islands which support a non-zero φsp. If we have N
such islands which are sufficiently apart from each other
the global saddle point solutions may be written as

φ{σI}
sp (x) ≡ Φ{σI}(x) =

N
∑

I=1

ψI(x)σI (2.6)

where ψI(x) is a solution of (2.5) on the island I and σI
is a unit vector in spin space (on one of the axis for λ < 0
or on one of the diagonals for λ > 0).
Since the direction of the order parameter on each of

the N islands can be chosen independently, (2.6) de-
scribes an exponentially large number of degenerate sad-
dle points, (2p)N for λ < 0 and (2p)N for λ > 0. To be
precise, the saddle points are not exactly degenerate due
to the residual interaction of the (exponentially small)
tails of the order parameter between the islands. The
complicated structure of the free energy landscape con-
nected with the existence of an exponentially large num-
ber of almost degenerate saddle points will finally turn
out to be responsible for the failure of the conventional
approach.
We now consider fluctuations around the saddle points

(2.6). Since the saddle points are separated by large free
energy barriers an expansion around one of them will
not give a good representation of the partition function
of the entire system. Instead we will restrict ourselves
to small fluctuations and simply add the contributions
coming from all of the saddle points. Thus the partition
function for a particular realization δt(x) of the disorder
can be written as

Z[δt(x)] ≈
∑

{σI}

∫

<

D[ϕ(x)] e−S[Φ{σI}(x)+ϕ(x),δt(x)] .

(2.7)

Here
∫

< indicates that the integration is restricted to
small fluctuations ϕ only.
We now carry out the sum over the saddle point con-

figurations. The residual interaction between the islands
will lead to slight deviations of the saddle point function

from the ideal one given in (2.6). This is taken into ac-
count by replacing the sum over the saddle points by an
integral over a probability distribution

P [Φ] ∼ e−
1
T

∫

dxLsp(Φ) . (2.8)

The temperature factor in the exponent reflects the fact
that the saddle points are classical (static) degrees of
freedom17. Expanding in powers of the fluctuations, we
obtain the following effective action for the fluctuations
ϕ (still for a particular disorder realization)

Seff − SSP = SG[ϕ] + Sint[ϕ] + Scubic[ϕ]

+ T w̄

∫

dxdy C(x, y)
∑

i,j

ϕ2
i (x)ϕ

2
j (y)

+ higher order terms . (2.9)

The correlation function C(x, y) measures, up to a con-
stant factor determined by the precise form of L, whether
x and y belong to the same island, and w̄ = [(2+4/p)u+
6λ/p] is a positive constant. The w̄ term is produced
by the interaction of the fluctuations with the rare re-
gions. It is our approximation of the effect of these non-
perturbative degrees of freedom. Terms of higher than
fourth order in ϕ also arise, but they are renormalization
group irrelevant at both the Gaussian and the nontrivial
fixed points of the conventional theory (see below).
Having identified the effects of the rare regions we now

use the replica trick15 to perform the quenched disorder
average over δt(x) which implies an average over position
and size of the rare regions. The resulting effective action
reads

S eff [ϕ
α(x)] =

=
1

2

∑

α

∑

i

∫

dx dy Γ0(x− y)ϕα
i (x)ϕ

α
i (y)

+ u
∑

α

∑

i,j

∫

dx dτ (ϕα
i (x, τ))

2 (
ϕα

j (x, τ)
)2

+ λ
∑

α

∑

i

∫

dx dτ (ϕα
i (x, τ))

4

− ∆
∑

α,β

∑

i,j

∫

dx dτdτ ′ (ϕα
i (x, τ))

2
(

ϕ
β
j (x, τ

′)
)2

− T w̄
∑

α,β

∑

i,j

∫

dx dτdτ ′ (ϕα
i (x, τ))

2 (
ϕα

j (x, τ
′)
)2

(2.10)

Here the first four terms are identical to the result of the
conventional treatment. The 5th term has the form of
static, annealed disorder and represents the interaction
of the fluctuations with the rare regions in the Griffiths
phase. For more details of this derivation see Ref. 11.
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III. RENORMALIZATION GROUP ANALYSIS

A. Flow equations

We first consider the effective action (2.10) at tree
level. As usual, let us define the scale dimension of a
length L to be [L] = −1, and that of imaginary time τ
to be [τ ] = −z with z being the dynamical critical expo-
nent. We first analyze the Gaussian fixed point. From
the Gaussian part of the action (2.10) we see that ωn

scales as q2, implying that z = 2. The scale dimension
of the field is [ϕ] = d/2. Power counting for the inter-
action and disorder terms of the action gives the scale
dimensions of u, λ,∆ and w̄ as [u] = [λ] = [w̄] = 2 − d
and [∆] = 4 − d. Here we have used the fact that in
Matsubara formalism the temperature scales like a fre-
quency, [T ] = z. Consequently, u, λ and w̄ are irrelevant
for d > 2, while ∆ is irrelevant only for d > 4. This im-
plies that in the physical dimension d = 3 the Gaussian
fixed point is unstable, and we must carry out a loop
expansion of the effective action (2.10) close to d = 4.
All terms of higher order in ϕ that arise in addition to
those given in (2.10) have negative scale dimensions at
and close to d = 4. Thus, they are irrelevant by power
counting with respect to both the Gaussian and the con-
ventional non-trivial fixed points.
As in the conventional theory12,14,16 we carry out the

perturbation theory in d = 4 − ǫ spatial dimensions and
ǫτ time dimensions. In this way the perturbation ex-
pansion becomes a double expansion in terms of ǫ and
ǫτ . The renormalization group flow equations are ob-
tained by performing a frequency momentum shell RG
procedure.13 To one-loop order, we obtain the following
flow equations,

du

dl
= ǫ̃u− 4(p+ 8)u2 + 48u∆− 24uλ, (3.1a)

dλ

dl
= ǫ̃λ− 36λ2 + 48λ∆− 48uλ, (3.1b)

d∆

dl
= ǫ∆+ 32∆2 − 8(p+ 2)u∆+ 8p∆w̄ − 24∆λ, (3.1c)

dw̄

dl
= ǫ̃w̄ + 4pw̄2 − 8(p+ 2)uw̄ + 48∆w̄ − 24λw̄. (3.1d)

Here we have defined ǫ̃ = ǫ − 2ǫτ . Of course, also the
distance t from the critical point will be renormalized.
However, we only consider the flow on the critical sur-
face t = 0 since we are interested in the stability of the
critical fixed points. Note that the coefficient of the rare
region term w̄ only couples to ∆. The flow of u and λ is
only indirectly influenced by the rare regions (via a mod-
ification of the flow of ∆). This will be important later
on.

B. Fixed points and their stability

The flow equations (3.1) possess sixteen fixed points.
Their fixed point values are given in Table I, the eigenval-
ues of the corresponding linearized renormalization group
transformations are listed in Table II. For eight of the
sixteen fixed points (Nos. 1–8 in Table I) the fixed point
value of the rare region term is w̄∗ = 0. These fixed
points have already been studied in Ref. 12 using the
conventional approach. In the following, we concentrate
on the case ǫ > 0 and ǫ̃ = ǫ − 2ǫτ < 0 relevant for the
itinerant quantum antiferromagnet.
We first consider the dirty Heisenberg fixed point (No.

6) and the dirty cubic fixed point (No. 8). These are the
stable fixed points of the conventional theory for the cases
of p < 4 and p > 4, respectively. Analyzing the stability
matrix for the dirty Heisenberg fixed point shows that it
is unstable since the eigenvalue e4 is positive for p < 4.
In contrast, the dirty cubic fixed point remains stable
for p > 4 since all eigenvalues of the stability matrix are
negative. Thus we conclude that the rare regions destroy
the conventional dirty Heisenberg critical behavior for
p < 4 while they do not influence the conventional dirty
cubic critical behavior for p > 4.
We now turn to the new fixed points with w̄∗ 6= 0 (Nos.

9 – 16 in Table I). Fixed points 9, 11, 13 and 15 are un-
physical because their fixed point values w̄∗ are negative.
Since the bare w̄ is positive and according to eq. (3.1d)
the flow cannot cross the (w̄ = 0)-plane these fixed points
can never be reached. Depending on the number p of
order parameter components the remaining fixed points
(Nos. 10, 12, 14, and 16) are either also unphysical, or
they are unstable. Consequently, for p < 4 and to one-
loop order there is no stable fixed point. Renormalization
group trajectories which in the conventional theory would
go to the dirty Heisenberg fixed point show runaway flow
to large disorder strength. This runaway flow could ei-
ther indicate a unconventional phase transition, e.g. an
infinite disorder critical point as in the one-dimensional
random Ising model8 or a percolative rather than a ho-
mogeneous transition or even a destruction of the phase
transition. Within the present approach we cannot be
decide between these alternatives.
The influence of the rare regions on the stability of

the fixed points in our model is similar to that in the
isotropic case11. For p < 4 the conventional fixed point
is destroyed in both models. For p > 4 the conventional
fixed point is stable. In our model this is the dirty cubic
fixed point while in the isotropic case this stable fixed
point is the dirty Heisenberg fixed point.

C. The fluctuation-driven first-order transition

In addition to the continuous phase transitions associ-
ated with the critical points discussed above there is also
the possibility for a first-order transition in the model
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No. FP values

u∗ λ∗ ∆∗ w̄∗

1 0 0 0 0

2 ǫ̃/4(p+ 8) 0 0 0

3 0 ǫ̃/36 0 0

4 ǫ̃/12p ǫ̃(p− 4)/36p 0 0

5 0 0 −ǫ/32 0

6 (3ǫ− 2ǫ̃)/16(p − 1) 0 [(p+ 8)ǫ − 2(p+ 2)ǫ̃]/64(p − 1) 0

7 0 O(ǫ1/2) O(ǫ1/2) 0

8 (3ǫ− 2ǫ̃)/24(p − 2) [(3ǫ − 2ǫ̃)(p− 4)]/72(p − 2) [3pǫ− 4(p− 1)ǫ̃]/96(p − 2) 0

9 0 0 0 −ǫ̃/4p

10 ǫ̃/4(p+ 8) 0 0 [(p− 4)ǫ̃]/4p(p+ 8)

11 0 ǫ̃/36 0 −ǫ̃/12p

12 ǫ̃/12p [(p− 4)ǫ̃]/36p 0 (p− 4)ǫ̃/12p2

13 0 0 (ǫ− 2ǫ̃)/64 (2ǫ̃− 3ǫ)/16p

14 (3ǫ− 2ǫ̃)/8(10 − p) 0 [(p+ 8)ǫ − 12ǫ̃]/32(10 − p) [(3ǫ − 2ǫ̃)(p− 4)]/8p(10 − p)

15 0 (3ǫ− 2ǫ̃)/72 (9ǫ− 12ǫ̃)/288 −3(3ǫ− 2ǫ̃)/72p

16 (3ǫ− 2ǫ̃)/48 (3ǫ − 2ǫ̃)(p− 4)/144 (3pǫ− 2(p+ 2)ǫ̃)/192 (3ǫ− 2ǫ̃)(p− 4)/48p

TABLE I. Fixed points of the flow equations, p is the number of order parameter components.

considered here. Let us first discuss the mechanism for a
clean system and discuss the effects of disorder and rare
regions later.
According to a mean-field stability analysis of the ef-

fective action (2.10) with ∆ = w̄ = 0 the inequalities
u + λ > 0 (for u > 0) and u + λ/p > 0 (for u < 0) have
to be fulfilled for the theory to be stable. Now consider
a bare theory with u < 0, λ > 0 or u > 0, λ < 0 but still
fulfilling the above stability conditions. In these cases
the flow equations (3.1) can lead the renormalization
group trajectories to the mean-field unstable region. This
indicates a fluctuation-driven first-order transition18,19.
It was later shown20,21 that the fluctuation-driven first-
order in this model survives the presence of quenched
disorder, at least within the conventional theory. Let us
now consider the influence of the rare regions. As al-
ready mentioned, the rare region coefficient w̄ does not
couple into the flow equations for u and λ but only into
the flow equation for ∆. Thus a renormalization group
trajectory going to the mean-field unstable region within
the conventional theory will generically also do so in the
presence of rare regions, the only modification being a
different disorder value at the stability boundary.
Therefore, we conclude that the fluctuation-driven

first-order transition also occurs when taking the rare re-
gions into account. However, since the rare regions mod-
ify the flow of the disorder strength ∆, the boundaries of
the first-order region may change.

IV. SUMMARY AND CONCLUSIONS

We have investigated the influence of rare regions on
the quantum phase transition of a disordered itinerant
antiferromagnet with cubic anisotropy. The local mag-
netic moments forming on the rare regions in the Grif-
fiths phase generate a new term in the order parameter
field theory which has the form of static annealed disor-
der. We have found that for order parameter dimension
p > 4 this new term does not change the critical be-
havior, which is characterized by the dirty cubic fixed
point. In contrast, for p < 4 the rare region term renders
the conventional critical fixed point unstable. The renor-
malization group trajectories show runaway flow to large
disorder. Within our approach which is essentially per-
turbative, even though it includes some non-perturbative
degrees of freedom (the local moments) we cannot deter-
mine the ultimate fate of the transition. It could be an
unconventional phase transition, e.g. an infinite disorder
critical point or a percolative rather than a homogeneous
transition or even the destruction of the phase transition.
We have also found that the fluctuation-driven first-order
transition occurring in this model remains qualitatively
unchanged by the rare regions, while the precise position
of the first-order region in parameter space will change.
The authors acknowledge helpful discussions with D.

Belitz, J. Cardy, and T.R. Kirkpatrick. R.N. thanks the
hospitality of TU Chemnitz during two vistits where part
of the research was performed. This work was supported
in part by the DFG under grant nos. SFB393/C2 and
Vo659/2, by the NSF under grant no. DMR-98-70597,
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No. eigenvalues

e1 e2 e3 e4

1 ǫ̃ ǫ̃ ǫ ǫ̃

2 −ǫ̃ (p− 4)ǫ̃/(p+ 8) ǫ− 2(p+ 2)ǫ̃/(p+ 8) −(p− 4)ǫ̃/(p+ 8)

3 ǫ̃/3 −ǫ̃ ǫ− 2ǫ̃/3 ǫ̃/3

4 −ǫ̃ −ǫ̃(p− 4)/3p ǫ− 4ǫ̃(p− 1)/3p −ǫ̃(p− 4)/3p

5 eigenvalues not calculated since FP is unphysical

6
−A+

√
A2

−B

p−1

−A−

√
A2

−B

p−1
(p− 4)(3ǫ − 2ǫ̃)/4(p− 1) −(p− 4)(3ǫ − 2ǫ̃)/4(p− 1)

7 O(ǫ1/2) O(ǫ1/2) O(ǫ1/2) O(ǫ1/2)

8
−E+

√
E2

−F

12(p−2)

−E−

√
E2

−F

12(p−2)
−(3ǫ− 2ǫ̃)(p− 4)/6(p− 2) −(3ǫ− 2ǫ̃)(p− 4)/6(p− 2)

9 eigenvalues not calculated since FP is unphysical

10 −ǫ̃ (p− 4)ǫ̃/(p+ 8) ǫ− 12ǫ̃/(p+ 8) (p− 4)ǫ̃/(p+ 8)

11 eigenvalues not calculated since FP is unphysical

12 −ǫ̃ −ǫ̃(p− 4)/3p ǫ− 2ǫ̃(p+ 2)/3p ǫ̃(p− 4)/3p

13 eigenvalues not calculated since FP is unphysical

14
−C+

√
C2

−D

4 (10−p)

−C−

√
C2

−D

4 (10−p)
(p− 4)(3ǫ − 2ǫ̃)/2(10− p) (p− 4)(3ǫ − 2ǫ̃)/2(10− p)

15 eigenvalues not calculated since FP is unphysical

16
−G+

√
G2

−H

24

−G−

√
G2

−H

24
(3ǫ− 2ǫ̃)(p− 4)/12 −(3ǫ− 2ǫ̃)(p− 4)/12

TABLE II. Eigenvalues of the corresponding linearized RG transformation. p is the number of order parameter components.
A, B, C, and D are defined as A = (p+ 8)ǫ− 2(p− 4)ǫ̃, B = 16(p− 1) (3ǫ− 2ǫ̃) [(p+ 8)ǫ− 2(p+ 2)ǫ̃], C = (p+ 8)ǫ− 2(p− 4)ǫ̃,
D = 8(10−p) (3ǫ−2ǫ̃) [8ǫ−12ǫ̃+pǫ]. Analogously, E = 3pǫ+2(p−4)ǫ̃, F = 24(p−2) (3ǫ−2ǫ̃) [4ǫ̃+3pǫ−4pǫ̃], G = 8ǫ̃+3pǫ−2pǫ̃,
H = 48(3ǫ − 2ǫ̃)[−4ǫ̃ + 3pǫ− 2pǫ̃].

and by EPSRC under grant no. GR/M 04426.
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