Header menu link for other important links
X
Effect of Nanoparticles on the Performance of Drilling Fluids
Seetharaman G.R.,
Published in Springer Science and Business Media Deutschland GmbH
2020
Pages: 279 - 297
Abstract
Owing to the extinction of conventional reservoirs, it is imperative for engineers to find the unconventional oil and gas resources. Drilling an unconventional field requires engineered drilling fluids because an efficient drilling operation purely depends upon the performance of drilling fluid. Drilling fluid which is a combination of solids and fluids performs many functions, such as cooling the drill bit, cleaning the wellbore, maintaining the wellbore pressure and development of a filter cake to prevent the invasion of fluid into the formation. The drilling fluid can be classified into oil-based mud (OBM), water-based mud (WBM) and pneumatic fluid (or) air-based fluid. Conventional drilling fluids which are in use lose their efficacy during drilling a complex reservoir, like high temperature high pressure (HTHP) and highly saline reservoir. Nanomaterials which are unique due to their distinctive properties, like high surface to volume ratio, thermal stability and conductivity, found their application in almost all fields of engineering. Many studies have been conducted to analyse the enhancement of drilling fluids through the application of nanoparticles. The studies resulted in enhancement in rheological, filtration, thermal properties of the drilling mud and also improved the wellbore stability. This chapter elaborately discusses about how the application of various types of nanoparticles/nanocomposites helps to enhance the rheological and filtration properties of the drilling mud. © 2020, Springer Nature Switzerland AG.
About the journal
JournalData powered by TypesetGreen Energy and Technology
PublisherData powered by TypesetSpringer Science and Business Media Deutschland GmbH
Open AccessNo