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ABSTRACT

The effect of stochastic inflow fluctuations on the jet-switching characteristics of a harmonically plunging elliptic foil at a low Reynolds
number regime has been analyzed in the present study. The inflow fluctuations are generated by simulating an Ornstein–Uhlenbeck process—
a stationary Gauss–Markov process—with a chosen correlation function. In the absence of fluctuations, quasi-periodic movement of the wake
vortices plays a key role in bringing out jet-switching at κh ≥ 1.5. However, fluctuating inflow alters the organized arrangement of the vortex
street even at a lower κh (κh = 1.0), giving way to an advanced jet-switching onset. More frequent switching with a larger deflection angle is
also observed at κh = 1.5 as compared to the no fluctuation case. Effects of inflow timescales on the deflection angle and switching frequency
of the wake are investigated by varying the input correlation-lengths. The underlying flow physics are investigated through a qualitative study
of the near-field interactions as well as various quantitative measures derived from the unsteady flow-field.
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I. INTRODUCTION

From the design perspective of modern-day Flapping Wing
Micro Aerial Vehicles (FWMAVs) or Automated Underwater Vehi-
cles (AUVs), understanding the unsteady flow-field around flap-
ping foils remains an important area of research to date. The
aero/hydro-dynamic performance of these flapping devices intrin-
sically depends on the associated flow dynamics and the wake pat-
terns. These, in turn, are largely dictated by key kinematic param-
eters such as the amplitude (A) and frequency (f e) of the flap-
ping motion. A plethora of experimental and numerical studies
on the unsteady flow dynamics and the resulting wake patterns
behind flapping foils are available in the literature.1,2 The light-
weight FWMAVs, designed to be operated in urban or forest set-
tings with low flight-speed, are likely to be subjected to inflow
fluctuations, which can significantly alter their aerodynamic per-
formance.3,4 To this end, a proper understanding of the ensuing
unsteady wake patterns is crucial for an efficient design of such
flapping devices. However, a large section in the literature assumed
either uniform inflow or quiescent flow conditions. Although
there have been some attempts to investigate the changes in the

aerodynamic load characteristics of flapping foils under harmonic
gusts,5–8 the unsteady wake patterns under randomly fluctuating
inflows remain largely unexplored in the existing literature.

The maximum non-dimensional plunge velocity (κh), propor-
tional to the Strouhal number (StA), is often considered as a con-
trol parameter to classify the wake patterns of a pure-plunging foil.
Under steady uniform inflow, a transition from the drag-producing
Kármán wake to the thrust-producing reverse Kármán wake takes
place beyond κh > 0.6.9–11 At higher ranges of κh (κh ≈ 1.0), a
symmetry breaking bifurcation occurs in the trailing-wake, result-
ing in a deflected reverse Kármán street,11–13 and the deflection
direction (either upward or downward) is dictated by the initial
direction of the airfoil motion.14 The deflection angle increases with
the increase in κh or Re.14 However, for a constant plunge ampli-
tude (h), the deflection angle initially increases with the increase
in reduced frequency (κ) until κ ≈ 15 beyond which the deflection
angle gradually decreases with the increase in κ.14 According to the
established “vortex-dipole” model,12 strong self-advection and dif-
ference in phase velocities between the consecutive vortices play cru-
cial roles in decoupling the bipolar vortex structures of a deflected
wake. A recent extended model14 showed the difference between
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phase velocities of “symmetry-breaking” and “symmetry-holding”
vortex pairs in a system of three consecutive vortices to be the main
reasons for wake deflection. At higher values of κh, a complete rever-
sal of the deflection direction, independent of the initial direction
of the airfoil motion, may take place repeatedly with time, and this
has been reported as “jet-switching” in the literature.10,15–17 Rever-
sal of the deflection direction from the far-end of the wake has
also been reported.18 For low-amplitude, high-frequency flapping,
jet-switching has been associated with the process of “exchange of
partners” between two consecutive vortex couples through a “vortex
pairing process.”18 Shedding of strong leading-edge vortices (LEVs)
is largely absent and thus cannot play any significant role in switch-
ing. Hardly any studies that report jet-switching have attempted
to investigate the underlying vortex interaction mechanisms. A
proper understanding of such mechanisms behind jet-switching
and spontaneous reversal of the deflection direction is yet to be
achieved.

There is also a standing debate in the existing literature, con-
cerning the timescales of switching. Heathcote and Gursul,15 in their
experiments under quiescent flow conditions, observed the switch-
ing to repeat in a quasi-periodic manner (Ref = fc2/ν = 16 200 and
StA = ∞) with a return period to be at least two orders of magni-
tude higher than the flapping period. The period of jet-switching was
seen to decrease with an increase in the plunge amplitude and the
Strouhal number. These are in contrast to the observations of Jones
et al.10 who reported the switching to be random (Re = 5 × 102 to
5 × 104 and κh = 1.5). Shinde and Arakeri16 also reported the switch-
ing to take place in an aperiodic manner for a pitching foil in quies-
cent flow (Ref = fc2/ν = 3234 and StA =∞). It is to be noted that no

switching was captured in the inviscid simulations of Jones et al.,10

which marks the importance of viscosity behind this. Considering
the conjecture made by the authors10 that the random perturbations
present in the flow-field during experiments are instrumental in pro-
viding the trigger for switching, it is potentially an interesting prob-
lem to examine the effects of stochastic inputs on wake vortices and,
in turn, on the onset and frequency of switching. It would also be
interesting to study the effect of the timescales present in a stochastic
input and the flapping motion on the interval between two con-
secutive switching events. Note that the probability of jet-switching
happening at a low κh remains relatively low in the presence of a
single frequency periodic input, whereas a stochastic input with its
broadband frequency spectra can create a more favorable condition
for jet-switching due to the interplay of multiple frequencies present
in it. Although some of the recent studies have investigated the effect
of gusty/noisy inflows on flapping foils, themain focus was on exam-
ining the alterations in the aerodynamic load characteristics; the
changes in vortex interactions or wake patterns were not explored.
In most of the cases, the gust was considered to be a single fre-
quency harmonic input5–7 or a single frequency harmonic input with
a spatial gradient.8 However, stochastic inlet velocity is a more real-
istic approximation of the real life situation, compared to a periodic
fluctuation.

In the present study, the flow-field around a harmonically
plunging elliptic foil under fluctuating inflow is simulated using a
discrete forcing type immersed boundary method (IBM)19-based in-
house Navier–Stokes (N–S) solver20 in the low Reynolds number
regime (Re = 300). The input fluctuations are modeled as a stochas-
tic process with two distinctly different orders of timescales and

undertake an investigation of its role in facilitating the jet-switching
phenomenon and in altering the parametric boundaries for qualita-
tive changes in the wake. The dynamics of the trailing-wake at two
different κh regimes, representing two qualitatively different dynam-
ical states, are investigated. The specific objectives of the present
study are the following: (i) to identify the mutual interactions among
the near-field vortices and other key mechanisms that initiate deflec-
tion and jet-switching in the wake and (ii) to investigate the effect of
stochastic inflow on the wake patterns and the onset of jet-switching,
in comparison to the deterministic scenario. The organization of
rest of this paper is as follows: computational methodology and the
simulation setups are described in Sec. II; different quantitative mea-
sures to characterize the flow-field are given in Sec. III. Section IV
describes the wake patterns at different κh for steady inflow, while
the effects of input fluctuations are discussed in Sec. V; the associ-
ated vortex interaction mechanisms are given in Sec. VI. The salient
outcomes are given in Sec. VII.

II. COMPUTATIONAL METHODOLOGY

A. Governing equations

A two-dimensional (2D) elliptic foil with a thickness to chord
ratio of 0.12 is considered to exhibit a prescribed harmonic plunge
motion. The kinematic equation describing the motion of the rigid
foil is given in the non-dimensional form below,

ȳc(t̄) ≙ h sin(κt̄), ˙̄yc(t̄) ≙ κh cos(κt̄). (1)

Here, h (=A/c), κ (=2πf ec/U∞), and t̄ (≙ tU∞
c
) are the non-

dimensional plunge amplitude, reduced frequency, and non-
dimensional time, respectively, where U∞ is the mean free-stream
velocity and c is the chord-length of the foil.
The present work is focused in the low Reynolds number (Re

≙
U∞c

ν
, with ν being the kinematic viscosity of the fluid) regime

where the viscous effects are dominant. The flow around the plung-
ing foil is governed by the 2D incompressible N–S equation as
follows:

∂ū

∂ t̄
+ ∇̄ ⋅ (ūū) ≙ −∇̄p̄ + 1

Re
∇̄2

ū, (2)

∇̄ ⋅ ū ≙ 0, (3)

where ū ≙
u

U∞
and p̄ ≙

p

ρfU
2
∞

(ρf denotes the fluid density) are

the non-dimensional flow velocity and non-dimensional pressure,
respectively. Although the entire discussion in the study is made
in terms of non-dimensional quantities, the overbar sign (¯) will
be dropped hereafter for typographical ease. In addition, the time
values in all these figures presented in this study are normalized
by the time period of flapping, T(=2π/κ). The fluid dynamic load
coefficients (CL and CD) are defined as

CL ≙
L

1
2
ρfU

2
∞c

and CD ≙
D

1
2
ρfU

2
∞c

, (4)

where L denotes the lift force (considered positive vertically upward
along the y-axis) and D is the drag force (considered positive along
the x-axis).
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FIG. 1. (a) Schematic of the computational domain and (b) structured non-uniform mesh used in the present study.

B. Numerical solver

The flow governing equations are solved using an in-house
discrete direct forcing type IBM solver.20 The N–S equations are
solved on a background Eulerian grid with the primitive flow vari-
ables being arranged in a staggered manner, while the movement
of the plunging foil is tracked by a set of Lagrangian markers. The
presence of the solid body inside the fluid domain is incorporated
in the flow simulation by adding a forcing term to the momen-
tum conservation equation. The momentum forcing reconstructs
the velocity field at all the grid points inside the solid domain. It
was shown in our earlier study20 that this strategy ensures the no
slip-no penetration conditions on the solid boundary with excellent
accuracy. In addition, a source/sink term is added in the continu-
ity equation to ensure rigorous mass conservation that reduces the
pressure and velocity discontinuities across the immersed bound-
ary. A finite volume-based semi-implicit fractional step method
is implemented to perform the time marching. The convection
term is advanced using the Adams–Bashforth technique, while
the diffusion term is discretized according to the second order

Crank–Nicolson method. Further details of the flow solver are avail-
able in our earlier study.20 Different inflow cases are simulated
in the present study by modifying the velocity boundary condi-
tion at the inlet of the computational domain, as demonstrated in
Subsection II C.

A schematic view of the rectangular computational domain
and the structured Cartesian mesh used in the present work are
shown in Fig. 1. The size of the computational domain is selected
through a domain independence test. It is set to be [−10c, 25c]
× [−12.5c, 12.5c] to ensure that the aerodynamic loads on the plung-
ing foil are insensitive to further increase in the domain size. A
uniform grid spacing with the minimum grid size of Δx × Δy
is considered in the region of the body movement. Outside this
region, the grid size gradually increases as shown in Fig. 1(b). A
minimum grid size of Δx = Δy = 0.004 has been chosen for all
the simulations presented in this study, also Δt = 0.0001 is taken
as the appropriate time-step size. For time and grid convergence
studies as well as a thorough validation of the present IBM solver,
see Ref. 20); these are not been presented here for the sake of
brevity.

FIG. 2. (a) Time evolution of the inlet fluctuation in the stream-wise direction; auto-correlation of the fluctuating inlet velocities: (b) long time-scaled input and (c) short
time-scaled input.
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TABLE I. Parameter space.

Parameters Values

Reynolds number Re = 300
Reduced frequency κ = 4.0
Non-dimensional plunge amplitude h = 0.25 and 0.375
Constant inflow Δω = 0.0, q = 0.0
Long time-scaled input Δω = 0.1, q = 0.0655
Short time-scaled input Δω = 5.0, q = 0.0655

C. Implementation of inlet boundary condition
for stochastic inputs

Three different inlet boundary conditions have been consid-
ered in this study: (a) a steady uniform free-stream, (b) stochastic
inflow with long timescales (significantly larger than the flapping
timescale), and (c) stochastic inflow with short timescales (compara-
ble to the flapping timescale). The stream-wise stochastically fluctu-
ating inflows require an unsteady inlet boundary condition. Dirich-
let type boundary conditions of u =U in(t) and v = 0 are considered at
the inlet of the computational domain; no transverse fluctuation and
spatial variation have been considered. At every time step, the corre-
sponding value of the inlet velocity is supplied to the flow solver. At
the top and bottom boundaries of the computational domain, a slip
boundary condition (∂u/∂y = 0, v = 0) is used and a Neumann type
boundary condition (∂u/∂x = 0) is implemented at the outlet.

The unsteady flow velocity U in(t) is evaluated as

Uin(t) ≙ U∞ + u
′(t), (5)

where U∞ is the deterministic mean flow component of the velocity
and u′(t) denotes the unsteady random fluctuation, u′(t) is math-
ematically modeled as the Ornstein–Uhlenbeck (O–U) stochastic
process,21,22 chosen here because of its wide applications in various
physical problems. The O–U process—a stationary Gauss–Markov
process—is defined by the following stochastic differential equation:

du
′(t) ≙ −Δωu′(t)dt +

√
2Δωq dW(t), (6)

where W(t) is a Wiener process and Δω and q are the noise
parameters determining the timescale and variance, respectively.

The correlation function of the O–U process is given by

ρ(t) ≙ ⟨u′(t)u(0)⟩ ≙ qe−Δω∣t∣. (7)

Each realization of the O–U process is computed by numerically
integrating the stochastic differential equation [Eq. (6)] using the
Euler–Maruyama method.23

The correlation of the O–U noise is varied by varying the
parameter Δω; two different Δω values of 0.1 and 5.0 have been con-
sidered here, keeping q to be constant at 0.0655, to establish two
different orders of timescales for the input fluctuations. Figure 2(a)
shows the typical realizations of the random inlet velocity [U in(t)]
obtained from the chosen parameters. In this figure, the red-dashed
line, denoted by Δω = 0.0 and q = 0.0, depicts the velocity for the
deterministic case. The auto-correlation of U in(t) for the two ran-
dom cases is presented in Figs. 2(b) and 2(c), respectively. It can be
seen that as Δω is increased from 0.1 to 5.0, the correlation length
of the process decreases significantly. The correlation length with
Δω = 5.0 is of the same order as the plunging period of the foil
and will be called the short time-scaled input hereafter. Whereas the
correlation length with Δω = 0.1 is much higher compared to the
plunging time period and will be referred to as the long time-scaled
input in the present study.

In order to capture the different flow patterns of interest, simu-
lation results are presented for two different h values keeping κ con-
stant, which results in two non-dimensional plunge velocity regimes,
κh = 1.0 and 1.5. Three different inflow conditions have been con-
sidered as mentioned earlier. The Reynolds number is assumed
to be fixed at Re = 300. Table I summarizes the parameter space
considered in the present study.

III. QUANTITATIVE MEASURES TO COMPARE
DETERMINISTIC AND STOCHASTIC CASES

The trailing-wakes have been characterized quantitatively by
defining a wake deflection angle, θ, which is a measure of the trend
of average deflection of the vortex street in the wake. The deflec-
tion angle (θ) along with the velocity magnitude contour at the end
of a typical plunging cycle is shown in Fig. 3(a). In this figure, the
purple circular markers denote the y-location of the maximum flow
velocity at different stream-wise locations (within a range of 1c to
8.5c from the trailing-edge), and the blue dashed line depicts a lin-
ear fit of those points. The blue dashed-dotted line shows the mean

FIG. 3. (a) Definition of the deflection angle (θ) and (b) schematic representation of the quantitative measures associated with vortex couples.
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position of the plunging motion. The angle made by these two lines
is defined as θ. A positive θ will be denoted as an upward deflected
trailing-wake in this paper.

In the interest of the present study, the shift in the near-wake
vortex locations and the distortion of the vortex streets under input
fluctuations need to be captured and quantified. Earlier coined quan-
titative measures (distance between vortices, circulation, and self-
induced velocities of vortex pairs)12,14 are also employed in this study
toward this requirement and are utilized to investigate the flow-
interactions. Wei and Zheng18 used a cross-flow effective phase veloc-
ity,V∗p , of a couple to measure the ability of a vortex couple to escape
the “symmetrizing” effect of the subsequent vortices in the wake. It
is defined as

V
∗
p ≙ Udipole sin α −Vphase, (8)

where Vphase is the advection speed of a vortex couple in the cross-
flow direction and α denotes the angle made by the direction of
the self-induced velocity (Udipole) of the couple with the stream-
wise direction, as shown in Fig. 3(b). Udipole of a vortex couple is
computed using the Biot–Savart law as given below,

Udipole ≙
Γavg

2πξ
, (9)

where Γavg is the average absolute circulation of individual vortices in

a vortex couple and ξ is the distance between them.Wei and Zheng18

used this model to demonstrate that the difference in the Udipole val-
ues can play amajor role in dictating the direction of local deflection.
The present study also utilizes these measures (ξ, Γavg and Udipole)
in order to quantify the effect of flow-fluctuations on jet-switching.
The centers of the vortex cores in the near-wake are determined by
performing a search of the local maxima and minima in the vortic-
ity field, which are then used to evaluate the above quantities. The
detailed procedure for calculating ξ and Γavg can be found in the

study presented by Godoy-Diana et al.12

Refer to the schematic plot shown in Fig. 3(b), representing the
near-field vorticity contour at the end of a typical plunging cycle.
By definition, here, ξAB is the distance between the first counter-
clockwise (CCW) vortex core A and the first clockwise (CW) core
B present at the near-field; ξBC denotes the distance between B and
the next CCW vortex core C. Similarly, ΓABavg and Γ

BC
avg are the average

circulations of the vortex couplesA–B and B–C, respectively. As the

flow-field evolves with time, if B comes closer toA, i.e., ξAB becomes
lower than ξBC, then couple A–B dominates over B–C. As a result,
A–B tries to deflect the mean flow toward the upward direction and
influences the subsequent vortices to follow the upward same path.
This scenario gets reversed when B gets closer to C. The dominance
of a vortex couple over another is represented by its higher Udipole

than the other. Quantities such as dipole velocity ratio Udipole-ratio

(=UAB
dipole/UBC

dipole), distance ratio ξ-ratio (=ξAB/ξBC), and circulation

ratio Γavg-ratio (=ΓABavg/ΓBCavg) of the couples will be used to discuss
their relative dominance. Since the couple of CCW vortex A and
CW vortex B tries to deflect the wake in the upward direction [in the
direction of their self-induced velocity as shown in Fig. 3(b)], cou-
ples such as A–B will be referred to as the upward deflecting couple.
Whereas couples such as B–C, which tries to deflect the wake down-
ward, will be referred to as the downward deflecting couples in this
study. In a given situation, when the distances between the vortex
cores of A–B and B–C are unequal, one of these couples will dom-
inate and try to break the symmetry in the flow-field by deflecting
the wake in the direction of its self-induced velocity; this domi-
nant couple will be referred to as the symmetry-breaking couple in
Secs. IV–VI.

IV. WAKE DEFLECTION AND JET-SWITCHING
UNDER STEADY INFLOW

A. κh = 1.0 (onset of deflection)

The symmetry breaking bifurcation occurs at around κh ≈ 1.0,11

where the reverse Kármán vortex street starts to deflect upward or
downward depending on the initial direction of the airfoil motion.
The corresponding CD time history exhibits a periodic behavior, as
shown in Fig. 4(a). The trailing-wake patterns in different cycles
also match exactly, upholding the periodic signature. At this smaller
plunge velocity, there is no strong LEV separation, and the flow
remains attached with the foil. The staggered arrangement of the
alternate CW and CCW shed vortices gives way to a stable reverse
Kármán street with a mild upward deflection [see Fig. 4(b)]. At
this lower κh, the deflection angle remains very small (≤1○) in
the chosen low Re regime, which is consistent with the work of
Zheng andWei.14 In the trailing-wake, CW vortex B remains almost
equidistant from the surrounding CCW vortices (A and C), and

FIG. 4. At κh = 1.0, under constant inflow: (a) drag coefficient and (b) periodic reverse Kármán wake.
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FIG. 5. At κh = 1.0, under constant inflow: (a) quantitative measures and (b) deflection angle. Dominant effect of the upward deflecting vortex couple A–B results in a positive
deflection angle.

therefore, the ξ-ratio (distance ratio) remains nearly constant at 1.0
[Fig. 5(a)]. However, the circulation Γavg-ratio [Fig. 5(a)] takes val-
ues higher than unity, depicting a mild dominance of the upward
deflecting couple A–B over B–C. This results in higher self-induced
velocity for upward deflecting A–B [Fig. 5(a)], helping the mean jet

of the wake to deflect in the upward direction. Since the difference
between UAB

dipole and UBC
dipole is not significant, θ shows a small pos-

itive value that remains almost constant after the initial transients
[see Fig. 5(b)]. Since the positions of the vortex cores do not get
disturbed, and the distances between the cores do not change in

FIG. 6. At κh = 1.5, under constant inflow: (a) time-history of CD, (b) frequency spectra, (c) CL–CD phase portrait and Poincaré section (red dots), and (d) correlation of the
stream-wise velocity field with the reference velocity field at tref/T = 10.
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different cycles, the same couple (A–B) remains dominant in every
cycle. However, in a different simulation, depending on the initial
direction of the plunge motion, one might observe couple B–C to be
the dominant one, resulting in a downward deflected wake.

B. κh = 1.5 ( jet-switching)

In this κh regime, a qualitatively different wake pattern and
dynamics are observed compared to the earlier case. The CD time-
history [Fig. 6(a)] shows a modulating envelope with a net positive
thrust. The corresponding frequency spectra [Fig. 6(b)] show the
presence of two fundamental incommensurate frequencies f 1 and
f 2, and the other peaks appear in a linear combination of these two,
which is representative of quasi-periodic dynamics. The toroidal
CL–CD phase-portrait [Fig. 6(c)] and a neat closed loop pattern in
the Poincaré section [red dots in Fig. 6(c)] also confirm the quasi-
periodic state.24 These can be attributed to the fact that the state
of a quasi-periodic system can never repeat exactly but can only
traverse back to its close neighborhood in the phase-space. The cor-
relation [ρ(t) in Eq. (10)] time history of the stream-wise velocity
field with respect to a reference instant of tref/T = 10 is seen to oscil-
late approximately between 0.15 and 0.75 [see Fig. 6(d)]. This indi-
cates that the flow-pattern at different cycles neither repeat exactly
nor is very different from each other, which is representative of
quasi-periodicity,20

ρ(t) ≙
∑m,n

i,j≙1(uij(t) − u(t))(uij(tref) − u(tref))√
∑m,n

i,j≙1(uij(t) − u(t))
2
√
∑m,n

i,j≙1(uij(tref) − u(tref))
2
. (10)

Here, u is the spatial average of the stream-wise velocity within a
chosen domain and m and n are the numbers of grid points along
the x- and y-axis, respectively, within the domain of consideration.

The corresponding wake pattern shows a well deflected reverse
Kármán street (Fig. 7) with varying angles of deflection from one
cycle to another. Note that the magnitude of the deflection angle
has increased with the increase in κh from 1.0 to 1.5. This is in
good agreement with the literature.14 In this case, the wake vortices
do not repeat exactly in the consecutive cycles (unlike the case of
κh = 1.0). Instead, their core positions shift marginally from cycle
to cycle due to quasi-periodicity. The variation of the distances
between the vortex cores is presented quantitatively in terms of the
ξ-ratio in Fig. 8(a). The corresponding Γavg-ratio also shows vari-
ations from one cycle to another [see Fig. 8(a)]. Although the ξ-
ratio remains close to unity during the initial stage, the Γavg-ratio
displays values lower than 1.0. This results in a higher downward
self-induced velocity for B–C compared to the upward deflecting
couple A–B. This is substantiated by the Udipole-ratio being lower
than 1.0 [Fig. 8(a)]. Eventually, the dominant effect of B–C deflects
the wake downward, depicted by negative θ values during the ini-
tial cycles [Fig. 8(b)]. The relative dominance slowly gets shifted
from the downward deflecting couple B–C to the upward deflect-
ing couple A–B. At the end of the 25th cycle, the Udipole-ratio
crosses unity [Fig. 8(a)], showing the dominance of A–B over B–C.
However, this is happening locally in the near-field and therefore
would not be reflected immediately in the θ value. As this domi-
nant A–B convects downstream, it pulls the subsequent vortices to
follow the upward deflected path. Consequently, the trailing-wake
gradually deflects upward in the following cycles, and the entire

FIG. 7. At κh = 1.5, under constant inflow: instantaneous vorticity (top) and velocity (bottom) contours represent mildly deflected wake pattern undergoing jet-switching.
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FIG. 8. At κh = 1.5, under constant inflow: (a) quantitative measures and (b) deflection angle. Alternate dominance of the upward and downward deflecting vortex couples
results in jet-switching.

wake looks deflected upward with a high deflection angle as seen
for θ at t/T = 27. As time progresses, the relative dominance once
again shifts from A–B to B–C. Recall that for κh = 1.0 (periodic
case), the same vortex couple (either A–B or B–C, depending on the
initial direction of the plunge motion) remained dominant for all
time. On the contrary, in the present case (quasi-periodic), the dom-
inance switches alternately. As a result, the downward wake with
θ = −4.5○ at t/T = 13.0 becomes upward deflected with θ = 2.2○

at t/T = 28.0; again, θ changes from −0.8○ at t/T = 33.0 to 2.4○

at t/T = 38.0, as shown in Fig. 8(b) (see also Fig. 7). Thus, quasi-
periodicity, by bringing small changes in vortex strengths and core
locations, plays the key role in the formation of upward or down-
ward deflecting couples whose mutual competition triggers the
alternate upward–downward deflection of the wake. The underly-
ing mechanism remains similar to the vortex-pairing process, as
reported in Ref. 18, and no significant interaction of LEV with the
trailing-edge vortices (TEVs) is observed.

V. JET-SWITCHING UNDER STOCHASTIC INFLOWS
OF DIFFERENT TIMESCALES

The effects of long and short time-scaled input fluctuations on
the wake patterns at κh = 1.0 and 1.5 are investigated by changing the
Δω value in the O–U process [Eq. (6)]. Under fluctuating inflows,
shifts in the vortex strengths and core locations can take place at
κh values significantly lower than 1.5, giving rise to alternatively
dominant upward and downward deflecting couples. This advances
the jet-switching onset in the κh parametric space from that of the
deterministic scenario. In addition, the movement of the near-wake
vortices at higher κh values (κh = 1.5) gets much more energized in
the presence of the input fluctuations. This helps in the formation of
stronger symmetry breaking couples, resulting in complete reversals
of the trailing-wake orientation accompanied by significantly larger
deflection angles.

A. Effect of inflow fluctuation at κh = 1.0

Figure 9 compares the wake patterns in which the instan-
taneous vorticity contours at the end of three typical plunging

cycles are presented. Recall that under the uniform inflow, an
organized pattern of reverse-Kármán shape was observed, where
CW B remained equidistant from CCW A and C. This gets dis-
turbed under fluctuating inflows, and the distances between the
vortex cores as well as their strengths change in a random fash-
ion. While mild distortions are observed for the long time-scaled
input [Fig. 9(b)], they become prominent under the short time-
scaled case [Fig. 9(c)]. Especially for the latter, when two counter-
rotating vortices come too close to each other, a strong symmetry-
breaking couple is formed. It traverses with its self-induced
velocity and pulls the fluid behind it, deflecting the wake in the
direction of its movement. The dominant symmetry-breaking vor-
tex couples are marked with dashed rectangular boxes in Fig. 9(c).
Note the smaller distances between the vortex cores A–B at t/T
= 20, B–C at t/T = 23, and A–B at t/T = 26. At t/T = 20,
the strong upward deflecting couple A–B is formed in the near-
wake. As this couple convects in the downstream, gradually the
wake becomes upward deflected in the subsequent cycles until
t/T = 23. However, at t/T = 23, the downward deflecting B–C
becomes dominant. They pulled the subsequent vortices downward
until a dominant upward deflecting couple is formed again. The
associated velocity contours and the deflection angles under the
short time-scaled case are presented in Fig. 10, clearly depicting
jet-switching.

1. Advancement of the jet-switching onset

The variation of the wake deflection angle (θ) with time, under
the three different inflow conditions, is shown in Fig. 11(a). In the
presence of input fluctuations, θ fluctuates and changes its sign. This
is indicative of “jet-switching” at the trailing-wake. As the position
of the vortex cores in the trailing-wake repeats exactly under uni-
form flow, no switching or reversal in the deflection direction is
observed. Under the long time-scaled fluctuations, though switching
takes place, the deflection angles remain very small due to the minor
distortions of the vortices. However, this becomes more prominent
under the short time-scaled input. As also shown in Fig. 10, the wake
deflection angle changes from negative to positive and vice versa.
These results establish that input fluctuations can indeed advance
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FIG. 9. At κh = 1.0, comparison of the trailing-wake patterns for (a) constant inflow, (b) long time-scaled input, and (c) short time-scaled input.

the onset of the jet-switching regime by affecting the movement of
the vortices.

2. Mechanisms behind the advancement
of jet-switching

In order to investigate the flow-field behavior that triggers the
advancement, three immediate key vortices, A, B, and C, present in
the trailing-wake (as shown in Fig. 9) are tracked for 20 consecu-
tive cycles. The variation in the Udipole-ratio, ξ-ratio, and Γavg-ratio
of the couples is shown in Figs. 11(b), 11(c), and 11(d), respectively.
Under the short time-scaled input, the ξ-ratio deviates significantly

from unity. As the ξ-ratio becomes substantially lower than 1.0, e.g.,
at t/T = 20.0 in Fig. 11(c), A and B come really close, and B and C

move far apart. CCW A and CW B form a couple. Consequently,
UAB

dipole increases to almost 150% of UBC
dipole at that instant. The dom-

inant effect of A–B starts pulling the wake upward even though the
overall pattern looks downward [see Fig. 11(b)]. Eventually, the vor-
tex street gets deflected upward in the following cycles [Figs. 10 and
11(a)]. The scenario reverses when the ξ-ratio becomes substantially
higher than 1.0 [e.g., at t/T = 24.0 in Fig. 11(c)] and B–C forms
a couple. Here, UAB

dipole drops to 75% of UBC
dipole, and the dominant

effect of B–C starts pulling the whole wake downward. Eventu-
ally, the wake becomes downward in the following cycles [Figs. 10

FIG. 10. At κh = 1.0, under the short time-scaled input: velocity contours and wake deflection angles at the end of six consecutive plunging cycles.
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FIG. 11. At κh = 1.0, variation of (a) deflection angle, (b) dipole velocity ratio, (c) distance ratio, and (d) circulation ratio at the end of 20 consecutive plunging cycles for
different inflow conditions.

and 11(a)]. Another important point that emerges from Fig. 11(d) is
that the Γavg ratio is not as important as parameter the ξ-ratio, and
the latter has a more dominant effect on the formation of the cou-
ples. The vortex core centers are plotted in Fig. 12. In contrast to the
uniform input case [Fig. 12(a)], the positions of the vortex cores start

to slightly deviate in different cycles as the long time-scaled fluctu-
ation is introduced [Fig. 12(b)], and these deviations become quite
significant in the presence of the short time-scaled input [Fig. 12(c)].
This is quantitatively demonstrated by estimating the variances of
the scattered vortex-core centers. For the short time-scaled case, the

FIG. 12. At κh = 1.0, locations of the vortex core centers of A, B, and C at the end of 20 consecutive plunging cycles (from 6th to 25th) for (a) constant inflow, (b) long
time-scaled input, and (c) short time-scaled input.
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variance in the positions of A, B, and C increases to 0.14, 0.30, and
0.40, respectively, from the small near-zero values corresponding to
the uniform inflow case. Thus, it is fairly conclusive that the pertur-
bations introduced in the flow-field by the input fluctuations are the
main instrument that triggers the wake vortices to deviate from their
otherwise stable arrangement.

B. Effect of inflow fluctuation at κh = 1.50

The study of the effect of inflow fluctuations at this higher
κh regime is more interesting, as a mild form of jet-switching
was already observed at this κh under uniform inflow. The cor-
responding wake pattern undergoes a more frequent jet-switching
with considerably higher deflection angles. This is demonstrated
next.

1. Vigorous jet-switching with higher deflection
angles

To see the effect of flow-fluctuations on the wake pattern,
instantaneous vorticity contours at the end of two typical cycles
are presented in Fig. 13. This demonstrates the presence of jet-
switching with considerably higher deflection angles. The change in
θ for five consecutive cycles is quantitatively presented in Fig. 14.
In the presence of the long time-scaled input, the trailing-wake pat-
tern [Figs. 13(b) and 14(b)] maintains an overall similarity to the
uniform inflow case [Figs. 13(a) and 14(a)]. On the other hand,
more vigorous wake reversals are visible under the short time-scaled
input [see Figs. 13(c) and 14(c)]. At t/T = 16.0 and t/T = 23.0,
B–C andA–B, respectively, act as the dominant symmetry-breaking
couples in the already existing downward and upward deflected
wakes. Thus, they help in increasing the angles of deflection fur-
ther. The dominance ofA–B and B–C gets interchanged in different

cycles, giving way to switching. Note that only a few representative
cycles are shown here for the sake of brevity. The complete tem-
poral evolution of the wake can be seen from the supplementary
material. The time evolution of θ, presented in Fig. 15(a), estab-
lishes quantitatively how weak jet-switching under uniform inflow
changes to vigorous upward–downward transition of the wake, espe-
cially under the short time-scaled input. The short time-scaled fluc-
tuation not only advances the switching onset but also enhances
the deflection angles. Here, θ takes values as high as −23.3○ at t/T
= 18.0 during downward deflection and 21.0○ at t/T = 43.0 dur-
ing upward deflection [see Figs. 14(c) and 15(a)]. Furthermore,
switching occurs much more frequently compared to the other two
cases.

2. Explanations for vigorous switching

The ξ-ratio, Udipole-ratio, and Γavg-ratio for couples A–B to
B–C are presented in Figs. 15(c), 15(b), and 15(d), respectively, for
40 consecutive flapping cycles. Expectedly, these measures do not
vary significantly and remain close to unity for both uniform and
long time-scaled inflows. Significant fluctuation is visible in the case
of short timescale. For example, at t/T = 16.0, the ξ-ratio is 1.55,
signifying that B–C forms the dominant symmetry-breaking cou-
ple. Consequently, UAB

dipole drops to 60% of UBC
dipole, and the dominant

effect of B–C pulls the wake downward. This scenario gets reversed
at t/T = 21.0 when the ξ-ratio is 0.75, and the dominant effect of
A–B pulls the wake upward. Similar role reversals continue to take
place in the wake with time. The change in the Γavg-ratio also creates
larger differences in the self-induced velocities, resulting in higher
deflection angles.

The fluctuations in the ξ-ratio are seen to be much higher than
those of the Γdipole-ratio, once again confirming that the change in
the distances between the vortex cores eventually becomes the main

FIG. 13. At κh = 1.5, comparison of the trailing-wake patterns for (a) constant inflow, (b) long time-scaled input, and (c) short time-scaled input.
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FIG. 14. At κh = 1.5, comparison of deflection angles for (a) constant inflow, (b) long time-scaled input, and (c) short time-scaled input.

trigger for jet-switching. The locations of the cores of A, B, and C

are presented in Fig. 16 at the end of 40 consecutive cycles. While
the cores shift only marginally during quasi-periodicity under the
uniform inflow, they get scattered significantly under the fluctuat-
ing inflows and much more so for the short time-scaled case. This
eventually results in prominent jet-switching. The variance values
associated with the scatter of the vortex cores are estimated to sub-
stantiate this claim in an quantitative manner. For the short time-
scaled case, the variances of the core locations ofA,B, andC increase
to 0.21, 0.43, and 0.62, respectively, from negligibly small values of
the uniform input case (see Fig. 16).

To understand the switching frequency behavior, three dif-
ferent wake patterns are schematically presented that are observed
over the entire simulation period (see Fig. 17). Only one complete

switching (D–U–D) is seen for the deterministic inflow condition
[see Fig. 17(a)]. On the other hand, multiple (three to four) com-
plete switchings take place for the fluctuating cases. The switching
pattern is very abrupt in the case of long time-scaled input with low
deflection angles [Fig. 17(b)]. Whereas sustained jet-switching asso-
ciated with higher deflection angles are observed in the case of short
time-scaled input [see Fig. 17(c)].

It is further observed that at κh substantially lower than unity,
fluctuating inflows generate only random perturbations of the orga-
nized wake but are not able to trigger wake deflection or switching.
We conjecture that, in such κh regimes, the strength of the shed vor-
tices is weak and they diffuse fast. Even though the distances between
the vortices change due to fluctuations, they diffuse quickly before
forming any symmetry breaking couple. Hence, no jet-switching is
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FIG. 15. At κh = 1.5, variation in (a) deflection angle, (b) dipole velocity ratio, (c) distance ratio, and (d) circulation ration for the vortex couples A–B to B–C for different inflow
conditions.

observed at a very low κh range even in the presence of input per-
turbations. These results have not been included here for the sake of
brevity.

It should be noted that, for different realizations of the input
fluctuations, the stay duration of a deflected wake in the upward or

downward state and the magnitude of θmight not be exactly repeat-
able. However, the underlying dynamics and the threshold limit of
κh for switching should remain unchanged in a qualitative sense.
Even if the quantitative measures might get altered for different real-
izations, the advancement of switching and its mechanism should

FIG. 16. At κh = 1.50, locations of the vortex core centers of the first three vortices in the wake for (a) constant inflow, (b) long time-scaled input, and (c) short time-scaled
input.
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FIG. 17. At κh = 1.5, interval of cycles spent in different deflection modes during jet-switching for (a) constant inflow, (b) long time-scaled input, and (c) short tie-scaled input.
Here, U: upward deflected wake; D: downward deflected wake; and N: no deflection.

not get affected. This is, of course, true only if the correlation length
of the fluctuation does not change.

VI. VORTEX INTERACTION MECHANISMS

The near-field vortex interactions that lead to jet-switching and
invoke changes under fluctuating inputs, such as manifesting higher
deflection angles, are examined in this section. Since the effects of

inflow fluctuations are more prominent at κh = 1.5, this case alone is
discussed.

The formation of symmetry breaking couples plays an impor-
tant role behind the jet-switching mechanism for a uniform inflow.
The associated quasi-periodic movements of the near-wake vortices
result in alternate pairing and alternate dominance of the upward
and downward deflecting couples. This mechanism does not change
significantly for the long time-scaled input too. However, the shed

FIG. 18. At κh = 1.5, instantaneous vorticity contours during 20th to 23rd cycles for the long time-scaled input.
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vortices do convect with variable speeds during different plunging
cycles, and the distances between them change in a random man-
ner. The distances also change by larger extents compared to the
uniform inflow case. This phenomenon has already been pointed
out through the quantitative measures in Secs. IV–V. The chronol-
ogy of vortex interactions is presented for four consecutive cycles
in Fig. 18 for the long time-scaled input. The distance between two

consecutively shed TEVs, T1
′′

and T2
′′

, is seen to increase, while the

newly shedT3
′′

moves closer toT2
′′

(see for t/T = 19.75–20.0). Con-

sequently, the upward deflecting effect of couple T3
′′

–T2
′′

(similar
to upward deflecting couple A–B) becomes dominant. This tries to
deflect the mean jet-flow upward. As time progresses, in the earlier
part of the 23rd cycle, the stream-wise velocity of the flow becomes

higher and carries T8
′′

away from T9
′′

, while it moves closer to T7
′′

during t/T = 22.50–23.0. Thus, the downward deflecting tendency

of the T8
′′

–T7
′′

couple wins over the upward deflecting tendency of

T9
′′

–T8
′′

, causing the mean wake to deflect in the downward direc-

tion in the subsequent time. Here, T2
′′

or T8
′′

is nothing but the
trailing-vortex B according to the description given in Sec. III. At

t/T = 20.0, B (T2
′′

) and A (T3
′′

) come closer to form the domi-

nant upward deflecting couple, whereas at t/T = 23.0,B (T8
′′

) moves

closer to C (T7
′′

) to form the dominant downward deflecting cou-
ple, thus resulting in jet-switching. It is to be noted that the LEV
has no significant role to play behind the jet-switching phenomenon
here as switching takes place through an alternate pairing process of
shed TEVs, as is also reported for the far-wake switch by Wei and
Zheng.18

In the case of short time-scaled input, the LEV separation
behavior and the subsequent vortex interactions get consider-
ably altered between different cycles as the foil experiences strong
unsteady inflow fluctuation, unlike the uniform or long time-scaled
cases. It is seen that in some of the cycles, the LEV takes part in
switching by randomly interacting with the TEVs, thus contribut-
ing directly to the formation of the symmetry breaking couples. In
such situations, instead of an individual vortex, a strong vortex cou-
ple is shed from the trailing-edge in a random fashion. This trailing
couple enhances the asymmetry in the flow-field causing the wake
to deflect more in the downward or in the upward direction, thus
increasing the deflection angle. In order to demonstrate this, details
of the near-field activities during the 19th to 22nd cycles and during
the 32nd to 35th cycles are presented in Figs. 19 and 20, respectively.
These typical cycles are chosen to mark the instances of the forma-
tion of both upward (19th to 22nd cycles) and downward (32nd to
35th cycles) deflecting wakes.

FIG. 19. At κh = 1.5, instantaneous vorticity contours during 19th to 22nd cycles for the short time-scaled input.
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FIG. 20. At κh = 1.5, instantaneous vorticity contours during 32nd to 35th cycles for the short time-scaled input.

In Fig. 19, LEV L1
∗ is seen to get developed and stay close to

the body around t/T = 18.25–18.50 (Fig. 19); it subsequently forms
a couple C1∗ with a CW counterpart fed by the shear layer, which
later interacts with a nascent TEV T1

∗ (t/T = 18.75–19.0 Fig. 19).
T1
∗ does not shed away from the trailing-edge but stays close to the

foil. During the first half of the 20th cycle, the CCW part of C1∗

merges with the immediate CCW TEV T2
∗ (at t/T = 19.25, Fig. 19).

Counter-rotating T1∗ and T2
∗ pair with each other to form couple

C2
∗, which moves upward with its self-induced velocity. It entrains

the fluid behind it to move toward the same direction and the mean
flow in the wake gets deflected, forcing the subsequent TEVs to fol-
low the same upward path. During the 21st cycle, TEVsT3∗ andT4∗

form a couple C3∗, which follows the same path as that of C2∗. Sim-
ilar trailing-wake behavior is seen in the 22nd cycle as well. In this
manner, the downward deflected wake during the 18th cycle with
θ = −23.3○ switches to an upward deflected wake with θ = 6.4○ in the
23rd cycle.

Next, transition of an upward deflecting street back to a down-
ward deflecting one is displayed in Fig. 20. The chronology of the
near-field events from 32nd to 35th cycles is in focus here, under
the same short time-scaled input. It is seen that couple C5∗ (formed
from LEV L2

∗) undergoes a head-on collision with immediate TEV
T5
∗, pushing it far away from the trailing-edge (t/T = 31.75–32.75).

The CW TEV T5
∗ does not form any couple with subsequent CCW

T6
∗ and sheds away in the wake. Instead, T6∗ forms couple C6

∗

with the next CW TEV T7
∗ (t/T = 33.0–33.25). C6∗ traverses in

the downward direction due to the self-induced velocity causing the
mean flow to deflect downward. The same trend is followed by sub-
sequent couple C7∗ in the next cycle. Hence, the upward deflected
wake during the 28th cycle with θ = 6.7○ switches to an down-
ward deflected wake with θ = −14.3○ in the 38th cycle through the
transition discussed above.

It should be noted here that the formation of couples such as
C1
∗ and C5

∗, and the considerable interactions of the TEVs that
are observed here were not seen in the uniform inflow case. For the
latter, only a mild-switching took place due to the alternate pair-
ing mechanism triggered by the quasi-periodic movement of the
vortices. In contrast, the stochastic inflow induces different LEV for-
mations and influences their subsequent interactions with the TEVs
in different flapping cycles.

For uniform and long time-scaled input, evidently only the
TEVs take part in the vortex pairing process. However, for the short
time-scaled case, the LEVs are seen to play an important role too,
as in some of the cycles, the random shedding of the LEV and the
consequent LEV–TEV interactions contribute directly to the for-
mation of the symmetry breaking couples. Frequent formation of
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couples (such as C1∗ and C5
∗) and their interactions enhance the

upward/downward deflection process in the way discussed above.
Thus, under fluctuating inflows, jet-switching becomes much more
prominent with noticeably higher deflection angles and rates of
switching. Note that only two such switching instances were pre-
sented in this section for the sake of brevity, though it continues to
occur at the trailing-edge as time progresses. A continuous temporal
evolution of the wake and more details on the LEV behavior under
different inflow conditions have been provided in the supplementary
material.

VII. CONCLUSIONS

The effect of stochastic input fluctuations on qualitatively dis-
tinct trailing-wake patterns of a harmonically plunging foil, involv-
ing wake deflection and jet-switching, was investigated in the present
study using an IBM-based in-house flow solver. The fluctuating
inflow was modeled as an Ornstein–Uhlenbeck process and was
incorporated under the inlet boundary condition of the solver. The
results for two different κh values were presented, and the mecha-
nisms of wake deflection and jet-switching have been investigated.
In the absence of fluctuating inflows, at κh = 1.0, the trailing-wake
exhibited a periodic reverse Kármán wake with a mild deflection,
whereas at κh = 1.5, a weak jet-switching phenomenonwas observed.
The latter was shown to be the result of the quasi-periodic dynamics
of the wake vortices. The presence of fluctuating inflows accelerated
the switching process that resulted in an advancement of the onset
of the jet-switching regime. In addition, the switching became con-
siderably rapid with very high deflection angles depending on the
timescales of the fluctuations.

The near-field flow topologies associated with each scenario
were studied in detail, and the key mechanisms behind the advance-
ment of the jet-switching onset were identified in terms of various
quantitativemeasures. The change in the distances between themain
vortex structures present in the near-wake was found to be one of
the most crucial measures associated with the appearance of jet-
switching in the wake. It canmark an upward or a downward deflect-
ing couple to be dominant over the other, and consequently, the
entire trailing-wake deflects in the direction of the dominant couple.
It was found that quasi-periodicity or stochastic perturbations can be
instrumental in influencing the inter-gap distances. Random move-
ments of the vortices created under stochastic inflows were respon-
sible for the frequent formation of upward and downward deflecting
couples that could eventually drag the fluid behind it, forcing the
wake to deflect in their directions. Furthermore, short time-scaled
fluctuations also induced qualitatively different LEV separation pat-
terns in different flapping cycles at κh = 1.5. This instigated random
interactions of the LEVs with TEVs from time to time and resulted in
the shedding of couples instead of individual vortices seen otherwise.
Thus, the LEVs contributed to the formation of symmetry breaking
couples and provided an additional impetus for jet-switching.

SUPPLEMENTARY MATERIAL

See the supplementary material for more details on the LEV
behavior and the continuous temporal evolution of the flow-field
under the three different inflow conditions.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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