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ABSTRACT

The effect of grain size distribution on the measured acoustic nonlinearity of polycrystalline engineering materials is investigated. Results are
provided for two austenitic stainless steel materials with comparable mean grain sizes and distinct distribution widths assuming equiaxed
grains and random crystallographic orientation. The distribution width is shown to influence the nonlinearity parameter considerably. On
the material with a wider distribution, a reduced nonlinearity was noted, and comparable trends were also noted for different frequencies
investigated. The results predict that the existing models that account for only the mean grain size when characterizing material degradations
need to be modified more comprehensively to include the role of grain size distribution.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5119760

I. INTRODUCTION

Uniform grain size distribution is a prerequisite for achieving
consistent mechanical, physical, and chemical properties in engineer-
ing polycrystalline materials,1 which also influences grain growth
kinetics2 and corrosion behavior.3 However, processes such as
annealing or cold working introduce heterogeneity to this distribu-
tion, and hence design specifications come into force. Heterogeneous
grain size distribution has a measurable impact on the mechanical
properties as both strength and toughness increases with reducing
grain size.4 Therefore, accurate evaluation of the grain size distribu-
tion is essential to predict the mechanical properties unambiguously.
Optical and electron microscopy analyses are traditionally being
employed to determine the grain size and its distribution, which are
essential tools for all metallurgists.5,6 Though these methods provide
extensive and accurate details, they are constrained by their destruc-
tive nature as well as laboratory confinement and time-consuming
procedures for specimen preparation. In this context, non-destructive
evaluation (NDE) methods find wide applications as they do not
require tedious preparation of specimens and are being used during
manufacture, processing, or in service on large industrial compo-
nents. The ultrasonic technique is the most widely used among
different NDE methods due to its high sensitivity, low operating
costs, faster evaluation capabilities, and suitability to be applied on

any material. This technique is also well known to be used during
the in-service inspection in order to detect the development and
extension of service induced defects and assesses their acceptance as
well as service life of the component.

In fact, traditional pulse-echo based ultrasonic techniques7 are
highly sensitive to defects whose dimensions exceed a wavelength,
whereas they are less sensitive to changes in microstructure. In
such situations, ultrasonic velocity8 and attenuation9 measurements
would be a better choice because they resemble the variations in
the microstructure. However, only a trivial variation in ultrasonic
velocity was observed with a measurable variation in grain
size.8,10,11 Meanwhile, the power-law dependency12 on the fre-
quency (f) and the grain size (D) makes the attenuation more pro-
found than the velocity variations.8 Attenuation measurements,
however, have limited response to the phase changes in materials10

and the requirements of multiple reflections restrict high-frequency
measurements on coarse-grained and thick materials. These limita-
tions are overwhelmed using nonlinear ultrasonic (NLU) methods,
which are considered to be very sensitive to the microstructural
changes compared to the attenuation and velocity measurements.13

The NLU methods measure the acoustic nonlinearity parameter
that is related to the lattice discontinuities in the crystalline
solid and find excellent use in characterizing single crystal14,15 and

Journal of
Applied Physics

ARTICLE scitation.org/journal/jap

J. Appl. Phys. 127, 185102 (2020); doi: 10.1063/1.5119760 127, 185102-1

Published under license by AIP Publishing.



polycrystalline16 materials as well as in various mechanisms of
materials processing17–26 and microstructural degradation.27–33

The one-dimensional elastic wave equation in a medium with
quadratic nonlinearity can be written as

@2u

@t2
¼ v2 1� βlat

@u

@x

� �

@2u

@x2
, (1)

where v is the longitudinal velocity and βlat is the intrinsic nonline-
arity parameter induced by the elastic constants of the crystallites
defined as34,35

βlat ¼ �
k3

k2
þ 3

� �

, (2)

with k2 and k3 corresponding to the linear combinations of second-
order and third-order elastic constants, respectively. In a single-
phase polycrystalline elastic medium, the grain boundary disloca-
tions introduce excess nonlinearity (βex) in addition to the intrinsic
nonlinearity of the crystallites. Therefore, the effective nonlinearity
parameter, β, of such a medium is the summation of βex and βlat

and the medium is termed as anisotropic. A monochromatic elastic
waveform gets distorted as it propagates through an anisotropic
medium and generates harmonics of the fundamental frequency.
The nonlinearity parameter of the medium is related to the ampli-
tudes of the fundamental and harmonic components. For experi-
mental simplicity, β is defined as27

β ¼
8

k2x

A2

A2
1

, (3)

with A1 and A2 corresponds to the amplitudes of the fundamental
and second harmonic components, respectively, k ¼ ω/c is the
wave vector of the input wave of angular frequency ω and velocity
c, and x is the propagation distance. In an anisotropic material,
a monochromatic sinusoidal plane wave of frequency ω and
amplitude A1

a. encounters attenuation losses during propagation and
b. the second harmonic wave of frequency 2ω with amplitude A2

is produced from the nonlinear interactions and, at the same
time, its amplitude decreases due to the attenuation effects.

This implies that A1 and A2 get modified non-proportionately as36

A1 ¼ (A1)0e
�α1x , (4)

A2 ¼
1

8
β0 k

2(A1)
2
0

e�2α1x � e�α2x

α2 � 2α1

� �

, (5)

where αi are the coefficients of attenuation (i ¼ 1 for fundamental
and i ¼ 2 for second harmonic), β0 is the material nonlinearity
where the attenuation effects are not considered, and (A1)0 is the
amplitude of the fundamental wave at x ¼ 0. Equations (4) and (5)
accounted for the attenuation of elastic waves as a combined effect
of scattering and absorption. Scattering results from the fact that

the material is not strictly homogeneous whereas the absorption
arises from the dislocation damping and internal friction. But, scat-
tering losses are orders of magnitude higher than that due to
absorption and hence microstructural characterization of engineer-
ing materials using ultrasonic methods is focused mainly on the
scattering mechanisms. Therefore, growth of the second harmonic
amplitude due to the nonlinear interactions as well as the attenua-
tion losses to A1 and A2 during their propagation regulate the value
of measured β. Substituting Eqs. (4) and (5) in Eq. (3) yields

β ¼ β0
{1� exp[�(α2 � 2α1)x]}

(α2 � 2α1)x

� �

: (6)

According to Eq. (6), the measured β is a modified version of the
material nonlinearity β0 by a term consisting of the material’s
attenuation coefficients, αi. This term, given in the square bracket
of Eq. (6), is henceforth denoted as βαi

. The attenuation coefficient
can be experimentally determined from the frequency spectrum of
the first [u1(ω)] and second [u2(ω)] back-reflected waves in a
simple pulse-echo method using the relation37

αω ¼
1

2x
ln

V1(ω)

V2(ω)
RTRB

D2(ω)

D1(ω)

� �

, (7)

where V1(ω) and V2(ω) are the spectral amplitudes at
frequency ω of u1(ω) and u2(ω), D1(ω) and D2(ω) are the
Lommel diffraction corrections to u1(ω) and u2(ω),
R ¼ (ρmcLm � ρwcLw)/(ρmcLm þ ρwcLw) defines the reflection
coefficients at the top (RT) and bottom (RB) surfaces, cLm and cLw
are the longitudinal velocity in material and water, and ρm and ρw
are the density of material and water, respectively. Since the elastic
wave attenuation in a material is a function of D and f, the coeffi-
cients of attenuation would be different for fundamental and
harmonic components associated with an NLU measurement.
Magnitude of this difference, therefore, influences the measured β

according to Eq. (6).38,39

In addition to the mean grain size, extensive studies have been
carried out on the influence of grain size distribution on the atten-
uation of elastic waves,40–42 but such an attempt has yet to be
extended to the acoustic nonlinearity parameter. Previous studies
that correlated the nonlinearity parameter with the microstructure
used only the mean grain size to describe the entire microstruc-
ture.38,43,44 Nevertheless, the grain size in any polycrystalline mate-
rial is distributed lognormally,45 and the effect of such distribution
on the nonlinearity parameter has to be considered for a reliable
characterization of the microstructure. Thus, the purpose of this
paper is to investigate the impact of grain size distribution on the
measured acoustic nonlinearity parameter, which can be used to
develop a generalized approach in characterizing grain size hetero-
geneity in polycrystalline materials.

II. MATERIALS AND METHODS

Two AISI grade 304 austenitic stainless steel plates (designated
as A and B) were used to investigate the effect of grain size
distribution on the measured acoustic nonlinearity parameter. They
were subjected to similar hot rolling conditions and heat treatment
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cycles. Specimens for metallography were prepared with each of
dimension 10� 10� 4mm3 cut from these plates, polished to
diamond finish and subjected to electrolytic etching in 60 wt. %
HNO3 solution for microscopy analysis. Images were obtained
using an Olympus GX51 inverted optical microscope. The mean
grain size (Dmean) and the standard deviation (σ) were measured
using the line intercept method as described in ASTM standard
E112. Twins were also considered when measuring the grain
boundaries as it is a common practice in the ultrasonic characteri-
zation of microstructure.46

Specimens for nonlinear ultrasonic measurements were cut
from these plates and machined to have a uniform surface finish of
6 μm and plane parallelism with thickness of 10+ 0:01mm.
Transmitter (Tx) and receiver (Rx) transducers of three frequency
combinations, 2.25MHz–4.5 MHz, 5.0 MHz–10.0 MHz, and
7.5 MHz–15.0 MHz, were used for nonlinear measurements. The
measurements were carried out separately for each pair (Tx–Rx) of
transducers aligned coaxially on opposite faces of the specimens.
An RF tone burst of duration 2.6 μs was sent through the Tx using
a computer-controlled high power ultrasonic pulser-receiver
(RITEC RAM-5000 SNAP) system. The material response received
through the corresponding Rx was fed to a digital storage oscillo-
scope (DSO) where it was converted into ASCII format for spectral
analysis. The material response was collected at 20 different loca-
tions in each specimen for 6 different power levels of the SNAP
system. A large number of measurements ensured the repeatability
and statistical averaging of the measurement uncertainties.
Amplitudes of the fundamental (A1) and second harmonic (A2)
components were measured from the frequency spectrum of the
received signals and used to calculate the nonlinearity parameter.

Subsequently, the specimens were immersed in a water bath
for measuring the elastic wave attenuation at the ultrasonic fre-
quencies used in NLU measurements. Unfocused immersion trans-
ducers of central frequency 2.25MHz, 5.0 MHz, 10.0 MHz, and
15.0 MHz were excited individually using a JSR make DPR300
pulser-receiver, and the ultrasound beam was impinged on the
specimen surface in the pulse-echo mode. The specimens were kept
in the far-field of the transducers at which the water column height
between the transducer face and the specimen surface was greater
than r2/λw, where r is the radius of the transducer and λw is the
wavelength in water. Care has been taken to keep the surface of
the specimen normal to the ultrasound beam. First and second
back-reflected signals were stored in a DSO and the frequency-
dependent attenuation was calculated from their spectral ampli-
tudes using Eq. (7).

III. RESULTS AND DISCUSSIONS

A. Microstructure

The grain size in specimen A was measured to be within a
range from 12 μm to 110 μm and that in B ranges from 8 μm to
124 μm. Considering the lognormal distribution of grain sizes in
polycrystalline materials, the logarithmic mean (Dmean) and the
standard deviation (σ) in the given specimens were measured to be
DA
mean ¼ 3:7401 μm, σA ¼ 0:45 and DB

mean ¼ 3:7375 μm, σB ¼ 0:52,
where the superscript denotes the specimen. The probability distri-
bution function (PDF) of the grain size is represented as histograms

fitted with lognormal distribution curves in Fig. 1. The presence of
larger grains in specimen B is evident in the histogram. A careful
observation of Fig. 1 shows that the fitted lognormal distribution
function did not envelope the real distribution of grain sizes
completely.

B. Nonlinearity parameter

A typical time domain output signal from the specimen A for
the transducer combination of 5.0 MHz–10.0 MHz and the corre-
sponding Fourier spectrum are shown in Figs. 2(a) and 2(b),

FIG. 1. Grain size distribution in the specimens with (a) σ ¼ 0:45 and (b)
σ ¼ 0:52 presented as histograms with fitted curves for lognormal distribution.
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respectively. Amplitudes of the fundamental (A1) and the second
harmonic (A2) components were measured and the A2 vs A

2
1 graph

is plotted in Fig. 2(c) with a linear regression fit for six input power
levels of the SNAP system. Similar trends were also observed for
other transducer combinations: 2.25MHz–4.5 MHz and 7.5 MHz–
10.0 MHz. The slope of the A2 vs A2

1 graph is a direct representa-
tion of the nonlinear response of the material and hence the non-
linearity parameter calculated from these slopes would characterize
the microstructure. Therefore, in order to compare the material’s
nonlinear response with respect to different input frequencies, it
would be convenient not considering the frequency term embedded

in Eq. (3) as it is not an inherent material property.43 Hence, the β
plotted hereafter represents the A2/xA

2
1, which is also accounted for

the thickness variations (albeit slightly) with location. It should be
noted that the A2

1, which happens to be in the denominator of
Eq. (3) is several orders of magnitude higher than A2. Hence, any
change in A1, for example, due to the attenuation of the fundamen-
tal wave in the material, can significantly affect the measured β in
comparison with a similar change in A2 as it is being at the numer-
ator.38,39 The measured β was normalized with that of the fused
silica of the same thickness by βnorm ¼ βm,ωi

/βs,ωi
where the sub-

script m stands for the specimen A or B, s stands for silica, and ωi

represents the input applied frequency. Fused silica was selected as
the reference material for normalization because of its isotropic
nature to the acoustic wavelengths used and consistency in the
absolute β value within the range of 11–14 as reported.47 Such nor-
malization would remove nonlinearities from other sources, such as
instrumental or experimental and can also be standardized. The
βnorm for the given specimens is plotted in Fig. 3. An obviously
higher nonlinearity was observed for the specimen with smaller
distribution in grain size.

Considering the equiaxed grains and random crystallographic
orientation, the difference in βnorm among the specimens with com-
parable mean grain sizes can be explained on account of the differ-
ence in harmonic generation due to varying grain size distribution.
Most prominent sources of harmonics in single-phase polycrystal-
line materials are the grain boundaries. A grain boundary is an
array of edge dislocations where localized strain is high. The
acoustic nonlinearity of an infinite array of dislocation dipoles is
written as48

βdis ¼ Λb2
c2

c41
ΩR3(1� υ)3

σ

μ

� �

, (8)

FIG. 2. (a) Typical time domain signal received from the specimen A, (b) corre-
sponding Fourier spectrum, and (c) the A2 vs A

2
1 graph fitted with linear regres-

sion for all six power levels and for a number of measurements.
FIG. 3. β of the given specimens for an input frequency of 5 MHz normalized
to that of the fused silica.
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where Λ is the dislocation dipole density, b is the Burgers vector, c1
and c2 are constants, Ω is the orientation factor between the
applied and the measured strain, R is the orientation factor
between the applied stress and the resolved shear stress, υ is
Poisson’s ratio, h is the dislocation spacing, σ is the applied stress,
and μ is the shear modulus. This equation implies that larger the
dislocation density (Λ), higher would be the acoustic nonlinearity.
Therefore, a higher value of β can be expected from the specimen
with more numbers of smaller grains.38,43 This implies that the
distribution of grain size has a vital role in the magnitude of
measured β.

In a polycrystalline material, the probability distribution func-
tion P(D) of the grain sizes (D) is defined as

P(D) ¼
1

Dσ
ffiffiffiffiffi

2π
p exp �

ln2(D/~D)

2σ2

� �

, (9)

where the median of the distribution ~D ¼ exp μ, which relates to
the volumetric mean of the distribution �D ¼ ~D exp(σ2/2), where σ
is the logarithmic distribution width, and μ is the mean of the
normal distribution. For a continuous lognormal distribution of
grain sizes D, the spatial correlation function, describing the proba-
bility that two points at a correlation distance (r) fall in the same
grain, maybe written as40

η(r) ¼
ð

1

0

P(D) exp �
r

D

� �

dD: (10)

P(D) is plotted in Fig. 4(a) for a constant �D and varying σ,
and the corresponding η(r) is plotted in Fig. 4(b). η(r) has a higher
amplitude at larger r for broader distributions, which indicates the
presence of bigger grains. The attenuation of longitudinal waves in
a polycrystalline material with a grain size distribution is analyti-
cally shown as40

αL ¼
k2Lπ

4ρ2c2L

ðπ

0

~η(θ ps)M1(θ ps) sin θ psdθ ps, (11)

with

~η(θ ps) ¼
ð

1

0

P(D)
D3

π2[1þ D2(k2 þ k2s þ 2kks cos θ ps)]
2 dD, (12)

where ~η(θ ps) is the Fourier transform of the spatial correlation
function, θ ps is the scattering angle, M1 is the autocorrelation func-
tion of the elastic constants for the corresponding incident and
scattered wave modes of wave vectors k and ks and kL and cL are
the wavenumber and velocity of incident longitudinal waves,
respectively. In the Rayleigh scattering regime where kD � 1,
Eq. (12) becomes

~η(θ ps) ¼
ð

1

0

P(D)
D3

π2
dD: (13)

In a single-phase polycrystalline material, it may be assumed
that the anisotropy in the bulk modulus vanishes considering the
bulk modulus of a single crystallite of cubic symmetry is equal to
that of a polycrystal containing the cubic crystallites.49 Also,
random orientations of single-phase crystallites imply statistical
isotropy and homogeneity to the polycrystal. In this condition, the
Eq. (11) reduces to40

αR
L ¼

1

15

~D
3
k4L

ρ2c4L
exp

9σ2

2

� �

�
672

36
μþ

1344

48

μ c5L
c5T

� �

, (14)

where μ ¼ 3(C11 � C12 � 2C44)
2/175 is the second-order anisot-

ropy49 in the shear modulus. The attenuation coefficients for a

FIG. 4. (a) Probability distribution for constant mean, Dmean ¼ 42 μm, and
varying distribution widths (σ = 0.1, 0.3, 0.5, 0.7, 1.0) and (b) the corresponding
spatial correlation function.
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monochromatic plane wave of frequency 5MHz and a set of distri-
butions illustrated in Fig. 4(a) is plotted in Fig. 5. Assuming cubic
symmetry of the material, the elastic constants were taken as
C11 ¼ 200:4GPa, C12 ¼ 129:3GPa, and C44 ¼ 125:8GPa.50

Figure 5 illustrates that the distribution of grain size influences the
ultrasonic attenuation measurably. The deviations from the theoret-
ical prediction by Stanke and Kino51 observed for the measured
attenuation in low carbon steels,52 copper alloy,46 nickel,42 and

titanium alloys41,53 were accounted for such distribution. Therefore,
it is reasonable to conclude that σ can substantially influence the
measured β as it is decided by the attenuation coefficients, αi,
according to Eq. (6). This influence, termed as βαi

, is graphically
exemplified in Fig. 6 for a wave of frequency 5MHz.

The measured nonlinearity parameters for three different
input frequencies were normalized to that of the fused silica and
shown in Fig. 7(a). It is seen that an order β2:25 . β5:0 . β7:5
(suffix corresponds to the applied frequency) is maintained, and in
each case, the specimen with wider σ shows a relatively lower β

consistently. The observed trend has similarity to Fig. 7(b) in
which βαi is plotted for similar distribution widths and input

FIG. 5. Attenuation coefficients for different grain size distributions for an input
monochromatic plane wave of frequency 5MHz.

FIG. 6. βαi
vs Dmean for different grain size distributions for an input frequency

of 5 MHz.
FIG. 7. (a) Normalized β for three input frequencies 2.25 MHz, 5.0 MHz, and
7.5 MHz showed the similar trend to the (b) numerical analysis.
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frequencies. The drop in β (Fig. 7) with an increase in applied fre-
quency is a consequence of the difference in the attenuation of A1

and A2 components. In a single-phase polycrystalline material,
attenuation is predominantly due to grain boundary scattering and
governed by the power-law relations12 of D and f, which defines
different scattering regimes described by a dimensionless number
“kD.” The Rayleigh-to-stochastic scattering transition condition
kD ¼ 1 in the given specimens occurs at the grain sizes
D2:25 ¼ 410 μm, D5:0 ¼ 184 μm, and D7:5 ¼ 123 μm where the
suffix corresponds with the input frequency, whereas the scattering
transition condition for the respective second harmonic compo-
nents occur at D4:5 ¼ 205 μm, D10:0 ¼ 92 μm, and D15:0 ¼ 62 μm.
This implies that, for the present materials in which the grain size

measured to be less than 124 μm, all input frequencies satisfy the
Rayleigh scattering condition at which the attenuation coefficient
varies as D2f 4. Meanwhile, the higher harmonic components of
10MHz and 15MHz are likely to undergo stochastic interactions
with few grains. In such cases, the attenuation coefficient varies as
Df 2, which impose higher attenuation even if Rayleigh type interac-
tions occur. The histogram representation of grains contributing to
the stochastic scattering of 10MHz (Ds

10) and 15MHz (Ds
15) com-

ponents is superimposed on the total distribution (TD) and illus-
trated in Fig. 8. The volume fraction (V s

ω) and the corresponding
logarithmic mean (μsω) and distribution width (σs

ω) in each stochas-
tic scattering regime is determined and tabulated in Table I. These
parameters decide the attenuation coefficients of the corresponding
harmonic components. Higher the volume fraction (V s

ω) and the
applied frequency, higher will be the attenuation which results in
α15MHz . α10MHz leading to A2 (15MHz) , A2 (10MHz). Consequently,
β drops with an increase in the applied frequency.

It can also be inferred from the experimental results
[Fig. 7(a)] that the difference in βωi

with applied frequency
(ΔβωL�ωU

¼ βωL
� βωU

, where ωL and ωU corresponds with the
lower and higher input frequencies under consideration) exhibits

FIG. 8. Total grain size distribution (TD) superimposed with the distribution at
the scattering regimes for 10 MHz (Ds

10) and 15 MHz (Ds

15) in specimens with
(a) σ ¼ 0:45 and (b) σ ¼ 0:52.

TABLE I. The grain distribution parameters contributing to the stochastic scattering
of harmonic components.

A μs10:0 4.37 B μs10:0 4.31
σs
10:0 0.15 σs

10:0 0.19
V s
10:0 3.73 V s

10:0 3.75
μs15:0 4.59 μs15:0 4.62
σs
15:0 0.07 σs

15:0 0.11
V s
15:0 16.50 V s

15:0 19.65

FIG. 9. Numerical results exhibits the relation β2:25�5:0 , β5:0�7:5, which is
also a function of the grain size distribution, σ.
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the relation β2:25�5:00 , β5:0�7:5, which bear a resemblance to
Fig. 9 derived from the numerical results. As demonstrated by
Abraham et al. for a set of annealed38 and forged39 microstructures,
the relationship in ΔβωL�ωU

and the order in βωi
observed in Fig. 7

will be maintained as long as the Rayleigh scattering condition is
satisfied for all three input frequencies. Deviation from this behav-
ior was used in characterizing microstructural heterogeneity in
forgings with large dimensions.39 Nevertheless, in this investigation
on forgings39 and the studies conducted on copper43 and stainless
steel,54 the effect of grain size distribution on measured β was not
adequately discussed. But, the findings in the present manuscript
signify the importance of integrating the distribution of grain size
in characterizing the microstructure using acoustic nonlinearity
parameter.

C. Ultrasonic attenuation

The attenuation of harmonic components has been seen as
playing a vital role in the behavior of the measured nonlinearity
parameter. To substantiate the claims above, the attenuation of the
frequency components used in the nonlinear measurements was
determined from the immersion ultrasonic measurements. A
typical time domain signal indicating the u1(ω) and u2(ω) for
an excitation frequency 5MHz and the corresponding frequency
spectra are shown in Figs. 10(a) and 10(b), respectively.
Frequency-dependent attenuation was measured over the range of
frequencies within the full width at half maximum (FWHM) and
the attenuation of the frequency components used in the nonlinear
measurements are plotted in Fig. 11.

According to the classical scattering theory, a D2f 4 depend-
ency on the attenuation was expected for the mean grain sizes in

the Rayleigh scattering regime,55,56 but a deviation from this
dependency was observed in Fig. 11. This is due to the distribution
of the grain size in the microstructure, which is explained as
follows. The classical D2f 4 dependency in the Rayleigh regime and
the Df 2 dependency in the stochastic regime is valid at the theoreti-
cal Rayleigh point defined as kD ¼ 0:1 and at the stochastic point
defined as kD ¼ 10, respectively. In the Rayleigh-to-stochastic tran-
sition zone (KD varies from 0.1 to 10), the attenuation exhibits
neither fourth-order nor quadratic dependency on f because of the
simultaneous occurrence of the Rayleigh and stochastic scattering
due to the coexistence of fine and coarse grains in the microstruc-
ture.37,46,51 In addition, the classical scattering theory was formu-
lated based on the assumption that all grains have the same
volume, and the grain size distribution is small. However, in real
industrial components, the grain size distribution is lognormal with
a significant fraction of larger grains. Attenuation due to stochastic
interactions with larger grains is predominant even though there
occurs Rayleigh scattering. Studies on low carbon steels52 and
nickel42 reported that there can be a deviation in the order of
dependency on f, which is attributed to the distribution of grain
sizes. Arguelles and Turner40 analytically demonstrated the influ-
ence of grain size distribution on attenuation and subsequently
evaluated on titanium alloys.41,53 The kD values which were mea-
sured to be within 0.02–1.92 in the present investigation, extend
from the classical Rayleigh scattering regime to the scattering tran-
sition zone. Therefore, the deviation in the power-law dependency
observed in Fig. 11 is justified. Since the primary purpose of the
present manuscript is to investigate the nonlinear response as a
function of the distribution of grain size, the attenuation measure-
ments were not explored in greater detail. Also, it should be
emphasized at this point that a one-to-one comparison between
the attenuation of ultrasonic waves measured in the linear regime
and that of the harmonic components produced as a result of

FIG. 10. (a) Typical time domain signal obtained for ω ¼ 5MHz in the
pulse-echo immersion mode shows the first [u1(ω)] and second [u2(ω)] back-
reflected echoes and (b) the corresponding frequency spectra V1(ω) and V2(ω),
respectively.

FIG. 11. Attenuation vs frequency for the given materials over the frequencies
used in the nonlinearity measurement.
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nonlinear interactions is not possible. This is because the harmonic
components are produced inside the material as the wave propa-
gates through it and not from the source at the entry.57 However, a
simultaneous measurement of attenuation and the nonlinearity
parameter is possible using a delicate transfer function method,58

but it was not attempted as it does not fall within the scope of the
present manuscript. Meanwhile, it was observed that the specimen
with higher grain size distribution showed relatively higher attenua-
tion, which is in line with the theory and literature.40 It is evident
from the conventional measurements plotted in Fig. 11 that the
attenuation increases with frequency that substantiates the decrease
in β as shown in Fig. 7(a).

In summary, this manuscript demonstrates that the grain size
distribution has a considerable impact on the measured acoustic
nonlinearity parameter and further supported through numerical
model results. Although the results discussed here are in the
context of the Rayleigh scattering regime, a similar influence of the
distribution on β is expected for other scattering regimes also.
Characterization of a polycrystalline material using the mean grain
size alone is inadequate, and the distribution of grain size should
be considered in order to interpret the findings correctly. This fact
was not addressed while reporting the correlation between the non-
linearity parameter and the grain sizes in copper43 and stainless
steel.38,39,54 The results in this manuscript have industrial relevance.
As the size of the component increases, grain size variation occurs
across the thickness.59 The manufacturing practices may also lead
to the development of prior austenite grain size variations across
the dimensions resulting in changes in mechanical properties.60

Methods of ultrasonic attenuation or velocity measurements are
not useful in characterizing such changes. Though property varia-
tion can be evaluated with several destructive tests, such practices
are costly and time-consuming and cannot be implemented on a
finished product. In such cases, nonlinear ultrasonic testing would
be an ideal choice due to its superior response toward the micro-
structural changes in contrast to the linear ultrasonic methods.13

However, most research in nonlinear ultrasonics accounts for only
the mean grain size when characterizing material degradations.
These models need to be modified more comprehensively to
include the role of grain size distribution, which is crucial for reli-
able characterization of microstructural features that meet the
design requirements. The findings presented here demand a
detailed analytical study connecting the relationship between
Dmean, σ, βωi

, and ΔβωL�ωU
.

IV. CONCLUSION

The effect of grain size distribution on the acoustic nonlinear-
ity parameter is investigated in this paper. The numerical results
were validated for two austenitic stainless steel materials with
similar mean grain sizes but distinct distribution widths. It was
found that the material with a wider distribution exhibited reduced
nonlinearity. Results demonstrated the significance of considering
the distribution width in characterizing the microstructural features
from the nonlinear response of the material. This observation is
vital for accurate characterization of the microstructure as the reli-
ability of nonlinear measurements depends on the knowledge of
the mean grain size as well as its distribution.
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