Header menu link for other important links
Effect of crystal structure and grain size on corrosion properties of AlCoCrFeNi high entropy alloy
Published in
Volume: 863
High entropy alloys (HEAs) have drawn considerable attention owing to their unique properties such as high fracture toughness, good strength–ductility combination and enhanced corrosion resistance. In this study, the corrosion resistance dependence on the crystal structure and grain size of AlCoCrFeNi HEA is investigated. AlCoCrFeNi HEA with different mixture of body centered cubic (BCC) and face centered cubic (FCC) phases is produced using sequential alloying and tested for corrosion resistance in 3.5 wt% NaCl solution. CoNi+Fe+Cr+Al (84% BCC), FeCr+Ni+Al+Co (62% BCC) and AlNi+Co+Cr+Fe (38% BCC) alloy sequences have corrosion potential of −454, −299 and −524 mV (vs. SCE), and corrosion current of 14, 0.4 and 12 µA, respectively. FCC is a tight binding lattice with higher packing fraction than BCC which made it better for corrosion resistance, but FCC is rich in elements like Co, Ni, and Fe which are easily corroded. These two competing effects lead to a nearly optimum corrosion resistance for FeCr+Ni+Al+Co alloy sequence with 62% BCC and 32% FCC. It is also observed that an increase in grain size improves corrosion resistance. The influence of different chemical elements, crystal structure and microstructure (coarse vs. nanocrystalline) on corrosion resistance is discussed. © 2020 Elsevier B.V.
About the journal
JournalJournal of Alloys and Compounds
Open AccessNo