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Abstract: In this article, we propose an optimization based formulation for design of optimal
inputs for multivariate systems. A well designed identification experiment can generate good
quality models while incurring significant costs. In a typical process plant, the nominal policy
is to operate the plant at or near constraints to achieve economic benefits. In this work, we
quantify the cost of the experiment carried out on such systems in terms of the deviation
from the nominal operational policy. The objective is to minimize the cost incurred during the
experiment without violating the operational constraints while guaranteeing model quality. The
proposed economics based optimization formulation is non-convex and hence we present a two-
step iterative algorithm. The inputs are realized as white noise sequence filtered through an
M-tap multivariate FIR filter. The filter coefficients are obtained by the spectral factorization.
A detailed simulation study is presented to illustrate the proposed approach.
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1. INTRODUCTION

System identification has been a well studied research
topic among the control community over the last several
decades. An important component of any identification ex-
ercise is the selection of the perturbation signal. Hence, it
is necessary to design an input which generates maximum
information about the system dynamics using minimal re-
sources. In general, we formulate the input design problem
as an optimization problem where the objective is to min-
imize some scalar norm of the covariance of the estimated
parameters subject to constraints on input, output, model
quality etc. Based on the norm chosen, the design problem
is classified as A, E,or D-optimal design problem [Goodwin
and Payne 1977]. A dual form of the conventional input
design problem is the least costly framework where the
objective is to minimize the additional input and output
deviations subject to constraints on the quality of the
identified model [Bombois et al. 2004].

In process industries, we often encounter multi-input
multi-output (MIMO) systems. Identification of such sys-
tems is challenging due to the interaction between the
inputs and outputs [Conner and Seborg 2004]. A common
method to identify MIMO systems is to perturb one input
(using e.g., PRBS, step) at a time while the other inputs
are kept constant. The identified SISO models are then
combined to obtain a MIMO model. However, the test
duration is high and the developed MIMO models perform
poorly when used for Model Predictive Control (MPC),
where multiple inputs change simultaneously [Morari and
Lee 1999]. An alternative approach is simultaneous input
excitation where more than one input is excited at a time
which results in lowered experiment duration compared to
sequential design. In a typical multivariate input design
formulation, the cost is to minimize some norm of the

information matrix subject to constraints on input and
output which however, does not account for the cost of
constraint violations [Kumar and Narasimhan 2015].

In practical situations, identification is carried out on
running plants and any perturbation in the inputs will
introduce additional variance in the inputs and outputs.
In several process systems, it is often optimal to operate
at or close to constraints. The additional variability in
the inputs and outputs often leads to constraint violation.
Hence, the operating point and the perturbation signal is
appropriately chosen to minimize the risk of constraint
violation by “backing-off” from constraints which has
a significant impact on economics. Hence, it is more
appropriate to quantify the cost of the experiment in
terms of this “back-off” [Kumar et al. 2014]. This is in
contrast to the traditional least costly framework, where
the cost is quantified in terms of the additional variance
introduced [Bombois et al. 2004].

The focus of this contribution is to design an appropriate
multivariate identification experiment so that the devia-
tion from optimality is minimized. A simultaneous input
excitation approach is used for such identification . In
this article, we extend the idea proposed for economic
identification of SISO systems by Kumar et al. [2014]. The
region in the input-output space where the process is ex-
pected to operate is called the expected dynamic operating
region. We formally define and characterize the expected
dynamic operating region as a function of the disturbances
and additional perturbation introduced for the purpose of
identification. The focus of this contribution is design of an
appropriate multivariate identification experiment so that
the departure from optimality is minimized. This is carried
out subject to the overall goal of the experiment being
satisfied and the dynamic operating region being feasible.
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This problem is formulated as a non-convex optimization
problem, where the decision variables are the experiment
conditions, viz., the operation point around which the
perturbation has to be carried out, and the multi variable
input spectrum. The multi variable input spectrum is
finitely parameterized by requiring it to be realizable by
an M-tap FIR filter. The non-convexity is addressed by a
two-stage procedure where a convex problem is solved at
each stage. This process is iterated until convergence. The
input is realized as white noise filtered by an M-tap FIR
filter. The filter coefficients are obtained by the spectral
factorization.

2. PRELIMINARY ASPECT OF MULTIVARIATE
IDENTIFICATION AND INPUT DESIGN

We consider identification of a discrete time, stable, linear
time invariant MIMO system. The system is modeled as:

M : yk = G(q−1, θ)uk +H(q−1, η)ek (1)

where G(q−1, θ) ∈ Rny×nu and H(q−1, θ) ∈ Rny×ny

are stable rational transfer functions, q−1 is the back-
shift operator, (i.e., q−1uk = uk−1), yk ∈ Rny , uk ∈
Rnu are outputs and inputs respectively. ek is Gaussian
white noise sequence with zero mean and variance Λ =
diag[λ1, λ2 · · ·λny

]. We assume that the identified model
is flexible enough to capture dynamics of the true system
S, i.e., the true system is in the model set [Ljung 1999].

S : yk = G0(q
−1)uk +H0(q

−1)ek (2)

Denote θ̃ =
[
θT ηT

]T
and θ̃0 =

[
θT0 ηT0

]T
are the total

estimated and true parameters vector.

The model parameters are identified within the prediction
error framework in which the objective is to minimize one
step ahead prediction error

ε(k, θ̃) = yk − ŷ(k|k − 1, θ̃) (3)

ˆ̃
θ = argmin

θ̃

1

N

N∑
k=1

ε(k, θ̃)T ε(k, θ̃) (4)

ŷ(k|k − 1, θ) is the one step ahead prediction of yk which
is computed from the assumed model. Under some mild
assumptions, the estimated parameter follows a normal
distribution, when the number of sampled data tends to
infinity [Ljung 1999].

√
N(

ˆ̃
θ − θ̃0)

N→∞−−−−→ N (0, Pθ̃) (5)

where Pθ̃ is a covariance matrix which characterizes the
uncertainty in the parameter estimates. For an asymptotic
unbiased estimator such as prediction error method, Pθ̃
can be expressed as

Pθ̃ = M−1

θ̃
=

[
Md 0
0 Mγ

]−1

(6)

where Mθ is the Fisher information matrix which is
further partitioned as input dependent matrix Md and
input independent matrix Mγ .The cross diagonal term
of partitioned matrix is zero because in open loop noise
are uncorrelated with the input signal. A method of
finding information matrix for the multivariate process is
presented in [Aguero et al. 2009].

Fig. 1. Input excitation at the (a) nominal operating
point showing infeasible dynamic operation, and (b)
backed-off operating point showing feasible dynamic
operation.

3. MOTIVATION AND PROBLEM FORMULATION

Nominal operation of a typical process system is usually
obtained by solving a static, non-linear optimization prob-
lem by minimizing an economic cost function J(uss, yss),
subject to the plant model and constraints. These con-
straints are usually in the form of input, output or resource
constraints. Often the optimal operating point (OOP),
[u∗T , y∗T ]T is constrained, i.e., some constraints are active
as shown in Figure1. The Expected Dynamic Operating
Region (EDOR) is the region in input-output space where
the process is expected to operate. Uncertainties in the
form of disturbances can cause constraint violations. If
an identification experiment is carried out at [u∗T , y∗T ]T ,
the nominally profitable operating point, the risk of con-
straint violation increases because of input and output
perturbations. Hence, a conservative solution is to “back-
off” or equivalently, operate the plant further inside the
feasible region at the backed-off operating point (BOP)
[uT

ss, y
T
ss]

T which will result in non-profitable operation
[Nabil et al. 2012, 2013]. The expected dynamic operating
region around the backed-off operating point is now a func-
tion of the disturbances and the perturbations introduced
due to the identification experiment.

Hence, in such situations, a more appropriate cost asso-
ciated with the identification experiment is the loss in-
curred by operating the plant at [uT

ss, y
T
ss]

T rather than at
[u∗T , y∗T ]T . The focus of this contribution is to determine
the operating conditions such that this loss is minimized.
This is formulated as an optimization problem where
the objective is to determine the experimint conditions
that minimize this loss. These include the operating point
around which the identification experiment is carried out
and the input signal. The constraints imposed are that the
dynamic region is feasible or equivalently, the constraints
are not violated (up to a given confidence level) and the
identified model is sufficiently accurate. The problem is
formulated in the frequency domain and the input signal
is characterized by the power spectrum.

We assume a linear form of the cost function J(uT
ss, y

T
ss)

which is a good approximation around the constrained
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ε(k, θ̃) = yk − ŷ(k|k − 1, θ̃) (3)

ˆ̃
θ = argmin

θ̃

1

N

N∑
k=1

ε(k, θ̃)T ε(k, θ̃) (4)
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input independent matrix Mγ .The cross diagonal term
of partitioned matrix is zero because in open loop noise
are uncorrelated with the input signal. A method of
finding information matrix for the multivariate process is
presented in [Aguero et al. 2009].

Fig. 1. Input excitation at the (a) nominal operating
point showing infeasible dynamic operation, and (b)
backed-off operating point showing feasible dynamic
operation.

3. MOTIVATION AND PROBLEM FORMULATION

Nominal operation of a typical process system is usually
obtained by solving a static, non-linear optimization prob-
lem by minimizing an economic cost function J(uss, yss),
subject to the plant model and constraints. These con-
straints are usually in the form of input, output or resource
constraints. Often the optimal operating point (OOP),
[u∗T , y∗T ]T is constrained, i.e., some constraints are active
as shown in Figure1. The Expected Dynamic Operating
Region (EDOR) is the region in input-output space where
the process is expected to operate. Uncertainties in the
form of disturbances can cause constraint violations. If
an identification experiment is carried out at [u∗T , y∗T ]T ,
the nominally profitable operating point, the risk of con-
straint violation increases because of input and output
perturbations. Hence, a conservative solution is to “back-
off” or equivalently, operate the plant further inside the
feasible region at the backed-off operating point (BOP)
[uT

ss, y
T
ss]

T which will result in non-profitable operation
[Nabil et al. 2012, 2013]. The expected dynamic operating
region around the backed-off operating point is now a func-
tion of the disturbances and the perturbations introduced
due to the identification experiment.

Hence, in such situations, a more appropriate cost asso-
ciated with the identification experiment is the loss in-
curred by operating the plant at [uT

ss, y
T
ss]

T rather than at
[u∗T , y∗T ]T . The focus of this contribution is to determine
the operating conditions such that this loss is minimized.
This is formulated as an optimization problem where
the objective is to determine the experimint conditions
that minimize this loss. These include the operating point
around which the identification experiment is carried out
and the input signal. The constraints imposed are that the
dynamic region is feasible or equivalently, the constraints
are not violated (up to a given confidence level) and the
identified model is sufficiently accurate. The problem is
formulated in the frequency domain and the input signal
is characterized by the power spectrum.

We assume a linear form of the cost function J(uT
ss, y

T
ss)

which is a good approximation around the constrained
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optimal point. The steady state behaviour of the plant is
assumed to be linear with gain K. Defining z = [uT , yT ]T ,
we linearize the constraints to obtain aTi z ≤ bi, i =
1, . . . , nc. The EDOR around zss is defined as follows
[Kumar et al. 2014]:

E = {z|P(z ∈ E) ≥ ζ}
where ζ is a user defined probability or confidence level.
Define deviation variables as follows: ỹss = yss − y∗ and
ũss = uss − u∗, the optimization formulation can be
expressed as

min
Φu,ũss,ỹss

JT
u ũss + JT

y ỹss

s.t.ỹss = Kũss

Md(ω) ≥ ηI

aTi z ≤ bi ∀z ∈ E (7)

The proposed formulation is computationally intractable
because the input spectrum is infinite dimensional and the
constraint set aTi z ≤ bi ∀z ∈ E is also infinite dimensional.
Therefore, we reformulate the problem to obtain a finite
dimensional parameterization.

3.1 Parametrization of input spectrum

A common method of parameterizing the input spectrum
is the following one [Jansson and Hjalmarsson 2005, Ku-
mar and Narasimhan 2015]

Φu (ω) = Ψ(ejω) + Ψ∗(ejω) � 0 ∀ ω ∈ [−π, π] (8)

Ψ(ejω) =

M−1∑
k=0

Cke
jωk � 0 ∀ ω ∈ [0, π] (9)

where

Ck =




c1(k) c12(k) · · · c1nu
(k)

c∗12(k) c2(k) · · · c2nu
(k)

· · · · · · · · · · · ·
c∗1N (k) c∗2N (k) · · · cnu

(k)




If we restrict our input signal to be white noise passing
through an FIR filter of length M , than Ci can be
interpreted as the correlation sequences (R ∈ Rnu×nu) of
the input signal. In this case input spectrum (Φu) and its
positive part (Ψ) can be written as:

Φu (ω) = R[0] + 2
∑M−1

i=1 R[i]cos (iω) � 0 ∀ ω ∈ [−π, π] (10)

Ψ(eiω) = R[0]
2 +

∑M−1
i=1 R[i]cos (iω) � 0 ∀ ω ∈ [−π, π] (11)

The advantage of parametrization of input spectrum as in
(8) is that it is very easy to generate time-domain input
sequences uk. The semidefiniteness condition on the input
spectrum is ensured by imposing an LMI given by the
KYP Lemma [Jansson and Hjalmarsson 2005, Kumar and
Narasimhan 2015].

[
Qφ −AT

φQφAφ CT
φ −AT

φQφBφ

Cφ −BT
φQφAφ Dφ +DT

φ −BT
φQφBφ

]
� 0 (12)

where

Aφ =




0 0 0 · · · 0
Inu 0 0 · · · 0

0 Inu 0 · · ·
...

... 0
. . .

. . .
...

0 0 0 Inu
0



Bφ =




Inu

0
0
...
0




Cφ = [R1, R2, . . . , RM−1] Dφ =
1

2
R0

3.2 Characterizing the expected dynamic operating region

Since the experiment time is large, the first and second
moments of z can be conveniently expressed in terms of
the frequency domain equivalents.

Ez = z̃ss (13)

E(z − z̃ss)(z − z̃ss)
T = Σz(ω) (14)

Σz(ω) =

[
Σu(ω) Σuy(ω)
Σyu(ω) Σy(ω)

]
(15)

where Σyu is the cross-correlation of input and output and
obtained as follows:

Σyu = Σuy =
1

2π

π∫

−π

G(eiω, θ)Φu(ω)dω (16)

Since the noise ek is Gaussian and the input is obtained
by filtering a Gaussian white noise signal through an M-
tap FIR filter, the vector z is jointly Gaussian and is
completely characterized by the first and second order
moments. Hence, the EDOR is an ellipsoid and can be
completely characterized in terms of the first and second
order moments of z as follows:

E = {z|z = z̃ss + αΣ1/2
z z̃, ||z̃|| ≤ 1} (17)

where α is indicative of the confidence level and can be
obtained from the χ2 distribution such that P(χ2(nu +
ny) < α2 = ζ). The infinite dimensional constraints
aTi z ≤ bi∀z ∈ E can be rewritten as follows [Boyd and
Vandenberghe 2004]:

α||Σ1/2
z ai||+ aTi z̃ss ≤ bi, (18)

From the above discussions, we can write the finite di-
mensional formulation of the economically optimal input
design problem as:

min
R,ũss,ỹss

JT
u uss + JT

y yss

s.t.ỹss = Kũss

Σz(r) :=

[
Σu(R) Σuy(R)
Σyu(R) Σy(R)

]

Md(R) ≥ ηI (19)

P (R) = Σz(R)1/2

α||Pai||+ aTi zss ≤ bi[
Qφ −AT

φQφAφ CT
φ −AT

φQBφ

Cφ −BT
φQφAφ Dφ +DT

φ −BT
φQBφ

]
� 0,

where the last LMI follows from the KYP lemma and input
parameterization described in Section 3.1.
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4. SOLUTION METHODOLOGY

The input design problem proposed above is non-convex
because of the constraint P (R) = Σz(R)1/2.Therefore,
we adapt the two-stage solution algorithm presented in
[Nabil et al. 2014, 2012]. This is based on the geometric
interpretation of the above formulation, viz., to determine
the BOP (zss) and the associated ellipse Σz such that the
ellipse lies within the feasible set and the cost JT

u uss +
JT
y yss is minimized and Md ≥ ηI. The basic idea in the

first stage is to find the smallest (in terms of trace) feasible
ellipsoid Σz, that describes the feasible set of input signals
for system identification. For this purpose, we impose
the following constraints on the individual variances for
obtaining the Σz that ensures feasibility in the second
stage,

σ2
z,1 <

1

4α2
(umax − umin)

2 (20)

where σ2
z,1 is the variance of the input variable. It is impor-

tant to note that, in a traditional input design problem,
the upper limit is assumed to be provided by the designer
(cin, cop) whereas, in the economical framework, it is de-
fined in terms of the available feasible space given by the
variable bounds (umin, umax) and (ymin, ymax). In the sec-
ond stage, this covariance ellipsoid is used to determine the
closest possible backed-off operating point (BOP) zss to
the constrained optimal operating point OOP, [u∗T , y∗T ]T

such that the pre-determined expected dynamic operating
region is within the feasible set. Equivalently, the inputs
and outputs satisfy the constraints, modulo a confidence
level. Information from the second stage (i.e., BOP) is
used to create lower bounds on the variances by defining
the parameter δij describing the closeness to OOP. The
parameter δij is defined as

δij =
distance of variable i from its closest bound

distance of variable j from its closest bound
(21)

To this end, we define the following constraints with
respect to variance of the jth variable, σ2

z,j ,

σ2
z,j >

δ2ij
α2

σ2
z,i (22)

where the iterative parameters δ2ij are chosen such that the
BOP selected in stage 2 is used to select the new minimum
variance ellipsoid that forces the BOP close to OOP and
recompute Σz in the first stage.

4.1 Stage 1

min
R

tr(Σz)

s.t. Md(R) ≥ ηI[
Qφ −AT

φQAφ CT
φ −AT

φQBφ

Cφ −BT
φQAφ Dφ +DT

φ −BT
φQBφ

]
� 0

Σz(i, i) ≤ 1
4α2 (dmax(i)− dmin(i))

2, i = 1, · · ·nu + ny

σ2
z,2 > δ2

α2σ
2
z,1

where dmax, dmin ∈ RP+N are the maximum and mini-
mum bound on corresponding inputs and outputs. Solu-
tion of Stage 1 results in a feasible covariance ellipsoid Σz.

Let P = Σ
1/2
z . This is used to find the approximation to

the backed-off operating point in stage 2 as follows.

4.2 Stage 2

min
ũss,ỹss

Ju
T ũss + Jy

T ỹss

s.t. ỹss = Kũss

Σz =

[
R[0] Σuy (R)

Σyu (R) RT ζop +Np

]
� 0;

α||Pai||+ aTi z̃ss ≤ bi

Solution of Stage 2 problem will result in a feasible backed
off operating point. The parameter δ is updated based on
the new BOP and used to resolve Stage 1. It is important
to note that P is not a decision variable since Σz is
known from first stage. Now it can be easily recognized
that both the stages contains only convex constraints
which could be easily solved using CVX, a package for
specifying and solving convex programs ([Grant and Boyd
2011]). Initializing δ to zero and given two successive
iterates, ziter−1

ss and ziterss this process is iterated until the
convergence criteria ‖ziterss −ziter-1ss ‖2 ≤ ε is satisfied where
ε being the prescribed tolerance limit.

5. INPUT DESIGN

Given a set of R ∈ Rnu×nu , M-tap filter coefficients are
calculated through spectral factorization using Fejér-Riesz
spectral factorization [Dumitrescu 2007]:

Theorem 1 (Fejér-Riesz spectral factorization for
multivariate polynomial) A matrix valued polynomial
Φu(z) ∈ C is nonnegative (Φ(ω) is semidefinite) on the
unit d-circle Td if and only if Positive orthant polynomials
(special class of causal polynomials)

H(z) =

(M−1)∑
i=0

hiz
i (23)

exists such that

Φu(z) =

(M−1)∑
i=0

H(z)H∗(z−1) (24)

Several methods like functional analysis [Wilson 1972,
Rozanov 1960], Newton Raphson type iterative algo-
rithms [Yaglom 1960] etc., have been presented in lit-
erature to get solution of (24). Recently, a semidefinite
programming approach is proposed while parameterizing
the coefficients of the polynomial as a linear function of the
elements of a positive semidefinite matrix Q (called Gram
matrix). Such parameterization allows the description of
a nonnegative trigonometric polynomial through a linear
matrix inequality (LMI). Hence, SDP is applicable. The
algorithm is as follows [Dumitrescu 2007]:

minimize
Q

tr(Q00)

s.t TR(ΘiQ) = Ri i = 0, 1, · · ·M − 1

Q � 0

(25)

Where Q00 is the upper nu×nu left block of Gram matrix.
TR(.) is the block trace operator defined in [Dumitrescu
2007]. Θ is the block Toeplitz matrix, with unit matrices of
size nu×nu on its i-th block diagonal and zeros elsewhere.
The filter coefficient is obtained by the factorization (e.g.
Cholesky factorization) of optimal Q∗. The factorization of
Q matrix is not always trivial due to the tolerance limit of
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4. SOLUTION METHODOLOGY

The input design problem proposed above is non-convex
because of the constraint P (R) = Σz(R)1/2.Therefore,
we adapt the two-stage solution algorithm presented in
[Nabil et al. 2014, 2012]. This is based on the geometric
interpretation of the above formulation, viz., to determine
the BOP (zss) and the associated ellipse Σz such that the
ellipse lies within the feasible set and the cost JT

u uss +
JT
y yss is minimized and Md ≥ ηI. The basic idea in the

first stage is to find the smallest (in terms of trace) feasible
ellipsoid Σz, that describes the feasible set of input signals
for system identification. For this purpose, we impose
the following constraints on the individual variances for
obtaining the Σz that ensures feasibility in the second
stage,

σ2
z,1 <

1

4α2
(umax − umin)

2 (20)

where σ2
z,1 is the variance of the input variable. It is impor-

tant to note that, in a traditional input design problem,
the upper limit is assumed to be provided by the designer
(cin, cop) whereas, in the economical framework, it is de-
fined in terms of the available feasible space given by the
variable bounds (umin, umax) and (ymin, ymax). In the sec-
ond stage, this covariance ellipsoid is used to determine the
closest possible backed-off operating point (BOP) zss to
the constrained optimal operating point OOP, [u∗T , y∗T ]T

such that the pre-determined expected dynamic operating
region is within the feasible set. Equivalently, the inputs
and outputs satisfy the constraints, modulo a confidence
level. Information from the second stage (i.e., BOP) is
used to create lower bounds on the variances by defining
the parameter δij describing the closeness to OOP. The
parameter δij is defined as

δij =
distance of variable i from its closest bound

distance of variable j from its closest bound
(21)

To this end, we define the following constraints with
respect to variance of the jth variable, σ2

z,j ,

σ2
z,j >

δ2ij
α2

σ2
z,i (22)

where the iterative parameters δ2ij are chosen such that the
BOP selected in stage 2 is used to select the new minimum
variance ellipsoid that forces the BOP close to OOP and
recompute Σz in the first stage.

4.1 Stage 1

min
R

tr(Σz)

s.t. Md(R) ≥ ηI[
Qφ −AT

φQAφ CT
φ −AT

φQBφ

Cφ −BT
φQAφ Dφ +DT

φ −BT
φQBφ

]
� 0

Σz(i, i) ≤ 1
4α2 (dmax(i)− dmin(i))

2, i = 1, · · ·nu + ny

σ2
z,2 > δ2

α2σ
2
z,1

where dmax, dmin ∈ RP+N are the maximum and mini-
mum bound on corresponding inputs and outputs. Solu-
tion of Stage 1 results in a feasible covariance ellipsoid Σz.

Let P = Σ
1/2
z . This is used to find the approximation to

the backed-off operating point in stage 2 as follows.

4.2 Stage 2

min
ũss,ỹss

Ju
T ũss + Jy

T ỹss

s.t. ỹss = Kũss

Σz =

[
R[0] Σuy (R)

Σyu (R) RT ζop +Np

]
� 0;

α||Pai||+ aTi z̃ss ≤ bi

Solution of Stage 2 problem will result in a feasible backed
off operating point. The parameter δ is updated based on
the new BOP and used to resolve Stage 1. It is important
to note that P is not a decision variable since Σz is
known from first stage. Now it can be easily recognized
that both the stages contains only convex constraints
which could be easily solved using CVX, a package for
specifying and solving convex programs ([Grant and Boyd
2011]). Initializing δ to zero and given two successive
iterates, ziter−1

ss and ziterss this process is iterated until the
convergence criteria ‖ziterss −ziter-1ss ‖2 ≤ ε is satisfied where
ε being the prescribed tolerance limit.

5. INPUT DESIGN

Given a set of R ∈ Rnu×nu , M-tap filter coefficients are
calculated through spectral factorization using Fejér-Riesz
spectral factorization [Dumitrescu 2007]:

Theorem 1 (Fejér-Riesz spectral factorization for
multivariate polynomial) A matrix valued polynomial
Φu(z) ∈ C is nonnegative (Φ(ω) is semidefinite) on the
unit d-circle Td if and only if Positive orthant polynomials
(special class of causal polynomials)

H(z) =

(M−1)∑
i=0

hiz
i (23)

exists such that

Φu(z) =

(M−1)∑
i=0

H(z)H∗(z−1) (24)

Several methods like functional analysis [Wilson 1972,
Rozanov 1960], Newton Raphson type iterative algo-
rithms [Yaglom 1960] etc., have been presented in lit-
erature to get solution of (24). Recently, a semidefinite
programming approach is proposed while parameterizing
the coefficients of the polynomial as a linear function of the
elements of a positive semidefinite matrix Q (called Gram
matrix). Such parameterization allows the description of
a nonnegative trigonometric polynomial through a linear
matrix inequality (LMI). Hence, SDP is applicable. The
algorithm is as follows [Dumitrescu 2007]:

minimize
Q

tr(Q00)

s.t TR(ΘiQ) = Ri i = 0, 1, · · ·M − 1

Q � 0

(25)

Where Q00 is the upper nu×nu left block of Gram matrix.
TR(.) is the block trace operator defined in [Dumitrescu
2007]. Θ is the block Toeplitz matrix, with unit matrices of
size nu×nu on its i-th block diagonal and zeros elsewhere.
The filter coefficient is obtained by the factorization (e.g.
Cholesky factorization) of optimal Q∗. The factorization of
Q matrix is not always trivial due to the tolerance limit of
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the solver. For such situation an equivalent matrix (Qeqv)
can be obtained as follow:

minimize
Qeqv

‖(Qeqv −Q)‖frobenius
s.t Qeqv � 0

Qeqv =




hH
0
.
.
.

hH
M−1


 [ h0 . . hM−1 ] (26)

Where hk ∈ Rnu×nu is the desired filter coefficient.

6. CASE STUDY

To illustrate our proposed method, we have considered
a Van de Vusse reactor as an example. It is basically
a continuous stirred tank reactor (CSTR) where three
endothermic chemical reactions A → B → C and 2A→ D
takes place [Rothfuss et al. 1996]. The model equations are

˙cA = rA(cA, T ) + (cin − cA)u1 (27)

˙cB = rB(cA, cB , T )− cBu1 (28)

Ṫ = h (cA,, cB , T ) + α (u2 − T ) + (Tin − T )u1 (29)

The rate of reaction is given by following equation:

rA =−k1 (T ) cA − k2 (T ) c
2
A rB = k1 (cA − cB) (30)

h = −δ
(
k1 (T ) (cA∆HAB + cB∆HBC) + h̃

)
(31)

h̃ = k2 (T ) c
2
A∆HAD ki (T ) = ki0exp

−Ei

T + T0
(32)

Where cA, cB are the concentration (mole/liter) and T is
the temperature of cooling jacket in degree Celsius. The
inputs u1 and u2 are the normalized flow rate through
the reactor in 1/h. cin (mole/liter) and Tin (◦C) are
considered as disturbances. For simplicity, we assume
that the disturbance are normally distributed and are
uncorrelated with each other. All states are measurable
and considered as outputs of the system. The outputs and
inputs are constrained as :

cA ∈ [0, 4.5] mol/l cB ∈ [0, 4] mol/l T ∈ [70, 200] ◦C

u1 ∈ [3, 200]
1

h
u2 ∈ [60, 170] ◦C (33)

The system parameters are considered as

α= 30.828 δ = 0.3522 m3K kj−1 E1 = 9758.3

E2 = 8560 k10 = 1.28× 1012
1

h

∆Hab = 4.2 mol−1 ∆Hbc = −11 mol−1

T0 = 273.15 ◦C cin = 10
mol

l
Tin = 114.9◦C

γ = 0.1 Kkj−1 k20 = 9.04× 109 m3(mol.h)−1

∆Had =−41.85 mol−1

Here, the economic objective is to maximize the produc-
tion rate of cB
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Fig. 2. Profitable and feasible dynamic operating region
between flow rate u2 and cA

J (cB , u1) = βcBu1 β = 86.7 h−1 (34)

The underlaying system is linearized around the opti-
mal steady state point y∗ = [4.50, 1.99, 148.71]T and
u∗ = [146.01, 170]T . At the optimal operating points the
production rate of cB is 2.5192 × 104 mole/hr. Here, we
can observe that y1 and u2 are active at their respective
upper bounds. A state space form of linear system and
corresponding discrete time transfer functions are obtained
by considering 7 sec sampling time, which is not presented
here in the interest of brevity. This obtained linear model
is used to generate inputs and outputs data for the purpose
of identification.

Since, the objective function and constraints depends upon
the system parameters an initial estimates of parame-
ters are obtained by perturbing system with a PRBS
signals. We have considered M = 10 to shape the in-
put spectrum, a higher value of M can also be se-
lected but it is computationally intensive. The lower
bound on the information matrix Md is considered as
I. The convex optimization problems arising in the
two stage procedure described above are solved using
CVX [Grant and Boyd 2011]. The backed-off operating
point is zss = [3.918, 2.047, 148.844, 105.802, 156.58]T . The
production rate of product B at the backed-off operat-
ing point is 1.8776 × 104mole/hr. This is the maximal
achievable production rate that ensures dynamic feasible
operation during excitation of input signals for the purpose
of system identification. The backed-off operating point
and the feasible dynamic region are shown in Figures 2,3,4
and 5 respectively. From the figures, it is seen that for the
most part, the constraints are obeyed.

7. CONCLUSION

We have proposed an economic input design problem for
multi input multi output systems. The objective is to
minimize the important cost, viz., the deviation from op-
timality subject to constraints on feasibility and quality of
the identified model. Since, the optimization formulation
is non-convex, a two stage solution is adopted where a
convex problem is solved at each stage. The proposed ideas
are demonstrated using simulations of a CSTR.
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