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ABSTRACT

Liquid rockets are prone to large amplitude oscillations, commonly referred to as thermoacoustic instability. This phenomenon causes unavoid-
able developmental setbacks and poses a stern challenge to accomplish the mission objectives. Thermoacoustic instability arises due to the
nonlinear interaction between the acoustic and the reactive flow subsystems in the combustion chamber. In this paper, we adopt tools from
dynamical systems and complex systems theory to understand the dynamical transitions from a state of stable operation to thermoacoustic
instability in a self-excited model multielement liquid rocket combustor based on an oxidizer rich staged combustion cycle. We observe that
this transition to thermoacoustic instability occurs through a sequence of bursts of large amplitude periodic oscillations. Furthermore, we show
that the acoustic pressure oscillations in the combustor pertain to different dynamical states. In contrast to a simple limit cycle oscillation, we
show that the system dynamics switches between period-3 and period-4 oscillations during the state of thermoacoustic instability. We show
several measures based on recurrence quantification analysis and multifractal theory, which can diagnose the dynamical transitions occur-
ring in the system. We find that these measures are more robust than the existing measures in distinguishing the dynamical state of a rocket
engine. Furthermore, these measures can be used to validate models and computational fluid dynamics simulations, aiming to characterize the
performance and stability of rockets.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5120429

Liquid rockets are frequently prone to thermoacoustic instabil-
ity, otherwise known as combustion instability. Thermoacoustic
instability exposes the liquid rockets to excessive thermal loads
and structural wear, endangering the on-board electronic com-
ponents and payload, and even jeopardizing the mission. The
complex interactions between the different subsystems in a ther-
moacoustic system give rise to several rich dynamical behav-
iors, leaving a trail in the chamber acoustic pressure oscillations
of rocket combustors. Given the gargantuan costs involved in a
full-scale rocket test, a thorough understanding of the various
dynamical behaviors in a liquid rocket ismandatory to build accu-
rate models, validate existing models and CFD simulations, and
avoid developmental setbacks. In this study, we utilize tools from
dynamical systems theory and complex systems theory to char-
acterize the various dynamical transitions observed in a liquid

rocket combustor. We observe a radically different structure in
the phase portrait for the steepened shock waves during thermoa-
coustic instabilitywhen compared to the usual period-1 limit cycle
oscillations. Furthermore, we prescribe several quantitative mea-
sures to detect the dynamical transitions observed prior to the
onset of thermoacoustic instability.

I. INTRODUCTION

Liquid rocket propulsion has become indispensable in aiding
mankind for space exploration. In the late 1950s, when the space
race was at its peak between the then superpowers: United States and
the Soviet Union, NASA was desperately pushing to place a man on
the moon to respond to the resounding success of the Soviet Union’s
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Sputnik satellite. The Apollo program, as it was called, took a serious
setback when the F-1 liquid rocket exhibited instabilities containing
oscillations of perilous magnitudes to render the mission impossible.
A special programknownas Project Firstwas established and after six
more years of approximately 2000 full-scale tests, these instabilities
were mitigated to make the history we know today.1 Similarly, these
combustion instabilities have come to haunt several other missions,
notably the Soviet RD-0110 engines and the Ariane space program in
Europe.2 These instabilities came to be widely known as combustion
instabilities or thermoacoustic instabilities and have been observed
in liquid rocket engines, solid rocket motors, tactical and strategic
missiles, aeroderivative gas turbine engines, power-producing gas
turbines, industrial boilers, etc. Thermoacoustic instability is charac-
terized by large harmful oscillations in pressure and heat release rate
arising due to the positive feedback between the acoustic pressure
oscillations in a confinement and the heat release rate oscillations in
the flame.3The occurrence of thermoacoustic instabilities can poten-
tially lead to partial or total mission failure of rockets, rising costs,
increased delays, and developmental setbacks. Specifically in rock-
ets, they give rise to large amplitude thrust oscillations compromising
controllability and structural integrity. As a result, thermoacoustic
instability has been studied widely by academia and various national
and private institutions.

Rayleigh criterion3 was one of the earliest measures to assess
the stability of combustion systems.4 This criterion judges the com-
petition between the acoustic driving and damping in the system.
Earlier approaches based on linear stability analysis5–9 assessed the
stability of liquid rocket engines and solid rocket motors for dif-
ferent configurations. Crocco and Cheng10 built the n − τ model
accounting for various time lags pertaining to different processes
to assess the stability of the system. This theory made a great step
toward characterizing thermoacoustic instability in rocket engines
of various configurations.11 Crocco et al.12 showed that the time lags
of both acoustic pressure and gas velocity need to be used in the
n − τ model for transverse oscillations. A similar approach was fol-
lowed by Zinn13 to model continuous transverse modes in three
dimensions, which are more prominent in rockets. However, linear
stability analysis could not conclusively explain the various dynamics
observed in rocket combustors. Crocco and co-workers have pre-
sciently predicted the importance of nonlinear dynamics.10,14,15 Zinn
and Powell16 used the n − τ model with Galerkin method to analyze
nonlinear combustion instability in liquid rocket engines. Estimates
for limit cycle amplitude and triggering thresholds were obtained
analytically by Mitchell et al.17 for a longitudinal mode rocket motor
with shock waves. We refer interested readers to an excellent recent
review by Sirignano11 for an elaborate discussion on these techniques.
Apart from these brilliant analytical attempts, focus was largely
skewed toward identifying the physical processes behind these com-
bustion instabilities and attenuating these harmful oscillations with
the help of baffles,Helmholtz resonators, and spray and impingement
alterations.2 Another section of research in rockets defined stabil-
ity boundaries for the system for different configurations2,9,18 and
changes in the controllable operating parameters such as injector
spacing inside the combustion chamber, propellant temperature, etc.

Rocket combustion is a highly nonlinear and dynamic process.
The nonlinearities9,18,19may arise out of gas dynamic processes, flame
interactions, boundary interactions, high thermal energy density20

(O ∼ 30GW/m3), and the turbulent base flow. Furthermore, extreme
rates of heat addition in rockets is a major source of nonlinearities
in rockets. The magnitudes of the oscillations of the system vari-
ables approach the order of magnitude of the mean variables. As
a consequence, the nonlinearities in the system become significant
and promote the transfer of energy across higher modes. The tur-
bulent base flow induces wrinkles along the flame boundaries which
are smoothed out at different rates depending on their length scales.
The presence of flow separation at sharp edges, rapid flow expan-
sions, and interaction of the acoustic oscillations with the coherent
structures21,22 in the reactive flow-field add upon the nonlinearities
in the system. Furthermore, the wave steepening mechanism causes
acoustic waves to turn into shockwaves.23–25 The usage of nonlinear
theory correctly predicts the sawtooth wave profiles in pressure for
cases containing shock discontinuities, while linear theory predicts
smooth sinusoidal waveforms.11,23,26

Chester,27 in a classic study, investigated the conditions required
for the occurrence of flowdiscontinuities in the formof shockwaves28

in a closed duct using a rigorous gas dynamics framework. Inspired
by the experimental work of Saenger and Hudson,28 he showed that
the shock waves arise as the natural solution for frequencies close to
the resonant frequency since the nonlinear terms from acoustics, vis-
cosity, and heat conduction contribute significantly. Furthermore, he
proved that the number of shock waves in the duct increase linearly
as the oscillations occur at harmonic frequencies. He further showed
the effects of bulk viscosity of the fluid and boundary layer on the
oscillations at near resonant frequencies.

On top of all these events, there exist several interactions
across various subsystems such as injector hydrodynamics and flame
dynamics, rendering the system complex.7,9,18,22,29,30 Several processes
occurring in rocket engines are artifacts of the nonlinearities in the
system.9,25 Limit cycle oscillations could arise due to the balance
between the acoustic driving and dampingmechanisms in the system
along with other limiting mechanisms like propellant flow.

A stable combustor can be excited with a finite amplitude dis-
turbance to trigger self-sustained oscillations of considerable ampli-
tudes. This phenomenon is known as triggering instabilities in
rockets. During triggering, the system dynamics transitions to high
amplitude state of oscillations through a finite amplitude perturba-
tion above a threshold amplitude, called triggering amplitude. When
the amplitude of the initial condition is less than the triggering ampli-
tude, the system behavior decays asymptotically to a stable state. The
phenomenon of triggering is observed when the system is operating
in the bistable zone. In rockets, the time history of acoustic pressure
oscillations is usually accompanied by a rise in themean pressure lev-
els. This phenomenon, known as DC shift25 in the rocket propulsion
literature, exposes the rocket to dangerous pressure levels. As a result
of these nonlinear behaviors, it is vital to understand the dynamics
exhibited by a rocket combustor from the perspective of nonlinear
dynamics.

Furthermore, much of the research focused on the combustion
stability assessment of rockets are based on building accurate models
and computational fluid dynamics (CFD) simulations, owing to the
high costs involved in testing even subscale hardware.7,9,22,31–33 Most
of the studies have focused solely on understanding the dynamics
during thermoacoustic instability. However, to characterize the var-
ious dynamics present in the system and build models that capture
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the relevant features, we need to characterize the dynamics during
the transition from stable operation to thermoacoustic instability.
Many studies exist in the rocket literature34–38 pointing out to the
exponential growth of amplitudes of acoustic pressure oscillations
during the transition from stable operation to unstable operation.
Recently, Selvakumaran et al.39 detected the signature of intermittent
oscillations in heat release rate fluctuations of a composite solid pro-
pellant. Adopting tools from dynamical systems theory, Guan et al.40

showed switching between period-2 and period-3 oscillations dur-
ing the state of thermoacoustic instability in a full-scale solid rocket
motor.

Another challenge faced by the rocket propulsion community
is to identify the dynamical transitions from stable operation to
thermoacoustic instability. Conventional measures41,42 such as root
mean square of the oscillations,maximumamplitude from the ampli-
tude spectrum through Fourier transform, etc., cannot be applied
universally to all rocket combustors without a priori knowledge of
the oscillation amplitudes. Different rocket combustors vary in their
mean operating pressure, choice of propellants, geometry, etc. Given
the widely different operating conditions and amplitudes observed
for different rocket combustors, a measure which is bounded within
a certain range of values for different rocket combustors would be a
better candidate than the conventional measures to track the transi-
tion. Recently, Orth et al.43 used the maximum of cross correlation,
which is bounded between −1 and 1 to distinguish the stable opera-
tion from thermoacoustic instability. However, this measure cannot
isolate intermittency from thermoacoustic instability. Furthermore,
it requires careful selection of the two signals to be cross correlated.
In spite of several advances, the rocket propulsion community is still
in need of robust measures from dynamical systems theory to char-
acterize and also to detect the transition from stable operation to
thermoacoustic instability.

Adopting the framework of dynamical systems and complex
systems theory, recent studies in the gas turbine literature have
shown immense progress toward understanding several dynamical
states of combustor operation such as chaos, period-n limit cycle,
and quasiperiodicity.44–46 Several measures such as Hurst exponent,47

recurrence quantificationmeasures,48–52 andmeasures from complex
network analysis53–55 have been deployed to detect the proximity to
the onset of thermoacoustic instability. Furthermore, synchroniza-
tion theory has been exploited to study the coupling between the
acoustic pressure and the heat release rate oscillations.56–58 In light of
these advancements, it would be interesting to analyze the dynamics
of a liquid rocket combustor using tools from complex systems and
dynamical systems theory.

In this paper, by adopting various tools from nonlinear time
series analysis, we detect the different dynamical states and also
characterize the dynamical transitions observed in acoustic pressure
oscillations of a liquid rocket combustor. We observe that the tran-
sition from stable operation to thermoacoustic instability occurs via
intermittency, a state consisting of alternate occurrence of bursts of
periodic oscillations among epochs of low amplitude aperiodic oscil-
lations. Through the use of first return map, we unravel intricate
features of thermoacoustic instability, where the periodic dynam-
ics alternates between period-3 and period-4 oscillations. We show
that the measures based on recurrence quantification analysis and
multifractal analysis can aid in detecting the dynamical transitions

in the acoustic pressure oscillations, which is not possible through
conventional measures.

The rest of the paper is outlined as follows. In Sec. II, we briefly
discuss the various tools employed in this study. In Sec. III, we con-
cisely describe the model liquid rocket combustor used in this study.
In Sec. IV, we perform time series analysis of pressure oscillations for
the different dynamical states. Then, we perform recurrence quantifi-
cation analysis and multifractal analysis. We conclude by detailing
several measures that can be used to detect the dynamical transitions
across different dynamical states in the system.

II. NONLINEAR TIME SERIES ANALYSIS

In this section, we briefly describe themethodology used to per-
form the nonlinear time series analysis throughout the rest of the
paper.

A. Phase space reconstruction

In practical applications, such as thermoacoustic instability in
the combustion chamber of a rocket, it is difficult to obtain data of
all the independent variables that govern the dynamics of the sys-
tem. In such situations, usually only a handful of system variables
(in the limiting case, at least one) are available to be acquired by
an experimentalist. The dynamics of a liquid rocket combustor in
the higher dimensional phase space can be reconstructed from a
state variable (for example, acoustic pressure: p′) by Takens’ delay
embedding theorem.59 Such a reconstruction involves converting
the univariate time series data into a set of delayed vectors from
the appropriate choices of time delay (τ ) and embedding dimen-
sion (d). We construct the vectors x′(d) = [(p′(t), p′(t + τ), p′(t +

2τ), . . . , p′(t + (d − 1)τ ))] from the measured pressure signal, p′(t).
Here, t is varied from 1 to n − (d − 1)τ , where n is the total num-
ber of data points in the signal. Each delay vector corresponds to a
state point in the phase space and the combination of all these vec-
tors constitutes a phase space trajectory. To perform an appropriate
phase space reconstruction for a particular state of the system, we
need to obtain the optimum time delay (τ ) and theminimumembed-
ding dimension (d) for the given signal. Here, τ can be estimated
using average mutual information60 or autocorrelation function.61

Theminimum embedding dimension (d) can be obtained using false
nearest neighbor method61 or alternately Cao’s method,62 which we
use in this study.

B. Recurrence analysis

Recurrence of state points in the phase space is a fundamental
property of deterministic dynamical systems. Recurrence plots (RPs)
are used to visually identify the time instants at which the phase space
trajectory of the system revisits roughly the same area in the phase
space.63 The patterns present in a recurrence plot allow us to char-
acterize the features of the signal embedded in the d-dimensional
phase space. The construction of the recurrence plot requires a prior
knowledge of the optimum time delay (τ ) andminimum embedding
dimension (d).

The recurrence plot of any time series is constructed by com-
puting the pairwise distances between the state points of the recon-
structed phase space. For a time series of length n, the recurrence
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matrix is given by the following equation:

Rij = 2(ǫ −

∥

∥

∥
x′
i − x′

j

∥

∥

∥
) i, j = 1, 2, . . . , n − (d − 1)τ , (1)

where 2 is the Heaviside step function and ǫ is a threshold to define
the neighborhood of a state point in the reconstructed phase space.
∥

∥

∥
x′
i − x′

j

∥

∥

∥
is the Euclidean distance between any two state points, i

and j, on the reconstructed phase space. Whenever a state point in
the phase space recurs in the predefined threshold, it is marked as
a black point. Nonrecurring points are marked as white points in
the recurrence plot. Rij is one for a black point and zero for a white
point. Thus, a recurrence plot is a two-dimensional arrangement of
black and white points that exhibits different patterns characterizing
different dynamics of the signal.

Several statistical measures can be derived from the organiza-
tion of such black and white points in the recurrence plots. Such
an analysis is known as the recurrence quantification analysis of a
measured signal. Measures such as determinism (DET), recurrence
rate (RR), trapping time, entropy, laminarity, and average diagonal
length can be used to study the recurrence behavior of the phase
space trajectory.64,65 These measures could further be used to distin-
guish between the various dynamical states exhibited by the system.
Here, we discuss the usage of determinism (DET), recurrence rate
(RR), and the ratio between these quantities (RATIO) in the analy-
sis of acoustic pressure data obtained experimentally from the model
liquid rocket combustor.

Recurrence rate measures the density of black points in a recur-
rence plot and can be obtained as

RR =
1

N2

N
∑

i,j=1

Rij, (2)

where N = n − (d − 1)τ is the number of state vectors in the recon-
structed phase space.

Determinism measures the percentage of black points in a
recurrence matrix, which form diagonal lines of minimum length
lmin,

DET =

∑N
l=lmin

lP(l)
∑N

l=1 lP(l)
, (3)

where P(l) is the probability distribution of diagonal lines having
length l and lmin = 2.

The ratio of determinism and recurrence rate (RATIO =
DET/RR) has been introduced by Webber and Zbilut66 to discover
transitions in physiological systems.

C. Multifractal analysis

Classical Euclidean geometry deals with smooth objects which
have an integer dimension. However, many things in nature con-
tainwrinkles when observed at different levels ofmagnification. Such
objects or signals are classified as fractals, and they exhibit self-similar
features at various observational scales.67 Measures such as length,
area, and volume for such objects are dependent on the scale at which
the measurements are performed. The logarithmic plot of the mea-
sure of the object vs the scale at which the object is measured would
give a straight line with an inverse power law.67 The absolute value of

the slope of this line is known as fractal dimension (D). The frame-
work of fractal theory can be used to describe a fractal time series
which exhibits self-similarity at various time scales.68 For a fractal
time series, H quantifies the amount of correlation in the signal and
is related to the fractal dimension69 of the time series as D = 2 − H.
If p(t) is a fractal time signal whose Hurst exponent is H, then p(ct)
= p(t)/cH is another fractal signal preserving the same statistics47.

Certain complex signals cannot be described using a single frac-
tal dimension. These signals can be described with a range of fractal
dimensions and such signals are classified as multifractals. In this
study, we use multifractal detrended fluctuation analysis (MFDFA)70

to study the multifractal characteristics of the time series of acoustic
pressure oscillations. To estimate the Hurst exponent, the time series
[p(t)] is mean [〈p(t)〉] adjusted to get a cumulative deviate series yi as

yi =

i
∑

t=1

(p(t) − 〈p(t)〉), i = 1, 2, . . . , n, (4)

〈p(t)〉 =

∑n
t=1 p(t)

n
. (5)

The deviate series is then separated into an integer number nw
nonoverlapping segments of equal span w. To look for trends in the
segments, a local polynomial fit (yi) is made to the deviate series
yi and the fluctuations about the trend are obtained by subtracting
the polynomial fit from the deviate series. Next, a quantity known as
structure function (F

q
w) of order q and span w can then be obtained

from the fluctuations for q 6= 0 as

Fq
w =





1

nw

nw
∑

i=1





√

√

√

√

1

w

w
∑

t=1

(

yi(t) − yi
)2





q



1/q

. (6)

For q = 0, we have

Fq
w = exp

[

1

2nw

nw
∑

i=1

log

(

1

w

w
∑

t=1

(

yi(t) − ȳi
)2

)]

. (7)

The generalized Hurst exponents [H(q)] is then obtained from
the slope71 of the linear regime in a log-log plot of F

q
w, for a range

of span sizes, w. In this study, we obtain this linear regime for 2–10
cycles72 of the acoustic oscillations observed with a frequency of
2650Hz during thermoacoustic instability. Henceforth, the general-
ized Hurst exponents can be represented as a spectrum of singulari-
ties, f (α), via a Legendre transform73

τq = qHq − 1, (8)

α =
∂τq

∂q
, (9)

f (α) = qα − τq. (10)

This spectrum, represented as a plot of f (α) against α, is known
as the multifractal spectrum. The multifractal spectrum provides
information on the fractal characteristics of the data. Further details
regardingMFDFA can be found in the work of Kandelhart et al.70 and
Ihlen.71

In the literature, the generalized Hurst exponentH(q) for q = 2
is popularly known as theHurst exponent (H). For q = 2,H becomes
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the scaling of the root mean square of the standard deviation of
the fluctuations with the window size. Since its introduction, H has
been used for various applications.74,75 In thermoacoustics, Nair and
Sujith47 have usedH to capture the transition from stable operation to
thermoacoustic instability via intermittency in a laboratory-scale tur-
bulent combustor. Also, Unni and Sujith49 have usedH as a precursor
to detect blowout in a turbulent combustor.

III. EXPERIMENTAL SETUP

A schematic diagram of the multielement model liquid rocket
combustor is presented in Figs. 1(a) and 1(b). A detailed description
of the flow conditions and the experimental hardware can be found

in Orth et al.43 and Harvazinski et al.76 The oxidizer is supplied by an
oxidizer rich preburner that uses hydrogen as the fuel and is located
upstream of an oxidizer manifold. The preburner provides oxygen
with 4%–5%mass fraction ofwater vapor to the experiment at amean
chamber pressure of 6.55MPa and amean temperature of 635K. The
oxidizer manifold is sized to minimize dynamic pressure losses and
provide uniform flow to each of the injection elements downstream
of it. Each injector has a choke plate upstream of it to decouple any
feed system dynamics from the experiment and vice versa. Methane
is injected through shear coaxial injector elements at the downstream
end of the oxidizer posts through amanifold with a choked inlet. The
mean Mach number in the oxidizer posts is 0.25 at nominal operat-
ing conditions. A centerline-centerline injector spacing of 25.7mm is

FIG. 1. (a) The side view of the experimental setup used to excite transverse instabilities in the laboratory-scale multielement liquid rocket combustor. (b) A detailed view of
the main combustor is shown. The entire experiment lasts for 6 s. (c) A representative time series of acoustic pressure oscillations obtained from the pressure transducer
located at right side wall of the combustor during test C. The dashed lines demarcate the test time interval (i.e., region II) from the engine start-up and shutdown durations.
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used in the test case presented in this study. The injector exit diameter
is 15.8mm. The exit nozzle has the same aspect ratio as the combus-
tion chamber and is designed to obtain a mean chamber pressure of
approximately 1140 kPa during the test. The chamber width is cho-
sen to drive self-excited transverse mode dynamics at a frequency
of 2.65 kHz at nominal test conditions. The length of the chamber
is designed for a fundamental longitudinal (1L) mode of 3475Hz so
that the transverse mode harmonic frequency does not coincide with
the 1L mode or its harmonics.

The combustion chamber is instrumented densely with high
frequency pressure transducers and K-Type thermocouples. Piezore-
sistive Kulite WCT-312M sensors (observational error: ±6.895 kPa)
sampled at 250 kHz are used tomeasure the pressure in the propellant
manifolds, oxidizer post, and the combustion chamber. The sensors
are mounted in a recess cavity to avoid thermal saturation effects.
The cavity is designed as a Helmholtz resonator with a resonance fre-
quency of 22.4 kHz. The location of the pressure transducers used for
the analysis are labeled in Fig. 1(b).

A representative time series of acoustic pressure oscillations
obtained from the pressure transducer located at the right side wall

of the combustor is shown in Fig. 1(c). The time interval in region
I corresponds to starting of the preburner and the ignition of the
main chamber. The first jump in the pressure signal close to 1 s cor-
responds to the start of the preburner and the second jump around
2.5 s corresponds to the ignition of the main chamber. Region III
pertains to the shutdown of the engine. The acoustic pressure oscil-
lations in region II are of prime interest in this study, as this inter-
val of the signal represents the actual dynamical transitions from
stable operation to thermoacoustic instability in the liquid rocket
combustor.

IV. RESULTS AND DISCUSSIONS

In this section, we characterize the temporal behavior of acous-
tic pressure oscillations observed during the onset of thermoacoustic
instability in the liquid rocket combustor. Toward this purpose, we
examine the time series of the chamber acoustic pressure oscillations,
as shown in Fig. 2, acquired for the same operating conditions (work-
ing fluids, flow rates, upstream pressures, and temperatures) and the

FIG. 2. Time series of acoustic pressure fluctuations acquired at the right side wall of the combustion chamber in the interval of interest marked as II in Fig. 1(c) for tests: (a)
test A (stable operation), (b) test B (intermittency), (c) test C (stable operation–intermittency–thermoacoustic instability), (d) test D (intermittency–thermoacoustic instability),
and (e) test E (intermittency–thermoacoustic instability). The representative portions of the various dynamical states are zoomed and shown in the insets: (i) stable operation,
(ii) intermittency, and (iii) thermoacoustic instability.
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TABLE I. The list of datasets chosen for analysis and the corresponding dynamical transitions observed in each test.

Dataset Dynamical transitions observed

Test A Stable operation
Test B Intermittency
Test C Stable operation ⇒ Intermittency ⇒ Thermoacoustic instability
Test D Intermittency ⇒ Thermoacoustic instability
Test E Intermittency ⇒ Thermoacoustic instability

injector configurations. However, we notice that although the operat-
ing conditions are the sameduring experiments, the dynamics arising
out of the combustor is different during each trial. The datasets cho-
sen for the analysis alongwith the dynamical transitions observed are
summarized in Table I.

A. Classification of dynamical states

For test A [Fig. 2(a)], we observe that the time series is entirely
composed of stable operation, exhibiting low amplitude aperiodic
oscillations. For test B [Fig. 2(b)], we observe small epochs of
marginally large amplitude periodic oscillations interspersed within
the aperiodic oscillations of the signal. We refer to this dynamical
state as intermittency. In general, intermittency refers to a dynami-
cal state composed of high amplitude bursts of periodic oscillations
amidst epochs of low amplitude aperiodic oscillations in an appar-
ently random manner.48 Next, we obtain a transition from stable
operation to thermoacoustic instability via intermittency for test C
[Fig. 2(c)]. Here, thermoacoustic instability is comprised of large
amplitude periodic oscillations. For test D [Fig. 2(d)] and test E
[Fig. 2(e)], we detect only two dynamical states: intermittency fol-
lowed by thermoacoustic instability without the occurrence of a
stable combustor operation. However, the time spent in the periodic
epoch of intermittency is higher during test E than that for test D. The
reasons behind such a difference in the dynamics of the combustor
behavior for the same operating conditions remain unanswered.

A careful observation of the dynamics of the liquid rocket
combustor shows the existence of three primary dynamical states in
the acoustic pressure oscillations. These states are stable operation
(low amplitude aperiodicity), intermittency (epochs of periodicity
interspersed between epochs of aperiodicity in an apparently ran-
dom manner), and thermoacoustic instability (epochs of sustained
periodicity). During the periodic epochs of intermittency and ther-
moacoustic instability, we observe that the periodic waveform nearly
takes the shape of a sawtooth wave profile. Furthermore, we notice
that the state of intermittency always precedes the onset of ther-
moacoustic instability. Such an observation is different from previ-
ous descriptions of the onset of thermoacoustic instability in rocket
combustors where the transition from small amplitudes to large
amplitudes is reported to occur through an exponential growth.34–38

Recently, Orth et al.43 bandpass filtered the time series of acous-
tic pressure oscillations in the same model multielement combustor,
used in the present study. When the frequencies pertaining to the
fundamental mode are bandpassed, they observed the presence of
an exponential growth rate in the amplitude of oscillations. They
also observed a similar exponential growth rate when the harmonic
frequencies are bandpassed. However, in the present study, we ana-
lyze the time series with its entire frequency content preserved. In
this study, we characterize the dynamical features of the represen-
tative portions of the time series pertaining to these three dynamical
states observed during different trials of experiments.We choose sta-
ble operation of test A, intermittency from test E, and thermoacoustic

FIG. 3. The amplitude spectrum obtained through fast Fourier transform (FFT) with a frequency resolution of 12 Hz for (a) stable state of test A, (b) intermittency of test E,
and (c) thermoacoustic instability of test E. The zoomed insets are shown for (a) and (b).
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FIG. 4. (a)–(c) Averagemutual information (AMI) and (d)–(f) autocorrelation func-
tion (ACF) are evaluated to estimate the optimum time delay required for the
construction of phase portrait during [(a) and (d)] stable operation of test A, [(b)
and (e)] intermittency in test E, and [(c) and (f)] thermoacoustic instability of test
E. The dashed line in (d)–(f) indicates the zero crossing delay, selected as the
optimum time delay.

instability from test E. Next, we will look into the frequency content
present in these three dynamical states.

The amplitude spectrum with a frequency resolution of 12Hz
generated out of the fast Fourier transform (FFT) algorithm is plot-
ted in Fig. 3. For stable operation [Fig. 3(a)], we observe that the
amplitude spectrum is broadband, containing a wide range of fre-
quencies at smaller amplitudes. During intermittency [Fig. 3(b)],
we observe a dominant peak emerging around 2500Hz amidst the
neighboring band of frequencies. During thermoacoustic instability
[Fig. 3(c)], we notice a sharp peak at f1 = 2650Hz along with several
of its harmonics (nf1) of considerable amplitudes. We have marked
only the first ten harmonics (f2 = 2f 1 to f10 = 10f 1) for conciseness.

The presence of several harmonics of considerable amplitudes dur-
ing thermoacoustic instability is due to the spiky nature of the signal
caused by the steepening of the compression wave front into a shock
wave.25,26 The shift in the dominant frequency in time is attributed to
the increase in mean temperature during the transition.

B. Phase space reconstruction

To probe the hidden features of the dynamics during each
state, we reconstruct the phase space traced by the acoustic pressure
oscillations. Toward this purpose, we need to evaluate the optimum
time delay and minimum embedding dimension for each state. Fur-
thermore, to estimate the optimum time delay, we plot the average
mutual information (AMI) for different time lags60 as shown in the
first column of Fig. 4. AMI measures the mutual dependence of the
signal and its delayed version at two different time instants. The first
minima of the AMI can be used as the optimum time delay for the
construction of the phase space. However, we observe that the opti-
mum time delay cannot be unambiguously determined using AMI
[Figs. 4(a)–4(c)], due to the difficulty in clearly identifying the first
local minima, especially in Figs. 4(b) and 4(c). Hence, we turn to
the autocorrelation function (ACF) to estimate the optimum time
delay.61

Autocorrelation function (ACF) calculates the linear correla-
tion between a time series and its delayed copy of the same time
series. The value of ACF ranges between −1 and 1. The optimum
time delays obtained from ACF corresponds to the first zero cross-
ing in the plot, which are denoted by dashed lines in Figs. 4(d)–4(f).
The corresponding optimum time delays for stable operation, inter-
mittency, and thermoacoustic instability are 0.04ms, 0.136ms, and
0.084ms, respectively.

Furthermore, we need to estimate the minimum embedding
dimension required for phase space reconstruction. We rely on
Cao’smethod62 to identify theminimum embedding dimension. The
two parameters, E1 and E2, are evaluated for a range of embed-
ding dimensions from 1 to 20. E1 measures the ratio of mean dis-
tances between two points in the phase space in two successive
embedding dimensions. When a sufficient embedding dimension is

FIG. 5. (a)–(c) The optimum embedding dimension required for phase space reconstruction is obtained by Cao’s method, evaluating quantities, E1 (H) and E2 (•), during
(a) stable operation of test A, (b) intermittency in test E, and (c) thermoacoustic instability for test E, respectively. The optimum embedding dimension are denoted by dashed
lines.
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FIG. 6. The reconstructed phase portraits for (a) stable state of test A, (b) intermittency in test E, and (c) thermoacoustic instability in test E. The phase portraits are
reconstructed using the corresponding time interval depicted for each dynamical state. The trajectory traced out by the phase portrait for one cycle of oscillation during
thermoacoustic instability is enumerated from 1 to 7 in the corresponding waveform shown in the inset.

attained, E1 attains a value close to 1 and remains constant for fur-
ther increments in embedding dimension. E2 is a quantity, which
can distinguish between deterministic and stochastic signals. For a
completely random signal, E2 remains nearly unity for any embed-
ding dimension.62 For deterministic signals, E2 varies for lower
embedding dimensions and saturates beyond a certain embedding
dimension.

The optimum embedding dimension is the dimension, denoted
by dashed lines in Figs. 5(a)–5(c), for which E1 and E2 starts to
become invariant with further increase in dimension (d). In addi-
tion, we observe thatE2 is not unity for some embedding dimensions,
denoting that the dynamics during stable operation are not com-
pletely stochastic. The minimum embedding dimension chosen is
13 for stable operation [Fig. 5(a)] and 10 for both intermittency
[Fig. 5(b)] and thermoacoustic instability [Fig. 5(c)].

With the optimum time delay obtained for each state, we plot
the three-dimensional phase portraits for stable operation, inter-
mittency, and thermoacoustic instability in Figs. 6(a)–6(c), respec-
tively. We observe that the phase portraits during stable operation
in Fig. 6(a) is cluttered and has no distinct repeating pattern cor-
responding to the low amplitude aperiodic oscillations. However,
during thermoacoustic instability in Fig. 6(c), we obtain a pattern
(marked 1–7 in order), which repeats at equal intervals of time.
The phase portrait of this state shows a stretched trefoil-knot like
structure, similar to that observed in gas phase detonations.77 This
structure is radically different from the phase portrait of thermoa-
coustic instability observed for gas turbine combustors, whichmostly
trace out a ring or elliptical orbit.44,56 During thermoacoustic insta-
bility in this rocket combustor, due to an increase in the speed
of sound because of rising temperature and convective effects in

the compression phase, the waveform tends to catch up with the
expansion front.23,24 This leads to the steepening of the compres-
sion wave front into a shock wave. As a result, the pressure wave
front has a faster growth in the amplitude during the compression
phase compared to the slow decay of the oscillation in the expansion
phase. This characteristic behavior is captured faithfully in the corre-
sponding phase portrait wherein the phase space trajectory spends
relatively shorter times during the compression phase [points 1–2
in Fig. 6(c)] compared to the expansion phase [points 2–7 in Fig. 6(c)]
of the signal. During intermittency in Fig. 6(b), we obtain a phase
portrait bearing some resemblance to the phase portrait during ther-
moacoustic instability. The presence of amplitudemodulation during
periodic oscillations and the aperiodic oscillations corrugates the
phase portrait of intermittency.

C. Return maps

A Poincaré map or the first return map preserves many prop-
erties of periodic, quasiperiodic, and chaotic orbits.61 Hence, we use
a return map, tracking the successive local maxima of the signal, to
probe the dynamics. In Fig. 7, the first return map tracking the local
maxima of the acoustic pressure oscillations during stable operation,
intermittency: aperiodic and periodic epochs, and thermoacoustic
instability are plotted.

The trajectory traced by the return map helps us in identify-
ing the precise dynamical state which is sometimes not apparent
from the visual inspection of the three-dimensional phase portrait.
In a first return map, a point is observed for limit cycle oscilla-
tions with period-1, a ring is observed for the quasiperiodic oscil-
lations, and a clutter of points is observed for a chaotic signal.78
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FIG. 7. Poincaré sections or first return maps of the acoustic pressure oscillations
during (a) stable operation in test A, (b) aperiodic portion of intermittency in test
D, (c) periodic portion of intermittency in test E, and (d) thermoacoustic instability
of test E.

Also, if the consecutive dots traced in the return map of period-
n oscillations are joined, it results in the trajectory of a n-sided
polygon.

The aperiodic oscillations [see Figs. 7(a) and 7(b)] during sta-
ble operation and intermittency show a clutter of trajectories without
exhibiting any specific pattern. However, for periodic oscillations
[Figs. 7(c) and 7(d)] during both intermittency and thermoacous-
tic instability, we observe the random occurrence of period-3 and
period-4 oscillations as shown by triangles (I-II-III) and quadrilat-
erals (1-2-3-4), respectively, in their first return maps. This further
suggests that the state of thermoacoustic instability is nontrivial and
is not the same as the period-1 limit cycle oscillations, which is usu-
ally observed for gas turbine engines. It is particularly interesting to
note that a similar switching between period-2 and period-3 limit
cycle dynamics have been reported recently for a full-scale solid
rocket motor.40 At this juncture, we must note that caution must
be exercised while applying tools designed to detect conventional
period-1 limit cycle oscillations as they might fail for such complex
period-3 and period-4 oscillations.

D. Recurrence plots

The phase portraits of high-dimensional attractors are usually
visualized by projecting them into the lower dimensions. However,
a lot of information will be lost when the phase space is con-
densed into lower dimensions. Eckmann et al.63 proposed a visual
representation tool, known as recurrence plot that enables us to
investigate the behavior of n-dimensional phase space trajectory
through a two-dimensional representation of its recurrences. The
recurrence plot contains unique patterns for each kind of oscillation.
For example, periodic oscillations are represented by continuous
diagonal lines because the trajectory of such signals revisits roughly

the same region of phase space in equal intervals of time. For ran-
dom signals, we obtain a grainy structure in the recurrence plot.
For chaotic signals, unlike random signal, one would obtain isolated
short lines parallel to the main diagonal line.79 For a detailed descrip-
tion on recurrence plots, we encourage the reader to see Marwan et
al.80

Recurrence plots (RPs) for the acoustic pressure oscillations
during the stable operation, intermittency (both aperiodic and peri-
odic epochs), and thermoacoustic instability are shown in Fig. 8.
The black patches during the occurrence of aperiodic oscillations in
Figs. 8(a) and 8(b) correspond to the trajectory trappedwithin a small
region in the phase space. The short (or broken) lengths of diago-
nal lines in RP [see the zoomed inset in Figs. 8(a) and 8(b)] during
both stable operation and aperiodic region of intermittency imply
deterministic behavior and could possibly suggest chaotic dynam-
ics for the aperiodic oscillations. However, dedicated tests have to
be performed before confirming chaotic dynamics. The recurrence
plots during periodic oscillations of intermittency [Fig. 8(c)] and that
of thermoacoustic instability [Fig. 8(d)] show continuous diagonal
lines, indicating strong deterministic characteristics in the dynamics.
However, during the periodic portion of intermittency, the diago-
nal lines are relatively broken due to the gradual decrease in the
amplitude of oscillations in the signal.

E. Multifractal analysis

Many complex signals exhibiting aperiodic oscillations contain
certain structural characteristics, which are difficult to be captured by
various tools discussed so far. Fractal theory can be used to describe
such complex signals that are composed of multiple time scales. By
applying fractal analysis to thermoacoustic systems, Nair and Sujith47

showed that the stable operation (i.e., a state of combustion noise)
in a turbulent combustor has multifractal features and these multi-
fractal signatures vanish at the onset of thermoacoustic instability.
By following their approach, we study the multifractal behavior of
acoustic pressure oscillations observed in the model liquid rocket
combustor.

In Fig. 9(a), we plot the variation of generalized Hurst expo-
nents with the variation in the order-q for different dynamical states
observed during the onset of thermoacoustic instability. We notice
that, during stable operation and intermittency, the large-scale fluc-
tuations and small scale fluctuations scale differently as the variation
of H(q) shows a different trend for both the states. Contrary to this,
H(q) shows a negligible change with variation in q during thermoa-
coustic instability, indicating the existence of a single scale during this
state.

Furthermore, we observe a nonlinear variation of the mass
exponents, τ(q), with scaling order q in Fig. 9(b) for all the states
except thermoacoustic instability. Generally, a linear and nonlinear
variation of τ(q) represents monofractal andmultifractal behavior of
the signal, respectively.71 This indicates that the states of stable oper-
ation and intermittency exhibit multifractal behavior that reduces to
a monofractal-like behavior during thermoacoustic instability. Also,
the resulting multifractal spectra shown in Fig. 9(c) for stable oper-
ation and intermittency exhibit a wide spectrum spanning several
values of singularity exponents (α). Thus, the variation of general-
izedHurst exponents,mass exponents, and themultifractal spectrum
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FIG. 8. Recurrence plots (RP) for the dynamics of (a) stable operation (along with a zoomed inset) in test A, (b) aperiodic epoch of intermittency (along with its zoomed inset)
in test D, (c) periodic epoch of intermittency in test E, and (d) thermoacoustic instability of test E. The recurrence plots are obtained for the corresponding time interval depicted
for each dynamical state (a)–(d) to appropriately detect the patterns. A threshold of 20% of the maximum size of the corresponding attractor is utilized. The parameters such
as time delay and embedding dimension are the same as that discussed in Sec. IV B.

strongly point out to the presence of multifractal nature in these
oscillations.

During thermoacoustic instability, this multifractality is lost.
This loss of multifractality is evident from the invariant nature of
H(q), the linear variation of τ(q) with q, and the collapse of the mul-
tifractal spectrum to a shorter arc centered around a nonzero α. This
nonzero value of α and the noninteger value of the H(q) further
confirm the monofractal-like behavior of acoustic pressure signals
during thermoacoustic instability. Such a monofractal behavior for
periodic signals has been shown previously for plasma signals.81

Additionally, the multifractal spectra during stable operation
and intermittency display a right skewed behavior [Fig. 9(c)].
This right skewness suggests that the multifractal dynamics of the
pressure oscillations is determined predominantly by the small-scale

fluctuations. It is also reflected in the reduction in the slope of gen-
eralized Hurst exponents for positive order q, indicating that the
qth-order rootmean square values are insensitive to the local fluctua-
tions with large magnitudes.71Having studied the dynamical features
of acoustic pressure oscillations during the onset of thermoacoustic
instability, we now proceed to characterize the dynamical transitions
observed in the system dynamics of liquid rocket combustor
quantitatively.

F. Measures to distinguish different dynamical states

We have shown that a thermoacoustic system can exhibit dif-
ferent dynamical states such as stable operation, intermittency, and
thermoacoustic instability. Ameasurewhich can distinguish between
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FIG. 9. Multifractal analysis is performed on the stable operation (•) in test A, intermittency (+) in test E, and thermoacoustic instability (H) of test E. (a) Generalized Hurst
exponents, (b) mass exponents, and (c) multifractal spectrum are plotted to characterize the multifractal features of the various dynamics observed in the rocket combustor.
The MFDFA method of a third order polynomial fit and a q range of−5 to 5 is used. The window size of 2–10 cycles of 2650 Hz oscillations is used, as described in Sec. II C.

these different dynamical states would be an ideal tool for engi-
neers and simulators to help in assessing the stability of a rocket
combustor.

In Fig. 10, we show several measures that exhibit a quantitative
change during the transition from stable operation to thermoacoustic
instability. In Fig. 10(a), we plot the time series of acoustic pres-
sure without removing the mean pressure, during test C containing
the transition from stable operation to thermoacoustic instability via
intermittency, for which the measures are evaluated. The variation of
conventionalmeasures employed to detect the transition to thermoa-
coustic instability such as root mean square value [Fig. 10(b)], the
variance of the oscillations [Fig. 10(c)], and magnitude of the domi-
nant frequency from the amplitude spectrum [Fig. 10(d)] is plotted.
The entire time series is split into 100 segments of 6ms interval each
for plotting Figs. 10(b) and 10(c). Due to the compromise in the fre-
quency resolution with shorter window size, we use a relatively larger
window interval of 55.6ms,which resulted in 8 segments of the actual
time series, for plotting Fig. 10(d).

The variation of both root mean square and variance of the
acoustic pressure oscillations increases progressively as the system
dynamics approaches thermoacoustic instability. The nonmonotonic
trend in the variation of these measures prior to thermoacoustic
instability is due to the presence of intermittency. The magnitude of
the dominant frequency in the amplitude spectrum calculated with a
frequency resolution of 18Hz exhibits a gradual variation from stable
operation to thermoacoustic instability. However, to determine the
onset of thermoacoustic instability from these measures, an a priori
knowledge of the expected amplitude levels out of the combustor is
required. Armed with the knowledge of the amplitude levels during
the onset of thermoacoustic instability in a combustor, one can deter-
mine whether thermoacoustic instability is attained or not. However,
in most scenarios, the amplitude levels in a combustor are difficult to
predict as they depend highly on the operating conditions, working
fluids, etc. Even if this is overlooked, using these measures, we can-
not robustly distinguish the transition between the states of stable
operation, intermittency, and thermoacoustic instability.

In an attempt to overcome the shortcomings of these conven-
tional measures, Orth et al.43 introduced the maximum of cross cor-
relation (CCmax) as ameasure to distinguish between stable operation

and thermoacoustic instability. CCmax, bounded between −1 and 1,
captures the highest similarity between two time series. In Fig. 10(e),
we show the variation of the maximum value of the cross correla-
tion (CCmax) between the acoustic pressure signals acquired at two
different locations in the combustor [labeled as “Fuel Manifold Pres-
sure” and “Right Wall Pressure” in Fig. 1(b)]. In this study, we find
that CCmax is unable to distinguish between intermittency and ther-
moacoustic instability as the values of CCmax are nearly the same
during intermittency and thermoacoustic instability. Next, we show
the variation in the recurrence based measure: the ratio of determin-
ism to recurrence rate (RATIO) in Fig. 10(f).We note that the value of
RATIO starts decreasing with the onset of intermittency and decays
to almost zero during thermoacoustic instability. CCmax and RATIO
are plotted for a window size of 7.5ms corresponding to 20 cycles of
oscillations. The robustness of RATIO in distinguishing the different
dynamical states for a range of recurrence thresholds is discussed
in Appendix A.

Finally, the variation of fractal measures, Hurst exponent (H)
in Fig. 10(g) and multifractal spectrum width (α2 − α1) in Fig. 10(h)
are plotted to distinguish the dynamical transitions across stable
operation, intermittency, and thermoacoustic instability. Here, α2

and α1 are the extreme values of the singularity exponents cov-
ered by the multifractal spectrum. The multifractal spectrum width
(α2 − α1) is calculated by measuring the range of singularity expo-
nents covered by the spectrum. For the multifractal measures, a
window size of 37.6ms corresponding to 100 cycles of oscillations
with an overlap of 90 cycles is used. The multifractal spectrum width
drops from near 0.4 to lower than 0.02 during the onset of thermoa-
coustic instability. However, the presence of intermittency cannot be
detected by this measure. The value of Hurst exponent (H) varies
from around 0.5 during stable operation to less than 0.1 during the
onset of thermoacoustic instability. During intermittency, if the value
ofH drops below 0.1, this model rocket combustor can be considered
to be in the proximity of an impending thermoacoustic instability.
However, the critical Hurst exponent below which thermoacous-
tic instability is imminent may vary from system to system. Hence,
RATIO, Hurst exponent, and multifractal spectrum width collec-
tively can be used to distinguish the combustor operation across all
three states for a rocket combustor, as they possess fixed values for
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FIG. 10. (a) The time series of acoustic pressure (p) during test C containing the transition from stable operation to thermoacoustic instability via intermittency. The variation
of (b) root mean square value (p′

rms), (c) the variance of the oscillations (p′
var), (d) the magnitude of the dominant frequency from the amplitude spectrum (|Amax|), (e)

maximum of cross correlation (CCmax ), (f) ratio of determinism to recurrence rate (RATIO), (g) Hurst exponent (H), and (h) multifractal spectrum width (α2 − α1) is plotted to
distinguish the dynamical transitions across stable operation, intermittency, and thermoacoustic instability. The measures are based on the fluctuations (p′) about the mean
pressure, rather than p itself. The dashed vertical lines demarcating the three dynamical states are marked by visual inspection.

a particular type of dynamics, unlike traditional measures such as
rms value, amplitude of frequency peaks, and variance of the oscil-
lations. The statistical significance and robustness of the multifractal
measures for different parameters are described in Appendix B.

Next, in Fig. 11, we show that the samemeasure RATIO can also
be used to detect the transitions from aperiodic to periodic oscilla-
tions, and vice versa, in a signal [see Fig. 11(a)]. We compare the
efficacy ofRATIO as compared toCCmax in detecting such transitions.
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We also show the variation of DET and RR in Figs. 11(c) and 11(d),
respectively.We observe that through a windowed variation ofCCmax

[Fig. 11(b)] and RATIO [Fig. 11(e)], we can detect the switching
between periodic and aperiodic behavior during intermittency. Here,
CCmax is obtained by cross correlating the same two pressure sig-
nals used to calculate CCmax plotted in Fig. 10. Zoomed views of the
normalized pressure time series of the two signals (p′

n,fuel and p′
n) are

plotted for an aperiodic epoch of intermittency, a periodic epoch of
intermittency, and thermoacoustic instability in Figs. 11(i)–11(iii).
A window size of 2.3ms corresponding to two hundred slices of the
actual time series is used to calculate allmeasures in Fig. 11. A smaller
window size is necessary to detect the aperiodic-periodic transitions.

DET, RR, and subsequently, RATIO are obtained by calculating the
recurrences of the phase trajectories within a threshold of 20% of the
maximum size of the corresponding attractor. The time delay and
embedding dimension are calculated for the entire time series and
are found to be 0.196ms and 10, respectively.

We observe an uncharacteristically higher value of DET for
the aperiodic oscillations compared to other combustors82. The
value of DET for both aperiodic and periodic dynamics in this
data [see Fig. 11(c)] remains nearly the same. The value of DET ∼

1 suggests the possibility of high deterministic features80 in the
aperiodic oscillations of the rocket combustor dynamics. This
high determinism value could be a result of the dynamics of

FIG. 11. The time series of (a) acoustic pressure (p) is plotted during the transition from intermittency to thermoacoustic instability for test E. The variation of (b) maximum
of cross correlation (CCmax), (c) determisim (DET), (d) recurrence rate (RR), and (e) ratio of determinism and recurrence rate (RATIO) to detect the aperiodic to periodic
transitions, and vice versa. The blue shaded region corresponds to the long aperiodic epoch of intermittency, the green shaded region corresponds to the periodic epoch of
intermittency, and the red shaded region corresponds to the epoch of thermoacoustic instability. Zoomed views of normalized pressure signals at the right wall (p′

n) and fuel
manifold (p′

n,fuel ) locations are shown for (i) aperiodic epoch of intermittency, (ii) periodic epoch of intermittency, and (iii) thermoacoustic instability, respectively.
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the flame front, arising from the globally unstable hydrodynamic
field.83

On the other hand, the value of RR exhibits a significant
increase during the transition from aperiodic to periodic oscillations
[see Fig. 11(d)]. Hence, RATIO exhibits a higher value for aperiodic
oscillations and a lower value for periodic oscillations. On the other
hand, forCCmax, we expect a value close to 0 for aperiodic oscillations
with low similarity and a higher value close to 1 for periodic oscil-
lations with large similarity. The blue and green shaded regions in
Figs. 11(a)–11(e) represent an aperiodic epoch and a periodic epoch,
respectively, during intermittency. During the aperiodic epoch, we
observe that CCmax shows lower values, while RATIO exhibits larger
values. We observe the opposite behavior in both RATIO and CCmax

during the periodic epoch of intermittency. During thermoacoustic
instability (see red shaded region in Figs. 11(a)–11(e)], the values of
both these measures are largely invariant, denoting sustained peri-
odic behavior in the system. For this state, we observe that the values
of both CCmax and RATIO are low. The lower value of CCmax is unex-
pected during thermoacoustic instability as the dynamics during this
state is periodic.

The reason behind the lower value of CCmax for both periodic
and aperiodic oscillations can be understood from the overlapped
plot of the two pressure signals used for the calculation of CCmax

[see Figs. 11(i)–11(iii)]. To aid us in detecting the similarity, the
two time series (p′

n,fuel and p′
n) are normalized. For the aperiodic

epoch of intermittency, we do not observe any similarity between
the two signals [Fig. 11(i)]. During the periodic epoch of intermit-
tency [Fig. 11(ii)], we observe that the two signals follow a nearly
similar trend at a finite nonzero time lag, leading to higher values
in CCmax. On the contrary, during the state of thermoacoustic insta-
bility [Fig. 11(iii)], we notice that the time series of p′

n,fuel contains
significantly higher frequencies, whereas that of p′

n contains lower
frequency corresponding to fundamental mode of the combustor
(2650Hz). This difference in the oscillations of acoustic pressure at
different locations contribute to lower the value of CCmax. Unlike
CCmax, we observe that the lower values of RATIO correctly cap-
tures the periodic oscillations during thermoacoustic instability as
well as during intermittency. This suggests that using RATIO is better
than CCmax to unambiguously determine the periodic-aperiodic-
periodic transitions in the acoustic pressure signal observed during
the onset of thermoacoustic instability. We also remark that RR can
be a good candidate to distinguish the aperiodic-periodic transitions
if there is a significant variation in RR during the aperiodic-periodic
transitions.

V. CONCLUSIONS

The dynamics of acoustics pressure oscillations during the
transition from stable operation to thermoacoustic instability in
a model multielement liquid rocket combustor is analyzed. We
observe that the transition from small amplitude stable opera-
tion to large amplitude thermoacoustic instability occurs through
intermittency. Intermittency is a dynamical state wherein bursts of
high amplitude periodic oscillations appear amidst epochs of low
amplitude aperiodic oscillations, distributed in a seemingly random
manner.

The waveform during thermoacoustic instability is highly non-
linear, consisting of typically steepened pressure wavefronts leading
to the formation of shockwaves, and is significantly different from the
sinusoidal limit cycle oscillations typically seen in gas turbine com-
bustors. As a result, we obtain a characteristic trefoil knotlike shape of
the phase space attractor during thermoacoustic instability. Further-
more, we detect the dynamical switching between possibly period-3
and period-4 oscillations in an apparently random manner during
thermoacoustic instability and the periodic epochs of intermittency.
Such complex limit cycle dynamics are seldom seen in gas turbine
combustors.

Through a suitable multifractal analysis, we detect the collapse
of multifractality during the onset of thermoacoustic instability. We
present a recurrence based measure (RATIO) and two fractal based
measures (multifractal spectrumwidth and the Hurst exponent) that
can be used to distinguish between different states of combustor
operation. We found that these measures are more robust than the
existing measures such as root mean square of the oscillations, spec-
tral amplitude, maximum of cross correlation, etc., in distinguishing
the dynamical state of a rocket engine. The measures illustrated in
this study can be used to validate the CFD multifidelity simulations
used for optimizing the stability and performance metrics of the
rocket combustor. Such an approach can reduce the developmental
time scales of a rocket engine. To summarize, the signals pertaining to
rocket combustors are different from their gas turbine counterparts
and other derived laboratory combustors due to the significant con-
tribution of nonlinearities in the rocket combustor. Hence, extreme
care must be exercised while extending the results obtained for gas
turbine combustors to rocket combustors.
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APPENDIX A: ROBUSTNESS OF RECURRENCE

MEASURE WITH THE SELECTION OF RECURRENCE

THRESHOLD

The temporal variation of the recurrence measure, RATIO, for
different recurrence thresholds (ǫ) is shown in Fig. 12. The recur-
rence thresholds are selected as a proportion of themaximum size (s)
of the phase space attractor of acoustic pressure oscillations recon-
structed using Takens’ delay embedding theorem for test C. Owing
to the dependence of the magnitudes of the determinism (DET) and
recurrence rate (RR), the absolute values of RATIO vary during the
transition. However, the underlying trend required to distinguish the
different dynamical states remains intact for the all the recurrence
thresholds shown.
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FIG. 12. The variation of RATIO with time for different recurrence thresholds is shown for test C. The selected recurrence thresholds are 12%, 16%, 20%, and 24% of the
size (s) of the phase space attractor. The dashed lines demarcate stable operation, intermittency, and thermoacoustic instability. A nonoverlapping window size of 7.5 ms is
translated in time.

APPENDIX B: STATISTICAL ANALYSIS OF

MULTIFRACTAL ANALYSIS

Prior to performing the multifractal analysis, we need to esti-
mate the range of scales necessary to capture the multifractal charac-
teristics of the acoustic pressure oscillations. As explained in Sec. II B,
we plot the structure function (see Fig, 13) against the range of
binarized scales necessary to capture the small-scale and large-scale
fluctuations. From the plot, we examine the trends for the acoustic
pressure fluctuations during the dynamical states of stable operation,
intermittency, and thermoacoustic instability. We observe a linear
regime for the range of scales from 2 to 10 cycles of the dominant
instability frequency (2650 Hz) for all the dynamical states. Hence,
the multifractal measures such as Hurst exponent (H) and multi-
fractal spectrum width (α2 − α1) are computed with this range of
scales.

In Fig. 14, we show the temporal variation of Hurst exponent
(H) estimated for test C. The error bars are estimated with a confi-
dence of 90% based on the goodness of the fit to measure the slope
in the plot of structure function. We observe that H can be used to
robustly demarcate the onset of thermoacoustic instability from the
states of stable operation and intermittency.

FIG. 14. The variation of Hurst exponent (H) against time for the test C during the transition from stable operation to thermoacoustic instability via intermittency. The error
bars indicate 90% confidence in H. A window size of 37.7 ms is varied in time with an overlap of 33.9 ms and q-range of 2 to 10 cycles of 2650 Hz is used.

FIG. 13. The variation of structure function with scale for the acoustic pressure
oscillations acquired during test C for the dynamical states of stable operation
(green curve), intermittency (orange curve), and thermoacoustic instability (red
curve). For each dynamical state, the scales ranging from 2 to 10 cycles (blue
dots) are fitted with a linear line (grey dashed line).
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FIG. 15. The variation of the width of the multifractal spectrum (α2 − α1) with time for different q-range is shown for test C. A window size of 37.7 ms is varied in time with
an overlap of 33.9 ms. The dashed lines demarcate stable operation, intermittency, and thermoacoustic instability.

The sensitivity of q-range in the computation of the width of the
multifractal spectrum (α2 − α1) is plotted for test C in Fig. 15. Here,
we observe that α2 − α1 is fairly robust in exhibiting similar trends in
the variation from stable operation to thermoacoustic instability via
intermittency.
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