Header menu link for other important links
Dynamic environment coupling induced synchronized states in coupled time-delayed electronic circuits
Published in World Scientific Publishing Co. Pte Ltd
Volume: 24
Issue: 5
We experimentally demonstrate the effect of dynamic environment coupling in a system of coupled piecewise linear time-delay electronic circuits with mutual and subsystem coupling configurations. Time-delay systems are essentially infinite-dimensional systems with complex phase-space properties. Dynamic environmental coupling with mutual coupling configuration has been recently theoretically shown to induce complete (CS) and inverse synchronizations (IS) [Resmi et al., 2010] in low-dimensional dynamical systems described by ordinary differential equations (ODEs), for which no experimental confirmation exists. In this paper, we investigate the effect of dynamic environment for the first time in mutual as well as subsystem coupling configurations in coupled time-delay differential equations theoretically and experimentally. Depending upon the coupling strength and the nature of feedback, we observe a transition from asynchronization to CS via phase synchronization and from asynchronization to IS via inverse-phase synchronization in both coupling configurations. The results are corroborated by snapshots of the time evolution, phase projection plots and localized sets as observed from the oscilloscope. Further, the synchronization is also confirmed numerically from the largest Lyapunov exponents, correlation of probability of recurrence and correlation coefficient of the coupled time-delay system. We also present a linear stability analysis and obtain conditions for different synchronized states. © 2014 World Scientific Publishing Company.
About the journal
JournalInternational Journal of Bifurcation and Chaos
PublisherWorld Scientific Publishing Co. Pte Ltd
Open AccessNo
Authors (4)