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Abstract

In this paper, we probe the validity of the tunnelling interpretation

that is usually called forth in literature to explain the phenomenon of parti-

cle production by time independent classical electromagnetic backgrounds.

We show that the imaginary part of the effective lagrangian is zero for a

complex scalar field quantized in a time independent, but otherwise arbi-

trary, magnetic field. This result implies that no pair creation takes place

in such a background. But we find that when the quantum field is decom-

posed into its normal modes in the presence of a spatially confined and time

independent magnetic field, there exists a non-zero tunnelling probability

for the effective Schrödinger equation. According to the tunnelling inter-

pretation, this result would imply that spatially confined magnetic fields

can produce particles, thereby contradicting the result obtained from the

effective lagrangian. This lack of consistency between these two approaches

calls into question the validity of attributing a non-zero tunnelling proba-

bility for the effective Schrödinger equation to the production of particles

by the time independent electromagnetic backgrounds. The implications

of our analysis are discussed.
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1 Introduction

The phenomenon of pair creation by classical electromagnetic backgrounds was

first studied by Schwinger more than four decades ago. In his classic paper,

Schwinger considered a quantized spinor field interacting with a constant external

electromagnetic background [1]. Obtaining an effective lagrangian by integrating

out the degrees of freedom corresponding to the quantum field, he showed that

the effective lagrangian had an imaginary part only when (E2−B2) > 0, where E

and B are the constant electric and magnetic fields respectively (also see [2]). The

appearance of an imaginary part in the effective lagrangian implies an instabil-

ity of the vacuum and Schwinger attributed the cause of this instability to the

production of pairs corresponding to the quantum field by the electromagnetic

background. The imaginary part of the effective lagrangian, Schwinger concluded,

should be interpreted as the number of pairs that have been produced, per unit

four-volume, by the external electromagnetic field.

Though attempts have been made in literature to obtain the effective la-

grangian for a fairly non-trivial electromagnetic field (see for instance refs. [3,

4, 5, 6, 7]), its evaluation for an arbitrary vector potential proves to be an up-

hill task. Due to this reason the phenomenon of particle production in classical

electromagnetic backgrounds has been repeatedly studied in literature by the

method of normal mode analysis. In this approach, the normal modes of the

quantum field are obtained by solving the wave equation it satisfies for the given

electromagnetic background in a particular gauge. The coefficients of the posi-

tive frequency normal modes of the quantum field are then identified to be the

annihilation operators. The evolution of these operators therefore follow the evo-

lution of the normal modes. Then, by relating these operators defined in the

asymptotic regions (either in space or in time) the number of particles that have

been produced by the electromagnetic background can be computed.

Consider an electromagnetic background that can be represented by a time

dependent gauge. If we choose to study the evolution of the quantum field in such

a gauge, then a positive frequency normal mode of the quantum field at late times

will, in general, prove to be a linear superposition of the positive and negative

frequency modes defined at early times. The coefficients in such a superposition

are the Bogolubov coefficients α and β. A non-zero Bogolubov coefficient β would

then imply that the in-vacuum state is not the same as the out-vacuum state.

This in turn implies that the in-out transition amplitude is less than unity which

can be attributed to the excitation of the modes of the quantum field by the
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electromagnetic background [8, 9, 10, 11, 12, 13]. These excitations manifest

themselves as real particles corresponding to the quantum field.

On the other hand, consider an electromagnetic background that can be

described by a space dependent gauge (by which we mean a gauge that is com-

pletely independent of time). If the evolution of the quantum field is studied in

such a gauge, then due to the lack of dependence on time, the Bogolubov coeffi-

cient β proves to be trivially zero. This could then imply that the electromagnetic

background which is being considered does not produce particles.

An interesting situation arises when the same electromagnetic field can be

described by a (purely) space dependent gauge as well as a (purely) time de-

pendent gauge. If we choose to study the evolution of the quantum field in the

time dependent gauge, in general, β will prove to be nonzero thereby implying

(as discussed above) that particles are being produced by the electromagnetic

background. But, in the space dependent gauge β is trivially zero thereby dis-

agreeing with result obtained in the time dependent gauge. Therefore, to obtain

results that are gauge invariant, the phenomenon of particle production has to

be somehow ‘explained’ in the space dependent gauge. In literature, a ‘tun-

nelling interpretation’ is usually invoked to explain the phenomenon of particle

production in such a situation [14, 15, 16, 17, 18]. In this approach, an effective

Schrödinger equation is obtained after the quantum field is decomposed into nor-

mal modes in the space dependent gauge. The non-zero tunnelling probability

for this Schrödinger equation is then attributed to the production of particles by

the electromagnetic background.

The discussion in the above paragraph can be illustrated by the following

well known, but instructive, example. Consider a constant electric field given

by E = E x̂, where E is a constant and x̂ is the unit vector along the positive

x-axis. This electric field can be described either by the time dependent gauge

Aµ
1 = (0,−Et, 0, 0) or by the space dependent gauge Aµ

2 = (−Ex, 0, 0, 0). In the

gauge Aµ
1 , due to the time dependence, the positive frequency normal modes of

the quantum field at t = +∞ are related by a non-zero Bogolubov coefficient β

to the positive frequency modes at t = −∞. The quantity |β|2 then yields the

number of particles that have been produced in a single mode of the quantum

field at late times in the in-vacuum [19, 20]. But, if the evolution of the quantum

field is studied in the gauge Aµ
2 , because of time independence, β proves to be

zero thereby disagreeing with the result obtained in the gauge Aµ
1 . The tunnelling

interpretation can be invoked in such a situation to explain particle production

in the gauge Aµ
2 . In this gauge, after the normal mode decomposition of the
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quantum field, an effective Schrödinger equation is obtained along the x-direction.

The non-zero tunnelling probability, |T |2, for this Schrödinger equation is then

interpreted as the number of particles that have been produced in a single mode

of the quantum field [19, 20]. The tunnelling probability |T |2 evaluated in the

gauge Aµ
2 , in fact, exactly matches the quantity |β|2 obtained in the gauge Aµ

1 .

Also, these two quantities agree with the pair creation rate obtained by Schwinger

from the imaginary part of the effective lagrangian.

The fact that the quantities |β|2 and |T |2 agree, not only with each other

but also with the pair creation rate obtained from the effective lagrangian, for

the case of a constant electric field has given certain credibility to the tunnelling

interpretation. Our aim, in this paper, is to probe the validity of the tunnelling

interpretation.

Consider an arbitrary electromagnetic background that can be described by

a space dependent gauge. Also assume that when the evolution of the quantum

field is studied in such a gauge, there exists a non-zero tunnelling probability for

the effective Schrödinger equation. Can such a non-zero tunnelling probability be

always interpreted as particle production? We attempt to answer this question in

this paper by comparing the results obtained from the effective lagrangian with

those obtained from the tunnelling approach. We carry out our analysis for a

spatially varying, time independent magnetic field when it is described by a space

dependent gauge. We find that there exists—in general—a lack of consistency

between the results obtained from the tunnelling approach and those obtained

from the effective lagrangian. This inconsistency clearly calls into question the

validity of the tunnelling interpretation as it is presently understood in literature.

This paper is organized as follows. In section 2, we show that the imaginary

part of the effective lagrangian for an arbitrary time independent background

magnetic field is zero. In section 3, we calculate the tunnelling probability, which

happens to be non-zero, for a particular spatially confined and time independent

magnetic field when it is represented by a space dependent gauge. Finally, in

section 4 we discuss the implications of our analysis to the study of particle

production in time independent electromagnetic and gravitational backgrounds.
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2 Effective lagrangian for a time independent

magnetic field background

The system we consider in this paper consists of a complex scalar field Φ inter-

acting with an electromagnetic field represented by the vector potential Aµ. It is

described by the lagrangian density

L(Φ, Aµ) = (∂µΦ+ iqAµΦ) (∂
µΦ∗ − iqAµΦ∗)−m2ΦΦ∗ −

1

4
F µνFµν , (1)

where q and m are the charge and the mass associated with a single quantum of

the complex scalar field, the asterisk denotes complex conjugation and

Fµν = ∂µAν − ∂νAµ. (2)

The electromagnetic field is assumed to behave classically, hence Aµ is just a c-

number while the complex scalar field is assumed to be a quantum field so that Φ

is an operator valued distribution. We will also assume that the electromagnetic

field is given to us apriori, i.e. we will not take into account the backreaction of

the quantum field on the classical background. (Kiefer et. al. show in ref. [21]

that the semiclassical domain as envisaged here does exist; also see ref. [22] in this

context. The issue of backreaction on the electromagnetic background has been

addressed in refs. [23, 24, 25].) In such a situation, we can obtain an effective

lagrangian for the classical electromagnetic background by integrating out the

degrees of freedom corresponding to the quantum field as follows

exp i
∫

d4xLeff (Aµ) ≡
∫

DΦ
∫

DΦ∗ exp i
∫

d4xL(Φ, Aµ), (3)

where we have set h̄ = c = 1 for convenience. The effective lagrangian can be

expressed as

Leff = Lem + Lcorr, (4)

where Lem is the lagrangian density for the free electromagnetic field, the third

term in the lagrangian density (1), and Lcorr is given by

exp i
∫

d4xLcorr(Aµ)

=
∫

DΦ
∫

DΦ∗ exp i
∫

d4x
{

(∂µΦ + iqAµΦ) (∂
µΦ∗ − iqAµΦ∗)

−m2ΦΦ∗

}

.(5)
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Integrating the action for the scalar field in the above equation by parts and

dropping the resulting surface terms, we obtain that

exp i
∫

d4xLcorr(Aµ) =
∫

DΦ
∫

DΦ∗ exp−i
∫

d4x Φ∗D̂Φ =
(

det D̂
)−1

, (6)

where the operator D̂ is given by

D̂ ≡ DµD
µ +m2 and Dµ ≡ ∂µ + iqAµ. (7)

The determinant in equation (6) can be expressed as follows

exp i
∫

d4xLcorr =
(

det D̂
)−1

= exp−Tr(ln D̂) = exp−
∫

d4x 〈t,x| ln D̂ |t,x〉,

(8)

and in arriving at the last expression, following Schwinger, we have chosen the

set of basis vectors |t,x〉 to evaluate the trace of the operator ln D̂. From the

above equation it is easy to identify that

Lcorr = i 〈t,x| ln D̂|t,x〉. (9)

Using the following integral representation for the operator ln D̂,

ln D̂ ≡ −
∫

∞

0

ds

s
exp−i(D̂ − iǫ)s (10)

(where ǫ→ 0+), the expression for Lcorr can be written as

Lcorr = −i
∫

∞

0

ds

s
e−i(m2−iǫ)sK(t,x, s|t,x, 0), (11)

where

K(t,x, s | t,x, 0) = 〈t,x| e−iĤs |t,x〉 and Ĥ ≡ DµD
µ. (12)

That is, K(t,x, s | t,x, 0) is the kernel for a quantum mechanical particle (in 4 di-

mensions) described by the hamiltonian operator Ĥ. The variable s, that was

introduced in (10) when the operator ln D̂ was expressed in an integral form,

acts as the time parameter for the quantum mechanical system. (The integral

representation for the operator ln D̂ we have used above is divergent in the lower

limit of the integral, i.e. near s = 0. This divergence is usually regularized in

field theory by subtracting from it another divergent integral, viz. the integral

representation of an operator ln D̂0, where D̂0 = (∂µ∂µ +m2), the operator cor-

responding to that of a free quantum field. That is, to avoid the divergence, the

integral representation for ln D̂ is actually considered to be

ln D̂ − ln D̂0 ≡ −
∫

∞

0

ds

s

(

exp−i(D̂ − iǫ)s − exp−i(D̂0 − iǫ)s
)

. (13)
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Therefore, in what follows, the operator ln D̂ should be considered as ln D̂− ln D̂0

though it will not be written so explicitly.)

Now, consider a background electromagnetic field described by the vector

potential

Aµ = (0, 0, A(x), 0), (14)

where A(x) is an arbitrary function of x. This vector potential does not produce

an electric field but gives rise to a magnetic field B = (dA/dx) ẑ, where ẑ is the

unit vector along the positive z-axis. According to the Maxwell’s equations, in

the absence of an electric field, the magnetic field is related to the current j(x)

as follows

∇×B = j. (15)

Then, the current that can give rise to the time independent magnetic field we

consider here is given by

j = −

(

d2A

dx2

)

ŷ, (16)

where ŷ is the unit vector along the positive y-axis. If we assume that j is finite

and continuous everywhere and also vanishes as |x| → ∞, then the magnetic field

we consider here can be physically realised in the laboratory.

The operator Ĥ corresponding to the vector potential (14) is given by

Ĥ ≡ ∂t
2 −∇2 + 2iqA∂y + q2A2. (17)

Then, the kernel for the quantum mechanical particle described by the hamilto-

nian above can be formally written as

K(t,x, s | t,x, 0) = 〈t,x| exp−i(∂t
2 −∇2 + 2iqA∂y + q2A2)s |t,x〉. (18)

Using the translational invariance of the hamiltonian operator Ĥ along the time

coordinate t and the spatial coordinates y and z, we can express the above kernel

as follows

K(t,x, s | t,x, 0) =
∫

dω

2π

∫

dpy
2π

∫

dpz
2π

〈x| exp−i(−ω2−d2x+(py−qA)
2+pz

2)s |x〉.

(19)

Performing the ω and pz integrations, we obtain that

K(t,x, s | t,x, 0) =
1

4πs

∫

dpy
2π

〈x| e−iĜs |x〉 where Ĝ ≡ −d2x + (py − qA)2.

(20)
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The quantity 〈x| e−iĜs |x〉 is then the kernel for the one dimensional quantum

mechanical system described by the effective hamiltonian operator Ĝ. It can

expressed, using the Feynman-Kac formula, as

〈x| exp−iĜs |x〉 =
∑

E

|ΨE(x)|
2 e−iEs, (21)

where ΨE is the eigenfunction of the operator Ĝ corresponding to an eigenvalue

E, i.e.

ĜΨE ≡ (−d2x + (py − qA)2)ΨE = EΨE, (22)

so that K(t,x, s | t,x, 0) reduces to

K(t,x, s | t,x, 0) =
1

4πs

∫

dpy
2π

∑

E

|ΨE(x)|
2 e−iEs. (23)

(It is assumed that the summation over E stands for integration over the relevant

range when E varies continuously.) Since the potential term, (py−qA(x))
2, in the

hamiltonian operator Ĝ is a positive definite quantity, the eigenvalue E can only

lie in the range (0,∞). Substituting the expression for K(t,x, s | t,x, 0) in (11),

we find that Lcorr is given by

Lcorr = −
i

4π

∫ dpy
2π

∑

E

|ΨE(x)|
2
∫

∞

0

ds

s2
e−i(m2+E−iǫ)s. (24)

Differentiating the above expression for Lcorr twice with respect to m2 (cf. [26])

and then carrying out the integration over the variable s, we obtain that

L
′′

corr =
∂2Lcorr

∂(m2)2
=

1

4π

∫

dpy
2π

∑

E

(

|ΨE(x)|
2

m2 + E − iǫ

)

. (25)

The quantity (m2 + E − iǫ)−1 in the above expression, can be written as

(

1

m2 + E − iǫ

)

= P
(

1

m2 + E

)

+ iπ δ(m2 + E), (26)

where P is the principal value of the corresponding argument. Since E is a

positive semi definite quantity, the argument of the δ-function above never reduces

to zero. Therefore the second term in the above expression vanishes with the

result that L
′′

corr is a real quantity thereby implying that L is also a real quantity.

In fact, integrating L
′′

corr twice with respect to m2, we find that Lcorr can be

expressed as

Lcorr =
1

4π

∫

dpy
2π

∑

E

|ΨE(x)|
2 α (lnα− 1), (27)
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where α = (m2 + E) > 0 and ǫ has been set to zero. Then, clearly Lcorr is a

real quantity. (To be rigorous, one has to take into account the two constants

of integration that will appear on integrating L
′′

corr with respect to m2 (see [26]),

but these constants are irrelevant for our arguments here.)

Though we are unable to evaluate the effective lagrangian for an arbitrary

time independent magnetic field in a closed form, we have been able to show

that it certainly does not have an imaginary part. Therefore we can unambigu-

ously conclude that time independent background magnetic fields do not produce

particles. This, of course agrees with Schwinger’s result for a constant (time in-

dependent) magnetic field background.

3 Tunneling probability in a time independent

magnetic field background

We shall now calculate the tunnelling probability for the a specific time indepen-

dent background magnetic field in a space dependent gauge. Consider the vector

potential

Aµ = (0, 0, B0L tanh(x/L), 0), (28)

where B0 and L are arbitrary constants. This vector potential does not produce

an electric field but gives rise to the following magnetic field

B = B0 sech
2(x/L) ẑ, (29)

where ẑ is the unit vector along the positive z-axis. The magnetic field B goes to

zero as |x| → ∞, i.e its strength is confined to an effective width L along the x-

axis. In the absence of an electric field, according to the Maxwell’s equation (15),

the magnetic field given by (29) can be produced by the current

j =
(

2B0

L

)

sech(x/L) tanh(x/L) ŷ, (30)

where, as before, ŷ denotes the unit vector along the positive y-axis. The current

j is finite and continuous everywhere and also goes to zero as |x| → ∞. Therefore

the magnetic field B given by (29) is physically realisable in the laboratory.

In an electromagnetic background, described by the vector potential Aµ,

the complex scalar field satisfies the following Klein-Gordon equation

(DµD
µ +m2)Φ = (∂µ + iqAµ) (∂µ + iqAµ)Φ = 0. (31)
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Substituting the vector potential (28) in the above equation, we obtain that

(∂2t −∇2 + 2iqB0L tanh(x/L)∂y + q2B2
0L

2 tanh2(x/L) +m2)Φ = 0. (32)

Since the vector potential (28) is dependent only on the spatial coordinate x, the

normal mode decomposition of the scalar field can be carried out as follows

Φωk⊥ = Nωk⊥e
−iωt eik⊥.x⊥ ψωk⊥(x), (33)

where Nωk⊥ is the normalisation constant, k⊥ ≡ (ky, kz) and x⊥ ≡ (y, z) . The

modes are normalized according to the scalar product

(Φωk⊥,Φω′k′⊥) = −i
∫

dΣµ
(

Φωk⊥(DµΦω′k′⊥)
∗ − Φ∗

ω′k′⊥
(DµΦωk⊥)

)

= δ(ω − ω′) δ(k⊥ − k′⊥), (34)

where dΣµ is a timelike hypersurface. Substituting the normal mode Φωk⊥ in (32),

we find that ψ satisfies the following differential equation

d2ψ

dρ2
+
(

ω2 − (ky − qB0L tanh ρ)2 − k2z −m2
)

L2 ψ = 0 (35)

where ρ = (x/L) and we have dropped the subscripts on ψ. This differential

equation can be rewritten as

−
d2ψ

dρ2
+ (kyL− qB0L

2 tanh ρ)2 ψ = (ω2 − k2z −m2)L2 ψ, (36)

which then resembles a time independent Schrödinger equation corresponding to

a potential (kyL− qB0L
2 tanh ρ)2/2 and energy eigenvalue (ω2 − k2z −m2)L2/2.

The potential term in the effective Schrödinger equation above reduces to a finite

constant as |x| → ∞. Therefore, there exist solutions for ψ which reduce to

e±ikLx as x → −∞ and e±ikRx as x → +∞, where kL and kR are given by

kL =
(

ω2 − (ky + qB0L)
2 − k2z −m2

)1/2
,

kR =
(

ω2 − (ky − qB0L)
2 − k2z −m2

)1/2
. (37)

We will confine to values of ω and k⊥ such that kL and kR are real.

The differential equation (35) can be solved by the following ansatz (cf. [27])

ψ = e−aρ sechbρ f(ρ) (38)

where

a = ik−L ; b = ik+L and k± = (kR ± kL)/2. (39)
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Substituting the above ansatz in (35), we find that f satisfies the following dif-

ferential equation

u(u− 1)
d2f

du2
+ (1 + a+ b− 2(b+ 1)u)

df

du
+ (q2B0

2L4 − b(b+ 1)) f = 0, (40)

where the variable u is related to ρ by the equation: u = (1 − tanh ρ)/2. The

above equation is a hypergeometric differential equation and its general solution

is a linear combination of two hypergeometric functions (cf. [28], pp. 562 and

563), i.e.

f(u) = A F
(

b+
1

2
+ c, b+

1

2
− c, 1 + a + b, u

)

+ B u−a−b F
(

1

2
− a+ c,

1

2
− a− c, 1− a− b, u

)

, (41)

where A and B are arbitrary constants and

c =
(

1

4
+ q2B0

2L4
)1/4

. (42)

To calculate the tunnelling probability for the effective Schrödinger equa-

tion (36), we have to choose the constants A and B such that ψ ∼ eikRx as

x → +∞ (i.e. when u → 0). This can be achieved by setting A = 0 and

B = 2−b, so that

f(u) = 2−b u−a−b F
(

1

2
− a + c,

1

2
− a− c, 1− a− b, u

)

. (43)

Substituting the above solution in (38) and using the relation (cf. [28], p. 559)

F
(

1

2
− a + c,

1

2
− a− c, 1− a− b, u

)

= P F
(

1

2
− a+ c,

1

2
− a− c, 1− a+ b, 1− u

)

+Q (1− u)a−b F
(

1

2
− b− c,

1

2
− b+ c, 1 + a− b, 1− u

)

, (44)

where

P =





Γ(1− a− b) Γ(a− b)

Γ
(

1
2
− b− c

)

Γ
(

1
2
− b+ c

)



 and Q =





Γ(1− a− b) Γ(b− a)

Γ
(

1
2
− a+ c

)

Γ
(

1
2
− a− c

)



 ,

(45)

we find that, as x→ −∞, i.e when (1− u) → 0,

ψ → P eikLx +Qe−ikLx. (46)

11



Consider a solution of the effective Schrödinger equation (36) which goes as
(

ReikLx + e−ikLx
)

as x → −∞ and goes over to
(

TeikRx
)

as x → +∞. Then

it is easy to identify the expressions for R and T from equation (46). They are

given by

R =

(

P

Q

)

=





Γ
(

1
2
− a+ c

)

Γ
(

1
2
− a− c

)

Γ (a− b)

Γ
(

1
2
− b− c

)

Γ
(

1
2
− b+ c

)

Γ (b− a)



 ,

T =

(

1

Q

)

=





Γ
(

1
2
− a+ c

)

Γ
(

1
2
− a− c

)

Γ(1− a− b) Γ(b− a)



 ; (47)

so that

|R|2 =

(

cosh 2πk+L+ cos 2πc

cosh 2πk−L+ cos 2πc

)

(48)

and

|T |2 =

(

kL
kR

) (

cosh 2πk+L− cosh 2πk−L

cosh 2πk−L+ cos 2πc

)

. (49)

The Wronskian condition for the effective Schrödinger equation (36) then leads

us to the following relation

|R|2 −

(

kR
kL

)

|T |2 = 1. (50)

So, the tunnelling probability is non-zero for the time independent magnetic field

we have considered here. It is, in fact, given by |T |2 in equation (49).

The implications of our analysis are discussed in the following section.

4 Conclusions

A time independent magnetic field does not give rise to an electric field and a

pure magnetic field cannot do any work on charged particles. Therefore it seems

plausible that such a magnetic field does not produce particles. This expectation

is, in fact, corroborated by the result we have obtained in section 2, viz. that the

imaginary part of the effective lagrangian for a time independent, but otherwise

arbitrary, magnetic field is zero. Our analysis in sections 2 and 3 has been carried

out assuming that the time independent magnetic field is described by a space

dependent gauge. In such a gauge, β is trivially zero and if we had considered

only a non-zero β to imply particle production, then this result would have proved

to be consistent with the result we have obtained in section 2.
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But this is not the whole story. According to the tunnelling interpreta-

tion, in a time independent gauge it is the tunnelling probability for the effective

Schrödinger equation that has to be interpreted as particle production. In sec-

tion 3, we find that there exists a non-zero tunnelling probability for a spatially

confined and time independent magnetic field. If the tunnelling interpretation is

true, this result would then imply that such a background can produce particles

thereby contradicting the result we have obtained in section 2.

The tunnelling probability can, in fact, prove to be non-zero in a more

general case and is certainly not an artifact of our specific example. This can

be seen as follows: Consider an arbitrary electromagnetic field described by the

vector potential

Aµ = (φ(x), 0, A(x), 0), (51)

where φ(x) and A(x) are arbitrary functions of x. If the decomposition of the

normal modes is carried out as was done in (33), then the effective Schrödinger

equation for the x coordinate corresponding to the above vector potential turns

out to be

−
d2ψ

dx2
+
(

(ky − qA)2 − (ω − qφ)2
)

ψ = (−k2z −m2)ψ. (52)

If we also assume that φ(x) and A(x) vanish at the spatial infinities, then it is

clear that the solutions for ψ will reduce to plane waves as |x| → ∞. When

such solutions are possible, in general, there is bound to exist a non-zero tun-

nelling probability for the effective Schrödinger equation. Thus, quite generally,

the tunnelling interpretation will force us to conclude that the electromagnetic

field described by the above potential produces particles. In particular, the tun-

nelling probability will prove to be be non-zero even when φ = 0 the case which

corresponds to a pure time independent magnetic field. But for such a case,

we have shown in section 2 that the effective lagrangian is real and hence there

can be no particle production. Thus we again reach a contradiction between the

results obtained from the tunnelling interpretation and those obtained from the

effective lagrangian.

On the other hand, consider the following situation. If we choose A(x) to

be zero and φ(x) to be non-zero in the above vector potential, then such a vector

potential will give rise to a time independent electric field. Such an electric field

is always expected to produce particles. But in the space dependent gauge we

have chosen here β is trivially zero and if we consider only a non-zero β to imply

particle production, then we will be forced to conclude that time independent

electric fields will not produce particles! It is to salvage such a situation, that the

13



tunnelling interpretation has been repeatedly invoked in literature. But then, our

analysis in the last two sections show that tunnelling probability can be non-zero

even if effective lagrangian has no imaginary part!

There appears to be three possible ways of reacting to this contradiction. We

shall examine each of them below:

(i) We may begin by noticing that in quantum field theory, there is always

a tacit assumption that not only the fields but also the potentials should vanish

at spatial infinities. If we take this requirement seriously, we may disregard the

results for constant electromagnetic fields (the only case for which explicit results

are known by more than one method!) as unphysical. Then we only need to

provide a gauge invariant criterion for particle production in electromagnetic

fields described by potentials which vanish at infinity.

This turns out to be a difficult task, even conceptually. To begin with,

we do not know how to generalize Schwinger’s analysis and compute the effec-

tive lagrangian for a spatially varying electromagnetic field. The only procedure

available for us to study the evolution of the quantum field in such backgrounds

are based on the method of normal mode analysis where we go on to obtain

the tunnelling probability |T |2. But then, the potential term in the effective

Schrödinger equation is not gauge invariant, as can be easily seen from its form

in equation (52). So the tunnelling interpretation, even if it is adhered to, has

the problem that it may not yield results that are gauge invariant. In fact, the

situation is more serious; the entire tunnelling approach can be used only after a

particular gauge has been chosen. In some sense, the battle has been lost already.

Operationally also, it is doubtful whether the tunnelling approach will yield

results that are always consistent with the effective lagrangian. As the analysis in

this paper shows, there is at least one case—that of a spatially confined magnetic

field—for which one can obtain a formal expression for effective lagrangian and

compare it with the results obtained from the normal mode analysis. These

results are clearly in contradiction with each other.

(ii) One may take the point of view that particle production in an electro-

magnetic field is a gauge dependent phenomenon. It appears to be a remedy

worse than disease and is possibly not acceptable. In addition to philosophical

objections one can also rule out this possibility by the following argument. We

note that in the laboratory we can produce electromagnetic fields by choosing

charges and current distributions but we have no operational way of implement-

ing a gauge. So, given a particular electromagnetic field, in some region of the
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laboratory, we will either see particles being produced or not. It is hard to see

where the gauge can enter this result.

This point has some interesting similarities (and differences) with the ques-

tion of particle definition in a gravitational field. If we assume that the choice

of gauge in electromagnetic backgrounds is similar to the choice of a coordinate

system in gravity, then one would like to ask whether the concept of particle is

dependent on the coordinate choice. People seem to have no difficulty in accept-

ing a coordinate dependence of particles (and particle production) in the case of

gravity though the same people might not like the particle concept to be gauge

dependent in the case of electromagnetism! To some extent, this arises from the

idea that a coordinate choice is implementable by choosing a special class of ob-

servers, say, while a gauge choice in electromagnetism is not implementable in

practice.

(iii) Finally, one may take the point of view that tunnelling interpretation

is completely invalid and one should rely entirely on the effective lagrangian

for interpreting the particle production. In this approach one would calculate

the effective lagrangian for a given electromagnetic field (possibly by numerical

techniques, say) and will claim that particle production takes place only if the

effective lagrangian has an imaginary part. Further one would confine oneself

to those potentials which vanish at infinity, thereby ensuring proper asymptotic

behavior.

This procedure is clearly gauge invariant in the sense that the effective la-

grangian is (at least formally) gauge invariant. Of course, one needs to provide a

procedure for calculating the effective lagrangian without having to choose a par-

ticular gauge. Given such a procedure, we have an unambiguous, gauge invariant

criterion for particle production for all potentials which vanish asymptotically. In

fact, the effective lagrangian for a spatially varying electromagnetic background

can be formally expressed in terms of gauge invariant quantities that involve the

derivatives of the potentials and the fields.

This point could also have an interesting implication for gravitational back-

grounds. The analogue of a constant electromagnetic background in gravity corre-

sponds to spacetimes whose Rµνρσ’s are constants. The effective action in gravity

can then possibly be expressed in terms of coordinate invariant quantities con-

structed from Rµνρσ’s, just as it was possible to express the effective lagrangian

for a constant electromagnetic background in terms of gauge invariant quantities

involving Fµν ’s.
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Comparing the three choices listed above, it seems that the third one is

the most reasonable. Therefore, we conclude that the results obtained from the

effective lagrangian can be relied upon whereas the tunnelling approach has to be

treated with caution. It is likely, however, that the tunnelling interpretation will

prove to be consistent with the effective lagrangian approach if we demand that

an auxiliary gauge invariant criterion has to be satisfied by the electromagnetic

background before we can attribute a non-zero tunnelling probability to particle

production. But it is not obvious as to how such a condition can be obtained

from the normal mode analysis. The wider implications of this result are under

investigation.
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