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The present study models a thermoacoustic system in the time domain where, in the
limit of small amplitudes, the linear dynamics of a heat source is incorporated in terms
of a distributed time lag response function. This approach allows for a description of
the heat source that is richer than that in single time lag models such as the well-
known n–τ model or modifications thereof. Methods to extract the distributed time lag
response function from numerical/experimental frequency response data and to conduct
a linear stability analysis for distributed delay differential equations are described in
this work. The theory is applied to the test case of experimentally measured frequency
response data of a turbulent premixed swirl flame. The use of a distributed time lag
response function model for the heat source is shown to contain the entire dynamics
of the heat source, as all characteristic timescales of the flame response are inherently
reflected in the response function itself. It therefore gives an accurate estimate of the
linear stability map in addition to generating valuable insight into the physics behind
the transient flame dynamics. In contrast, we show that a single time lag model can only
yield correct stability predictions if the unstable eigenfrequency of the system is known
a priori with good accuracy. We also show that a single time lag model is in general not
capable of capturing the transient dynamics of a thermoacoustic system correctly. It is
concluded that the linear response of the heat source in a thermoacoustic system should
be represented in terms of a distributed time lag response function rather than a single
time lag model, with a view to retaining the rich complexity that is available even in
such a low-order model for the heat source.

Keywords: combustion dynamics; flame response function; distributed time lag;
turbulent premixed flame; n-tau model

1. Introduction

In various industrial applications, stability analysis of thermoacoustic systems plays an
important part in the design process. It is beneficial to begin the analysis with linear, low-
order models to facilitate an efficient investigation of a broad range of parameters and
operating conditions.

Linear stability analysis can be performed in the frequency or the time domain. In both
cases, the goal is to determine complex-valued eigenfrequencies of the system, which yield
the growth rate and frequency of oscillation. Frequency domain analysis is often performed
using a network model approach [1–3], where the eigenfrequencies of the characteristic
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equation are determined one at a time using iterative root-finding methods. Time domain
analysis overcomes this computational disadvantage by solving an algebraic eigenvalue
problem, which immediately yields all eigenfrequencies up to the Nyquist frequency. Ex-
amples of linear stability analysis in the time domain applied to thermoacoustics can be
found in [4–7].

In thermoacoustics, it is well known that flame dynamics is at the core of overall
system behaviour. Understanding the constituent processes in a flame response should
hence provide valuable insight for further design improvements. Investigation of system
dynamics requires a transient analysis in which the multi-modal nature of thermoacoustic
systems involving multiple time lags becomes apparent. In this regard, the present study
identifies two main shortcomings in low-order modelling approaches as widely used in
linear stability analysis.

The first shortcoming is that transient analysis of quantities requiring spatial resolution,
such as energy, is not possible in the frequency domain. This is because, in frequency
domain, the system is viewed as a collection of black boxes defined by their respective
input–output characteristics (scattering behaviour). So far, the same perspective has been
adopted in the time domain [4–6]. A state space model (SSM) is defined for each network
element such that their respective scattering behaviour is captured. Combining the SSMs
of all elements yields the overall SSM of the system. The states appearing in the SSM need
not be physically meaningful, but are merely required to represent the scattering behaviour
with a minimum number of states. The SSM is hence of very low order and efficient to
solve, but the dynamics can only be traced at the interfaces of the black boxes.

Second, in the time domain analysis of stability, the response characteristics of the heat
source are commonly modelled as single time lag (STL) models, such as the well-known
n–τ model, or variants thereof. These models are designed to capture the well-known time-
lagged nature of combustion dynamics, but are not able to represent multi-modal dynamics
involving a range of time lags or to provide valuable physical insight. Limitations of STL
models have been investigated in the frequency domain in [8]. It was shown that such models
are capable of predicting the correct stability bound under specific conditions. However,
the predictions are extremely sensitive to inaccuracies in determining the interaction index
n and the time lag τ , and quantitative predictions of growth rates are hence unreliable. The
limitations arising from STL models should be evident – but the number of studies using
STL models to describe the flame dynamics demonstrates that the limitations are not always
appreciated (for a selection of recent works, see for example [9–14]).

STL models may be interpreted as a special case of finite impulse response (IR)
functions with a localised response amplified by a factor n after a time lag τ . In contrast, an
IR function may also contain a distribution of responses over an interval of lagged times.
We refer to such IR functions as distributed time lag response functions (DTLs).

DTLs are a rich representation of the heat source dynamics and can be interpreted
physically. In general, DTLs can originate from analytical, numerical or experimental data.
The shape of a DTL can be attributed to the characteristic timescales of the response.
From the DTL of a laminar premixed flame, Blumenthal et al. [15] identify and discuss the
flame response to be the result of a superposition of convective and restorative processes.
Komarek and Polifke [16] study the response behaviour of a turbulent premixed swirl
flame by analysing the corresponding DTL. This model for a turbulent premixed flame is
employed in the present paper.

In the present study, we address both the shortcomings listed above with a method
designed to perform linear stability analysis in the time domain using DTLs. The arguments
are presented in six sections: in Section 2, we outline an analytical procedure to calculate
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the bounds of linear stability for a set of distributed delay differential equations (dDDEs). A
time domain description of the flame dynamics is obtained from experimental or numerical
frequency response data in Section 3. In Sections 4 and 5, we apply the ideas developed in
Sections 2 and 3 and compute the linear stability map of a turbulent premixed swirl flame
enclosed in a duct. The flame response data stems from experiments and the acoustic field is
modelled from first principles. Section 6 contrasts the stability bounds predicted by the STL
and DTL models. Also, the transient dynamics of the thermoacoustic system is investigated.
It becomes apparent that the heat source dynamics is not meaningfully captured by the STL
model. Compared to a DTL model, which fully exploits information on flame dynamics
that is readily available in frequency response data, an STL model induces an unnecessary
loss of information. We show that the increase in effort in using DTLs as compared to STLs
is negligible. It is hence not even necessary to construct an STL model as an intermediate
step to capture the flame dynamics. Extensions and limitations of the proposed approach
are discussed in Section 7.

2. Linear stability analysis with DTL models

Upon spatial discretisation, modal expansion or finite-element-based techniques, the gov-
erning equations of a thermoacoustic system can be brought to state space form as

dt x = A x +
Nu∑
i=1

Bi ui , (1)

where the state vector x consists of discretised acoustic variables; ui represent the inputs
to the model (these are fluctuations in heat release rate q̇, boundary conditions of any sort,
sink/damping terms, mass injection, body forces, or others); dt denotes the derivative with
respect to time t .

Some of the inputs may effectively be represented in the time domain as a convolution
of lagged states x(t − θ ) with an IR function h(θ ), ui = ∫∞

0 hi(θ ) x(t − θ ) dθ ≡ x̃ (where
θ represents the history variable). Equation (1) is then recast into

dt x = A x +
Nθ∑
i=1

Bi x̃ +
Nu∑

i=Nθ+1

Bi ui . (2)

The first sum in Equation (2) includes all inputs that possess a frequency-dependency on the
states (which we refer to as coupled inputs), whereas the second describes all external inputs
to the system. As we seek to investigate the linear stability of autonomous systems, external
inputs are not accounted for in the following, ui = 0. The discretised form of Equation (2)
then yields a set of distributed delay differential equations (dDDEs). Its stability can be
determined by solving for the roots of the characteristic equation

det

[
s I − A −

Nθ∑
i=1

Bi Fi(s)

]
= 0, (3)

which is an extension of a classical eigenvalue problem by the terms Bi Fi(s). These
transcendental terms cause the characteristic equation to have an infinite number of roots
for the spectral variable s = λ ± jω. s is a complex-valued frequency with growth rate
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λ and frequency of oscillation ω. Fi(s) hence correspond to the transfer functions of the
coupled inputs. This unification of time and frequency domain perspectives is appealing.

In a single mode approximation, the linear stability bound of Equation (3) can be solved
analytically by setting the growth rate λ = 0, and thus s = ±jω [17]. This is useful for
obtaining a quick estimate of the stability behaviour. A more realistic multi-modal analysis
requires the discretised version of x(t − θ ) ≡ xθ to be included as additional states in the
state vector x. The dynamics of xθ needs to be expressed by an evolution equation,

dt xθ = Aθ xθ , (4)

so that the entire system becomes

dt

[
x
xθ

]
=
[

A B

Bθ Aθ

]
︸ ︷︷ ︸

�

[
x
xθ

]
. (5)

The system of dDDEs, Equation (2), is thus transformed into a system of autonomous
ODEs, Equation (5), and stability is assessed by a classical eigenvalue analysis of the
overall system operator �. The dynamics governing the lagged states xθ , Equation (4), is
given by an advection equation,

dt xθ = −cθ dθ xθ , (6)

where information is propagated along a characteristic in history θ at a rate cθ ; xθ stands
for a set of physically meaningful states that can be directly related to the acoustic variables
causing the responses of the coupled inputs. This, in combination with impulse response
(IR) functions describing the dynamics of the coupled inputs, will make it possible to
investigate stability without sacrificing insight into the transient dynamics.

In the following section, we will lay out how to compute such a DTL from frequency
response data. For enhanced transparency of analysis, and to demonstrate the strong points
of DTLs in contrast to another well-known model, we focus our analysis on a configuration
where a heat source is the only coupled input. It is straightforward to extend the approach
to include other coupled inputs, such as boundary impedances, damping models, or others.

3. To deduce DTL from frequency response data

Heat sources are conveniently represented in terms of a frequency response function (FRF)
R(ω), which quantifies the output q̇ relative to the input of acoustic velocity v at frequency
of oscillation ω,

R(ω) = q̇(ω)

v(ω)
. (7)

FRF data can be obtained from experiments or numerics (at discrete frequencies of os-
cillation ωi). FRFs only exist for bounded input bounded output (BIBO) stable systems,
as the Fourier transform of the input and output are only defined under these conditions.
An FRF thus characterises the response behaviour in the complex-valued frequency space
s = λ + jω in the cutting plane of zero growth rate λ = 0. For unstable systems, one must
resort to FTFs, which are defined in the entire complex-valued frequency space s = λ + jω,
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and not just for zero growth rate. It is possible to construct the FTF from FRF data by ar-
guments of analytic continuation, which, for example, is necessary when performing a
stability analysis of thermoacoustic systems in the frequency domain [8].

A DTL is linked to the FRF by a Fourier transform (which is equivalent to a Laplace
transform for zero growth rate λ = 0),

R(ω) =
∫ ∞

0
h(t) e−jωt dt, (8)

with DTL function h(t). Given a set of FRF data, the aim is hence to find the corresponding
DTL. The steps to be performed are as follows: (1) fit an analytic function R̂(jω) to the
discrete FRF data R(ωi), and (2) apply the inverse Laplace transform to R̂(jω) to obtain
the DTL h(t).

There are various conceivable ways to accomplish the first step. In the present study, we
employ rational function approximations, where discrete FRF data R(ωi) is approximated
by a sum of rational functions [18],

R̂(jω) =
Nf∑
k=1

bk

(jω − ak)
+ d. (9)

The zeros bk , poles ak and delay d are estimated in terms of a nonlinear least squares
problem using the standard MATLAB R© routine rationalfit. Besides the low number
of parameters to be estimated, the main advantage of using rational functions lies in the
ease of computing the inverse Laplace transform,

L−1

⎧⎨
⎩

Nf∑
k=1

bk

(jω − ak)
+ d

⎫⎬
⎭ =

⎛
⎝ Nf∑

k=1

bke−ak t

⎞
⎠+ d δ(t), (10)

with Dirac delta function δ(t). As the approximated FRF data is BIBO stable by definition,
d = 0 and ak > 0 ∀k. The DTL h(t) is hence a linear combination of decaying exponential
functions.

Combining Sections 2 and 3, the tools to perform linear stability analysis using DTLs
are laid out. These tools are applied to a test case in the following section.

4. Turbulent premixed swirl burner

The test case considered in this study represents a turbulent premixed swirl flame enclosed
in a duct, see Figure 1. The governing equations are given by the linearised Euler equations.
Assuming homentropic conditions, ideal gas, 1-D acoustics, an acoustically compact heat
source and neglecting heat conduction and mean flow (i.e. the Mach number tends to zero),
the non-dimensional governing equations for the acoustic field can be written as

∂t v = −β2∂ξ p,

∂t p = −∂ξ v + ζ p + K q̇ d, (11)

with acoustic velocity v(ξ, t) and pressure p(ξ, t), spatial coordinate ξ , compact heat source
location ξf and partial derivative operator ∂ with respect to time t and space ξ , respectively.
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Figure 1. Schematic setup of ducts enclosing turbulent premixed swirl flame unit (Reproduced by
permission of Chong et al. [25]). (Colour online.)

The distribution d(ξ ) governing the heat addition to the acoustic field is hence given as
a Dirac delta function located at ξ = ξf . A constant damping coefficient ζ = −0.025 ac-
counts for end losses and acoustic boundary layer dissipation. Both duct ends are assumed to
be acoustically open, p(ξ = 0, t) = p(ξ = 1, t) = 0. The scales of non-dimensionalisation
are duct length L = 1 m, speed of sound c = 347 m s−1, temperature T = 300 K (both c

and T estimated in the cold section of the duct) and acoustic timescale Ta = L/c for space,
velocity, temperature and time, respectively; β represents the distribution of the speed of
sound through the duct. It depends on the ratio of temperatures in the hot and cold sections
of the duct, which – unless otherwise mentioned – is given as �T = 4. The relation between
density ρ and speed of sound c in the hot section of the duct follows from the ideal gas
law at constant mean pressure. The strength of the heat source is regulated by the scalar
K . We fix all other parameters and consider the linear stability bound for the simultaneous
variation of K and ξf .

The dynamics of the turbulent swirl burner in the frequency and time domains is incor-
porated from experimental FRF data acquired by Komarek and Polifke [16], supplemented
with the condition that the FRF should approach values of unity gain and zero phase in
the limit of zero frequency [19]. The rational polynomial approximation shown in Section
3 is applied to obtain an analytical expression of the FRF. The plots of gain and phase in
Figures 2(a) and 2(b) show that the rational polynomial of order Nf = 12 fits the exper-
imentally measured data accurately. Figure 2(c) depicts the DTL function obtained from
the inverse Laplace transform of this rational polynomial approximation. As the DTL is
expressed as a sum of decaying exponential functions (see Equation 10), it is an infinite IR
function and its response to an impulse is infinitely long (in theory). However, the response
is negligible for lagged times θ > 4 (not shown). The DTL has therefore been trimmed to
a finite IR function with non-zero values for θ ∈ [0; 4].

An experimentally measured FRF is only valid over the range of frequencies employed
in its determination. In this paper, we ensure that the conclusions drawn are valid by
restricting the dominant eigenfrequencies occurring in the stability analysis to lie within
the range of frequencies investigated experimentally.

It is interesting to point out that although the flame is acoustically compact (i.e. its spatial
extent L is much smaller than an acoustic wavelength), it is not convectively compact, since
L is comparable to a convective length scale. As the time lags result from convective
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Figure 2. Gain (a) and phase (b) of the experimentally measured FRF data (�) and rational fit
function (−−−). (c) Corresponding DTL (grey-shaded) and STL model (�). It is visible from (a) that
n is taken as the gain at the dominant frequency of oscillation ωi .

processes, the flame is distributed in time (and therefore a DTL model is needed), but
nevertheless the flame is compact in space. Point-wise coupling with the acoustic field (as
done in the present analysis) is therefore a good approximation in this situation.

5. Stability analysis with the DTL model

To perform the linear stability analysis as described in Section 2, the governing equations
(11) are converted to state space form as in Equation (2). The acoustic variables are
discretised in space using Na = 201 points and the partial differentials in Equation (11)
are approximated by second-order central differences. The boundary conditions for v are
implemented by locally one-dimensional inviscid (LODI) relations [20]. Those for p = 0
are implicitly taken into account by omitting the boundary nodes in the discretised state
vector, see Equation (12) below. To avoid numerical dissipation, the jump in the speed of
sound at ξf is smoothed over 5% of the duct length, which is achieved by a discrete normal
cumulative distribution function in β. Consequently, the heat addition to the acoustic field
is smoothed in the same manner by a discrete normal probability density function in d.
Both discrete distributions dd and βd are explicitly given in Equations (A6) and (A7) in
Appendix A.

We consider a volumetric compact heat source and therefore consider q̇ to depend
only on lagged velocity fluctuations at ξf , q̇ = ∫∞

0 h(θ )vf (t − θ ) dθ . The lagged states
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Figure 3. Linear stability map in (ξf , K)-space, with coloured shading indicating cycle increment �.
(a) Analysis with the DTL model: � and stability bound (—) from time domain analysis and stability
bound (grey curve) from network analysis in the frequency domain for validation. (b) Analysis with
the STL model in the time domain: � and stability bound for n known at ω (—), ±1.1ω (- - -), ±1.2ω
(· · ·). (Colour online.)

hence represent lagged values of acoustic velocity at the position of the flame. vf (t − θ )
is discretised in θ using Nθ = 50 points per θ = 1, such that the equation governing the
dynamics of xθ , Equation (6), is solved by a second-order central finite difference scheme.
The resulting discretised state vector becomes

[
x
xθ

]
=
[

[v1 , . . . , vNa
, p2 , . . . , pNa

− 1]T

[vf (t − θ1) , vf (t − θ2) , . . . , vf (t − θNθ
)]T

]
. (12)

The corresponding discretised operators are shown in Appendix A, and the corresponding
linear stability map is depicted in Figure 3(a). The stability bound obtained from a frequency
domain network analysis of the same configuration is overlaid for validation (grey line).
Agreement is very good, apart from slight deviations for ξf > 0.65. These stem from
neglecting the DTL coefficients for θ > 4. The stability map indicates that there are two
flame positions which are particularly stable (ξf = 0.35 and 0.6). The most unstable region
is ξf < 0.2, which can also be seen from the red regions in Figure 3(a) indicating large
cycle increments � = exp(2π (λ/ω)) − 1, i.e. large relative growth per cycle of oscillation.

Any stability prediction relies on the quality of the models used. In the present study,
the description of q̇ stems from experimental data and is realistic. For the acoustic field,
we have chosen to use a simple (less realistic) model for ease of illustration, and neglect
mean flow and the area jump in the duct. For the same reason, we have chosen to use fully
reflective boundary conditions on both sides of the duct, which precludes the possibility
of direct comparison to experimental stability measurements. The calculations shown here
can hence be improved by using a better acoustic model and experimentally determined
boundary conditions, on which we further elaborate in Section 7. However, none of the
assumptions made alter the validity of the proposed method and its major conclusions. In
the following section, we address the shortcomings of an STL model.

6. Comparison of DTL and STL predictions

In this section, we construct and investigate an STL model for the above test case and
contrast the stability predictions and flame dynamics obtained to those predicted by the
DTL model. The coarse-grained slope of phase depicted in Figure 2(b) is used to estimate
the time lag as τ = 1.71. The interaction index n is determined on a case-to-case basis as
the gain of the FRF (see Figure 2(a) at a given frequency of oscillation ω).



Combustion Theory and Modelling 231

6.1. Linear stability bounds

STL models yield accurate quantitative stability predictions if the gain n and absolute
time lag τ are known at the dominant frequency of oscillation ωi [8]. This is corroborated
in the present study for a realistic heat source by comparing the stability bounds (full
thick black lines) and cycle increments � (coloured shading) obtained from the DTL
and STL in Figures 3(a) and 3(b), respectively. Despite slight deviations for ξf > 0.65,
overall agreement is good. As above, the deviations stem from the truncation of the DTL
for θ ≥ 4.

As n is obtained separately for each operating point in parameter space (ξf ,K), com-
puting the stability map in Figure 3(b) necessitates a priori precise knowledge of ωi at
each operating point. This is of limited practical use, since in general ωi is estimated to
lie around an anticipated or expected frequency of oscillation. In Figure 3(b), we plot the
stability bounds obtained from the STL model with n taken as the gain at ωi ± 10% (- - -)
and ±20%(· · ·), respectively. These deviations in frequency reflect the uncertainty in esti-
mating ωi . It is evident that stability is over- and under-estimated for different ξ . Therefore,
changes in stability predictions do not follow a trend with uncertainity in estimating ωi .
Linear stability bounds as computed using an STL model are hence unreliable unless the
exact frequency of oscillation is not known a priori.

On the other hand, computing reliable stability bounds by representing the flame dynam-
ics in terms of a DTL does not require a priori estimation of the frequency of oscillation.
The frequency of the instability is determined as part of the analysis. We hence advocate
the direct use of a DTL to perform linear stability analysis in the time domain, avoiding the
need to construct an STL model.

6.2. Transient flame dynamics

The question now arises of why STL models perform unreliably when used in linear stability
analysis. It may be obvious from a frequency domain perspective that it is a poor assumption
to set a uniform value of gain for the response of a heat source over the entire frequency
spectrum. In the following, we pursue this same argument from a time domain perspective,
and argue that a flame model can only produce reliable stability predictions if it is a good
representation of the flame dynamics.

A full-spectrum DTL is a good representation of the flame dynamics, as it exhibits
physical insight into the flame dynamics [15,16]. The shape of the DTL can be attributed
to characteristic timescales, which arise from competing physical mechanisms of flame
response. For the turbulent premixed swirl flame used in the present study, the overall flame
response is the superposition of two responses occurring in parallel. Due to the effect of
the swirler (see Figure 1), the axial acoustic wave, by which the swirl flame is excited, is
partially transformed into a convective perturbation of circulation. Both the axial convective
perturbation and the perturbation of circulation cause a flame response, each of which is
characterised by a separate DTL (not shown here, see figure 9 of [16]). The resulting DTL
depicted in Figure 2(c) is a superposition of these DTLs.

For details of the response mechanisms of turbulent premixed swirl flames deduced
from DTLs, the interested reader is referred to [16]. In the following, we will only briefly
summarise some features of the flame response that can be directly inferred from the
experimentally measured DTL used in the present study.

The DTL subject to axial excitation exhibits a dominant peak at lag time θ = τ (see
Figure 2(c)) indicative of a convectively dominated flame response (as observed for laminar
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Figure 4. (a) Time trace of vf (t − θ ) weighted by the DTL. The operating point is that of a
stable system, initialised at the two most dominant eigenfrequencies of oscillation, ω1 = 4.11 and
ω2 = 8.62. The integral over θ yields q̇(t). Other parameters: ξf = 0.25, K = 0.18, �T = 2.25. (b)
Time trace of normalised acoustic energy E for the same case as in (a)): DTL (−−−), STL with n at
ω1 (− −), STL with n at ω2 (− - − -). (Colour online.)

premixed flames [15]). For longer flames, or for slower convective velocities by which the
acoustically induced perturbations are convected along the flame surface, τ increases and
the peak moves to larger lag times θ .

The DTL subject to the perturbation of circulation exhibits two peaks of equal mag-
nitude, but opposite in sign (not shown here, see figure 9 of [16]). This can be at-
tributed to flame roll-up and to a change in flame angle (and thus q̇) due to a tempo-
rary increase/decrease in the swirl number caused by the impulsive excitation [21]. For
higher swirl, the two humps move to smaller lag times θ due to the decrease in flame
length.

The DTL hence contains the full dynamics of the heat source with all timescales involved
in the flame response (within the measured range). This is visualised in Figure 4(a), which
depicts a time trace of lagged velocities weighted by the DTL, i.e. the integrand h(θ ) vf (t −
θ ) of the convolution yielding q̇. The operating point is that of a stable system (ξf = 0.25,
K = 0.18, �T = 2.25), which is initialised by an equally weighted linear combination of
the two most dominant thermoacoustic eigenmodes (frequencies of oscillation ω1 = 4.11
and ω2 = 8.62). The flame dynamics involved in the flame response as discussed in the
previous paragraph is visible.

In contrast, the entire flame dynamics as depicted by the STL model is lumped into
the parameters n and τ , where τ corresponds to only one of the humps in the DTL (see
Figure 2(c)). The STL model is a weighting function fitted to one particular frequency at
the operating point. The STL model reaches its limits if the system operates at a state where
multiple modes interact.

The latter point becomes visible when plotting the evolution of acoustic energy E

corresponding to the operating point in Figure 4(a) and obtained from the DTL model
(see thick full line in Figure 4(b)). In the same plot are overlaid the evolution of energy as
obtained from the STL model for which n has been determined to match the gain at the first
and second eigenfrequencies, ω1 (−−) and ω2 (− - − -), respectively. In both cases, the
evolutions diverge for t > 3. The STL model is hence incapable of representing the flame
dynamics if the system does not evolve at a single frequency. If the number of eigenmodes
that contribute significantly to the system state is increased further, the chance of the STL
model predicting the correct transient behaviour decreases.

A slight change in n and/or τ (corresponding to n and/or τ being fitted to a different
mode) hence leads to a significantly different behaviour. The same holds true for stability
analysis, where the stability predictions become unreliable once the parameters n and/or τ

are not known precisely.
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7. Outlook

This paper outlines how to model a thermoacoustic system in the time domain using dis-
tributed time lag (DTL) response functions to incorporate the dynamics of coupled inputs
(i.e. system elements that are frequency-dependent on the states). We show how to ex-
tract the DTL function from numerical/experimental frequency response data and to use
it in a linear stability analysis. In addition to growth/decay rates, this approach enables
physical interpretation and understanding of the mechanisms leading to the observed sta-
bility behaviour. This is possible with little computational effort by using low-order models
that retain the rich dynamical behaviour of the element of interest contained in numeri-
cally/experimentally measured FRF data. For ease of illustration, the present analysis is
exemplarily conducted for the DTL function of a heat source. However, the approach is
definitely not limited to the modelling of combustion dynamics, and can easily be applied
to other elements such as boundary conditions or damping models.

By focusing on the DTL function of a heat source, the present study highlights the
shortcomings of STL models commonly employed for this element. It is shown that STL
models are only adequate for stability analysis if the dominant eigenfrequencies of the entire
system are known, thus leading to reliable estimates for the parameters n and τ . Knowledge
of the eigenfrequencies, however, relies on the prerequisite of already having performed a
stability analysis using a DTL model to represent the heat source dynamics. In contrast, a
DTL model can be extracted from experimental/numerical FRF data in a straightforward
manner. Hence we strongly advocate the use of DTL models in constructing low-order
thermoacoustic models. In addition, DTL models inherently reflect all timescales of flame
response and can be interpreted physically. By representing the full flame dynamics, they
can be used for transient analysis, whereas an STL model cannot represent the system
dynamics if the latter operates at a point where multiple modes interact.

In the present study, it is not possible to compare the computed stability bounds to
experimentally obtained measurements, as we have chosen to use fully reflective boundary
condition for ease of illustration. It is clear that simplified boundary conditions have a
large impact on the stability bounds (in analogy to an oversimplified heat source model).
However, as outlined in Section 2 (see Equations 1–3), the concepts laid out in this paper
on how to incorporate DTL functions in a time domain stability analysis equally apply
to experimentally determined boundary conditions. In analogy to determining the DTL
function of a heat source from FRF measurements, the same can be done from impedance
measurements of a boundary condition. This matter is addressed in a related context in
[22,23]. It is hence a straightforward step to model realistic thermoacoustic setups by low-
order models that incorporate the rich dynamics of the system contained in multiple DTL
functions.

The present study is limited to the linear regime. From the authors’ perspective, an
extension to the nonlinear regime of the current approach is not straightforward. Although
it is conceivable to construct an amplitude-dependent DTL function (i.e. the rational func-
tion approximation would need to be applied to amplitude-dependent describing function
measurements and then be parametrised as a function of amplitude), use and implemen-
tation of such a DTL function are debatable. One of the main difficulties is the question
of reference amplitude. Given a time series that contains a variety of amplitudes, it is not
clear how to determine the appropriate reference amplitude, which in turn is required as an
additional parameter in the amplitude-dependent DTL function. An amplitude-dependent
DTL function could therefore only be used for harmonic stationary signals, and transients
could not be resolved. This would deprive the method of the main benefits of a time domain
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approach, and thus would not represent any advantage compared to the describing function
framework in the frequency domain. On the other hand, a viable possible extension of DTL
functions to the nonlinear regime was proposed by Selimefendigil and Polifke [24]. They
make use of nonlinear models that do not suffer from the above mentioned shortcomings.

As mentioned in Section 1, Paschereit and co-workers [5,6] have shown how to construct
extremely low-order black box time domain models for duct parts and boundary conditions
based on the scattering/impedance behaviour of these elements. This approach comes at
the expense of the states not being physically interpretable. However, it would be possible
to combine the approach of Paschereit et al.with the one outlined in the present study, so
as to resolve the thermoacoustic elements whose dynamics is of interest, and to combine
them with very low-order models for the elements of lesser interest. It is also conceivable to
combine these two approaches with elements that are modelled by CFD, or finite-volume-
and finite-element-based methods.
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Appendix A. Discretised operators and distributions
According to Equation (5), the full discretised system operator � is given as

� =
[

A B
Bθ Aθ

]
. (A1)
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Using the schemes as introduced in Section 5 and discretising the state vector as shown in Equa-
tion (12), the discretised operators read

A =
[

Avv Avp

Apv App

]
, ∈ R

(2Na−2)×(2Na−2), (A2)

Bij = K�θ
[
dd

i hd
j

]
, ∈ R

(2Na−2)×Nθ , (A3)

Bθ,ij = −1

2�θ

{−1 for i = 1 ∧ j = nf

0 otherwise,
∈ R

Nθ ×(2Na−2), (A4)

Aθ = −1

2�θ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0

−1 0 1

−1 0 1

. . .
. . .

. . .

−1 0 1

−1 0 1

1 −4 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ∈ R
Nθ ×Nθ , (A5)

where nf �ξ = ξf and with discrete IR function hd = [h1, h2, . . . , hNθ
]T. The discrete distributions of

heat release rate dd and of speed of sound βd are given as discrete normal probability and cumulative
distribution functions,

dd
i =

⎧⎪⎨
⎪⎩

0 for i ≤ Na

1

σ
√

2π
exp

(
−
(
ξd
i−Na+1 − ξf

)2
2σ 2

)
for i > Na,

∈ R
(2Na−2)×1, (A6)

βd =
(√

�T − 1
)

2

[
1 + erf

(
ξd − ξf√

2σ

)]
+ 1, ∈ R

Na×1, (A7)

with discretised spatial coordinate ξd = [ξ1, ξ2, . . . , ξNa ]T. The standard deviation σ is chosen such
that at least 99.9% of the changes in distributions occur within ξf ± 0.025. �θ in Equation (A3)
results from the numerical approximation of the convolution integral defining q̇,

q̇ =
∫ 4

0
h(θ )xθ dθ ≈ �θ

Nθ∑
k=1

hd
k xd

θ,k. (A8)

The submatrices in A read

Avv = diag
[
βd
]

2�ξ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−3 4 −1

0 0 0

. . .
. . .

. . .

0 0 0

1 −4 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, ∈ R
Na×Na , (A9)
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Avp = −diag[(βd )2]

2�ξ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −1 0

0 1

−1 0 1

−1 0 1

. . .
. . .

. . .

−1 0 1

−1 0 1

−1 0

1 −4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ∈ R
Na×(Na−2), (A10)

Apv = −1

2�ξ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 1

−1 0 1

. . .
. . .

. . .

−1 0 1

−1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, ∈ R
(Na−2)×Na , (A11)

App = ζ I, ∈ R
(Na−2)×(Na−2), (A12)

with identity matrix I . Also,

diag[βd ]ij =
{
βd

i for i = j

0 otherwise,
∈ R

Na×Na , (A13)

and likewise for diag[(βd )2].
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