
1

Distributed computation of fast consensus weights

using ADMM
Kiran Rokade and Rachel Kalpana Kalaimani

Abstract—We consider the problem of achieving average
consensus among multiple agents, where the inter-agent com-
munication network is depicted by a graph. We consider the
discrete-time consensus protocol where each agent updates its
value as a weighted average of its own value and those of its
neighbours. Given a graph, it is known that there exists a set of
‘optimal weights’ such that the agents reach average consensus
asymptotically with an optimal rate of convergence. However,
existing methods require the knowledge of the entire graph to
compute these optimal weights. We propose a method for each
agent to compute its set of optimal weights locally, i.e., each agent
only has to know who are its neighbours. The method is derived
by solving a matrix norm minimization problem subject to
linear constraints in a distributed manner using the Alternating
Direction Method of Multipliers (ADMM). We illustrate our
results using numerical examples and compare our method with
an existing method called the Metropolis weights, which are also
computed locally.

Index Terms—Consensus algorithm, distributed optimization,
ADMM.

I. INTRODUCTION

In a consensus problem, a group of agents seeks to agree

upon a certain quantity of interest. In many applications,

this quantity of interest is the average of the initial states

of the agents [1], [2]. Consensus problems arise in various

settings such as multi-agent formation control [3], estimating a

parameter using a network of sensors [1], workload balancing

for distributed computation [2], etc. These problems have been

widely studied in control theory [4]–[7].

In all consensus protocols, an important parameter is the

time required to reach average consensus. One line of literature

focuses on algorithms which achieve consensus in finite time

[8]–[10]. The other line of literature looks at algorithms which

achieve consensus asymptotically, while trying to improve the

rate of this asymptotic convergence [6], [11]. For continuous-

time consensus protocols, it is known that the rate of conver-

gence depends on the second-smallest eigenvalue of the graph

Laplacian [5], while for weighted discrete-time protocols, it

depends on the second-largest absolute value of all eigenvalues

of the weight matrix [6]. It is then natural to optimize this rate

of convergence by appropriately choosing the edge and node

weights used by the agents in their update laws for reaching

consensus.

This work has been partially supported by DST-INSPIRE Faculty Grant,
Department of Science and Technology (DST), Govt. of India (ELE/16-
17/333/DSTX/RACH).

Kiran Rokade is with the Department of Electrical and Computer Engineer-
ing, Cornell University and Rachel Kalpana Kalaimani is with the Department
of Electrical Engineering, Indian Institute of Technology Madras (e-mail:
kvr36@cornell.edu, rachel@ee.iitm.ac.in)

The problem of optimizing the rate of convergence of

distributed linear discrete-time consensus protocols has been

widely studied in literature and is sometimes referred to as

the fastest distributed linear averaging (FDLA) problem [6].

In [6], the authors consider the general weighted discrete-time

consensus protocol, with possibly asymmetric edge weights.

They propose two metrics for quantifying the rate of con-

vergence: the asymptotic convergence factor and the per-step

convergence factor. It is shown that the problem of optimizing

the per-step convergence factor is a convex optimization prob-

lem and hence can be solved efficiently. In [11], the authors

consider consensus protocols with symmetric edge weights.

Considering the edge and node weights as variables, they try

to minimize the distance between the largest and the second-

smallest eigenvalue of the weighted graph Laplacian. This

in-turn optimizes the rate of convergence of the consensus

protocol. In [12], the authors consider the problem of maxi-

mizing the second-smallest eigenvalue of the graph Laplacian

where the edge weights are functions of the agent values. They

propose an iterative method which gives optimal trajectories

of agent values by solving an optimization problem at each

iteration. Another class of problems which falls under the

FDLA framework is that of fastest mixing Markov chains [13].

Here, the equation governing the evolution of the probability

distribution is similar to the discrete-time consensus proto-

col. The objective is to find a transition probability matrix,

analogous to the weight matrix in a consensus protocol, such

that an initial probability distribution converges to a uniform

distribution as fast as possible.

While the above methods give weights that achieve the

optimal rate of convergence in a consensus protocol, finding

these weights require the knowledge of the entire network

topology. In other words, there has to be a central entity which

has the knowledge of the entire network, can calculate the

optimal weights and then broadcast them to the agents. Firstly,

there may not exist such a central entity due to constraints on

the communication resources or for security reasons. Secondly,

even if it does exist, this process of computing and broadcast-

ing the weights has to be repeated every time the network

topology changes due to say node failure, edge failure or if

new agents enter the network. This can be very inefficient if

the network is large. In the spirit of distributed computation,

we would want the agents to locally compute these weights

which they use in their update laws. An example of locally

computed weights is the Metropolis weights [1]. To compute

them, an agent has to know only the degree of itself and its

neighbours. While these weights do achieve consensus, the rate

of convergence of the consensus protocol with these weights is

ar
X

iv
:2

00
2.

08
10

6v
3 

 [
ee

ss
.S

Y
] 

 2
8 

N
ov

 2
02

1



2

not optimal. We seek to have the best of both worlds: locally

computed weights whose rate of convergence is optimal.

A solution to the problem of locally computing the optimal

consensus weights has been attempted in [14]. There, the

authors use a distributed gradient-descent approach on the

Schatten p-norm of the weight matrix, which is an approx-

imation of the second-largest eigenvalue of the weight matrix.

Computing the gradient requires the agents to communicate

with its neighbours which are up to p/2 hops away. There is

a trade-off between locality and optimality: smaller values of

p give sub-optimal solutions. We propose an algorithm where

the agents need to communicate only with their immediate

neighbours to compute the consensus weights. Moreover,

the rate of convergence of the consensus protocol using the

weights obtained by our algorithm can be arbitrarily close

to the optimal value. The algorithm is derived using the

Alternating Direction Method of Multipliers (ADMM) [15],

[16]. We summarize our contributions below.

A. Contributions

1) We consider agents which communicate with each other

over a network depicted by an undirected graph. We

propose an iterative algorithm for the agents to locally

compute the weights required for the weighted-average

discrete-time consensus protocol. We show that the rate

of convergence of the consensus protocol using these

weights converges to the optimal value. The algorithm is

derived by solving a matrix norm minimization problem

in a distributed manner using ADMM. The result is given

in Section III.

2) For some applications, we propose a variation of our

algorithm, where, at every iteration, the agents compute

the weights and update their values using these weights.

Using a numerical example, we show that this variation

of our algorithm performs better in terms of the rate of

convergence of the consensus protocol than the locally

computed Metropolis weights. This is done in Section

IV-B.

The rest of the paper is organized as follows. We next

summarize some basic notations which will be used through-

out the paper. In Section II, we mathematically formulate

the problem of computing the optimal consensus weights.

In Section III, we propose our algorithm to locally compute

these optimal weights. We also state our main result which

proves the convergence of this algorithm. The proof of the

result is deferred to the appendix. In Section IV, we present

some numerical examples to illustrate the convergence of our

algorithm and to compare its performance with the Metropolis

weights. Finally, we give some concluding remarks in Section

V.

B. Notation

All vectors are of length n and all matrices are of size n×n.

1 is the vector
[

1 . . . 1
]T

of all ones. ei is the ith standard

basis vector with 1 as the ith entry and zeros elsewhere. For

a vector x: xi or (x)i denotes its ith element, ||x|| denotes its

2-norm. For a matrix A: ρ(A) denotes its spectral radius or

the maximum absolute eigenvalue, ||A|| denotes its induced

2-norm or the maximum singular value, ||A||F denotes its

Frobenius norm, Aij or (A)ij denotes its (i, j)th element,

Tr(A) denotes its trace, A > 0 denotes Aij > 0 for all

(i, j). For a set B, |B| denotes its cardinality. For a function

f : R
n → R, (∂/∂x)f =

[

(∂/∂x1)f . . . (∂/∂xn)f
]T

denotes the gradient of f with respect to the vector x ∈ R
n.

For a function f : Rn×n → R,

(∂/∂X)f =







(∂/∂X11)f . . . (∂/∂X1n)f
...

. . .
...

(∂/∂Xn1)f . . . (∂/∂Xnn)f







denotes the gradient of f with respect to the matrix X ∈
R

n×n.

II. PROBLEM FORMULATION

A. The average consensus problem

Consider a set V = {1, . . . , n} of n agents, each having

a scalar initial value xi(0) ∈ R, i ∈ {1, . . . , n}. Assume that

the inter-agent communication is governed by an undirected,

connected graph G = (V,E), where E is the set of all

undirected edges of G. In other words, agents i and j can

exchange values with each other if and only if (i, j) ∈ E. Note

that an agent always knows its own value, hence, for the ease

of notation, we assume that (i, i) ∈ E for all i ∈ {1, . . . , n}.

Let Ni = {j ∈ V : (i, j) ∈ E} be the set of all neighbours of

agent i.
We want the agents to reach average consensus, i.e., each

agent must compute the average xavg(0) = (1/n)
∑n

i=1 xi(0)
of the initial values in a distributed manner by communicating

only with its neighbours. We consider the distributed linear

iterative protocol where each agent i updates its value as

xi(t+ 1) = Wiixi(t) +
∑

j∈Ni

Wijxj(t), i ∈ {1, . . . , n}, (1)

where t ∈ {0, 1, 2, . . . } is the time and Wij is the weight

assigned by agent i to agent j’s value. Due to the commu-

nication constraint imposed by the graph, we fix Wij = 0 if

(i, j) /∈ E.

Remark 1. Note that since the graph G is undirected, (i, j) ∈
E implies Wij and Wji can both be nonzero. However, they

can take different values in general.

Now, the protocol (1) can be written as

x(t+ 1) = Wx(t), (2)

where W ∈ R
n×n is called the weight matrix and x(t) =

[

x1(t) . . . xn(t)
]T ∈ R

n is the vector of agent values at

time t. We refer to (2) as the consensus protocol. Let x̄ =
xavg(0)1 be the vector with xavg(0) as all its entries. From

(2), we have x(t) = W tx(0). Thus, the agents reach average

consensus, i.e., limt→∞ x(t) = x̄ if and only if

lim
t→∞

W t = 11
T /n. (3)

Following result from [6] gives a necessary and sufficient

condition for (3) to be true.



3

Proposition 1. [6] The consensus protocol (2) reaches

average consensus, i.e., limt→∞ x(t) = x̄ if and only if

W1 = 1, WT
1 = 1, ρ(W − 11

T /n) < 1. (4)

Note that the weights Wij are allowed to be negative in

general. Condition (4) ensures that in the consensus protocol

given by (2):

• the average 1
Tx(t)/n of the agent values is invariant

across time t,
• any vector in the ‘agreement space’, i.e., in the span of

1, is invariant with respect to W ,

• all eigenvalues of W other than the eigenvalue 1 are

strictly inside the unit circle.

Given that W satisfies (4), Proposition 1 guarantees

limt→∞ x(t) = x̄. We are interested in maximizing the rate at

which this convergence occurs.

B. Optimal weights

Define e(t) = x(t)− x̄ as the consensus error. Then, from

the consensus protocol (2), we can write the dynamics of the

consensus error as

e(t+ 1) = (W − 11
T /n)e(t). (5)

Now, one way to characterize the rate of convergence of the

consensus protocol is by the spectral radius ρ(W − 11
T /n).

This quantity is the largest absolute eigenvalue of W other than

the eigenvalue 1. It is called the asymptotic convergence factor

[6]. The weight matrix W which gives the best asymptotic

convergence factor can be found by solving the optimization

problem

minimize ρ(W − 11
T /n) (P1)

subject to W1 = 1, WT
1 = 1,

Wij = 0, (i, j) /∈ E,

where the constraint

Wij = 0, (i, j) /∈ E (6)

is the topological constraint imposed by the graph G. It is

known that ρ(W−11
T /n) is in general a non-convex function

of W and hence (P1) is a hard problem to solve [17].

We replace the objective function ρ(W − 11
T /n) in (P1)

by the convex function ||W − 11
T /n||. By definition of the

induced matrix norm, we have

||W − 11
T /n|| = sup

e(t) 6=0,t≥0

||e(t+ 1)||
||e(t)|| , (7)

i.e., ||W − 11
T /n|| captures the worst case one-step increase

in the consensus error. Hence, ||W − 11
T /n|| is known as

the per-step convergence factor [6]. Now, consider the convex

problem

minimize ||W − 11
T /n|| (P2)

subject to W1 = 1, WT
1 = 1,

Wij = 0, (i, j) /∈ E.

We denote a solution of (P2) by W ∗. Note that since W 6= WT

in general (refer Remark 1), we have ρ(W−11
T /n) ≤ ||W−

11
T /n||. We show that if the graph G is connected, then W ∗

satisfies ρ(W ∗ − 11
T /n) < 1.

Lemma 1. The weight matrix W ∗ obtained by solving the

convex problem (P2) satisfies the average consensus condition

given in (4).

The proof of Lemma 1 is given in Appendix C. Henceforth,

we refer to ||W−11
T /n|| as simply the convergence factor of

W . Thus, W ∗ is a weight matrix which achieves consensus

and gives an optimal convergence factor for the consensus

protocol. Due to the topological constraint Wij = 0, (i, j) /∈
E, solving (P2) requires the knowledge of the entire graph

G. Thus, (P2), in its original form, can only be solved in a

‘centralized manner’. We later propose to solve the problem

in a distributed manner using ADMM.

C. Locally calculated weights

Distributed algorithms require that each agent computes

the average xavg(0) using only local information from its

neighbours. In the same spirit, we would want each agent i
to calculate its optimal weights {W ∗

ij , j = 1, . . . , n} locally,

without the knowledge of the entire graph. Before looking

at the problem of locally computing the optimal weights, we

look at a set of weights, which, although not optimal, can be

computed locally.

Consider the set of weights called the local degree weights

or the Metropolis weights. We denote the matrix of these

weights by WM. For each agent i ∈ {1, . . . , n}, let

(WM)ij =











0, (i, j) /∈ E,

min
{

1
1+|Ni|

, 1
1+|Nj |

}

, (i, j) ∈ E, i 6= j,

1−∑

j∈Ni
(WM)ij , i = j.

(8)

Intuitively, with these weights used in the consensus protocol,

the information of an agent carries more weight if it has

few neighbours. This should speed up the propagation of

the information of the not-so-well-connected agents in the

network, which will improve the overall rate of convergence

of the entire network. These weights are widely used since

they are simple to calculate and can be shown to achieve

average consensus [1]. However, as we shall see later through

a numerical example, the convergence factor of WM can be

significantly poor than W ∗. Our aim is to give a method

for computing weights locally, whose convergence factor is

optimal.

Problem 1. Given an undirected graph G = (V,E), derive a

method such that each agent i ∈ {1, . . . , n} can determine its

set of weights {Wij , j = 1, . . . , n} knowing only its neighbour

set Ni such that the weight matrix W

1) satisfies the average consensus condition given in (4) and

2) has an optimal convergence factor, i.e.,

||W − 11
T /n|| = ||W ∗ − 11

T /n||,

where W ∗ is a solution of (P2).

We propose a solution to Problem 1 by solving (P2)

in a distributed manner. We do this using the well-known



4

Alternating Direction Method of Multipliers (ADMM) [16].

It gives fairly accurate results in relatively fewer number of

iterations than other methods [15]. Due to this, it has been

widely used in solving practical optimization problems, e.g.

[18], [19]. Our result is presented in the next section.

III. MAIN RESULT

In this section, we propose our result which shows how

(P2) can be solved in a distributed manner over an undirected,

connected graph. First, consider the problem

minimize

n
∑

i=1

||Wi − 11
T /n||

n
(P3)

subject to Wi = Wj , (i, j) ∈ E,

Wi1 = 1, WT
i 1 = 1, i ∈ {1, . . . , n},

(Wi)ij = 0, (i, j) /∈ E, i ∈ {1, . . . , n}.

Here, we have replaced the W in (P2) by n matrices

W1, . . . ,Wn, one for each agent in the network. The matrix

Wi can be seen as agent i’s estimate of the centralized

optimal solution W ∗. Since G is connected, the constraint

Wi = Wj , (i, j) ∈ E implies all Wi’s are equal. This

implies (P3) is equivalent to (P2). Introducing these new

matrices will enable solving (P3) in a distributed manner. A

key step towards this is to impose the topological constraint

(Wi)ij = 0, (i, j) /∈ E only on the ith row of the matrix Wi,

for each i ∈ {1, . . . , n}. This means each agent can impose

this constraint on its estimate Wi knowing only its neighbour

set Ni. We show that (P3) can be solved in a distributed

manner. The steps are given in Algorithm 1. The result is

formally stated below, its proof can be found in Appendix A.

Theorem 1. Consider the n sequences of matrices

{Wi(k)}k≥0, i ∈ {1, . . . , n}, where each sequence is gen-

erated by running Algorithm 1 in parallel on each agent

i ∈ {1, . . . , n}. Then, in the limit as k goes to infinity, all

n matrices Wi(k), i ∈ {1, . . . , n}
1) are equal, i.e.,

lim
k→∞

||Wi(k)−Wj(k)|| = 0

for all i, j ∈ {1, . . . , n},

2) satisfy the constraints of problem (P2) and

3) give an optimal convergence factor for the consensus

protocol (2), i.e.,

lim
k→∞

||Wi(k)− 11
T /n|| = ||W ∗ − 11

T /n||

for all i ∈ {1, . . . , n}, where W ∗ is a solution of the

centralized problem (P2).

It is known that for a convex optimization problem having

only equality constraints, the ADMM iterates converge to

the optimal objective value and satisfy the constraints of the

optimization problem in the limit as the number of iterations

goes to infinity [15, Section 3.2.1]. Hence, to prove Theorem

1, all we need to show is that Algorithm 1 is an ADMM

implementation of problem (P3). This is done in Appendix A.

We now make some remarks on the algorithm.

Algorithm 1 Calculating locally an estimate of the optimal

weight matrix W ∗ at agent i of the network G

Initialize: ρ > 0,Wi(0) = 0n×n, ai(0) = 0n×1, bi(0) =
0n×1,Mi(0) = 0n×n

Send Wi(0) to all neighbours j ∈ Ni.

Receive Wj(0) from all neighbours j ∈ Ni.

Iterate:

for k ≥ 0 do

Primal update:

Evaluate Wi(k + 1) as per (13).

Exchange values:

Send Wi(k + 1) to all neighbours j ∈ Ni.

Receive Wj(k + 1) from all neighbours j ∈ Ni.

Dual update:

ai(k + 1) = ai(k) + ρ(Wi(k + 1)1− 1)

bi(k + 1) = bi(k) + ρ(Wi(k + 1)T1− 1)

Mi(k + 1) = Mi(k) +
ρ

2

∑

j∈Ni

(Wi(k + 1)−Wj(k + 1))

end for

Remark 2. (Convergence of the primal variable sequences)

ADMM does not guarantee convergence of the primal vari-

ables [15, Section 3.2.1]. In the context of Theorem 1, this im-

plies that, in general, limk→∞ Wi(k) may not exist. However,

this does not affect the practical application of our result since

we are only interested in a weight matrix W which satisfies the

constraints of (P2) and gives an optimal convergence factor.

Remark 3. (Stopping criterion for Algorithm 1) A stopping

criterion for Algorithm 1 is derived in Appendix B. The

criterion can be verified locally as follows. Each agent fixes an

arbitrary, small number ǫ > 0. At each iteration k, the agent

computes its ‘residual’ Ri(k), which captures how far is the

agent’s estimate Wi(k) from the optimal objective function

value (see (26) further ahead for the definition of Ri(k)).
The agent is trying to minimize this residual. For a given

iteration k, we say the stopping criterion of agent i is satisfied

if Ri(k) ≤ ǫ. Note that for the smallest k for which the

stopping criterion of agent i is satisfied, the agent can stop

updating its variables and send the fixed value Wi = Wi(k)
to its neighbours as long as Ri(k) ≤ ǫ holds. We say that the

stopping criterion for Algorithm 1 is satisfied if Ri(k) ≤ ǫ for

all i ∈ {1, . . . , n}.

Remark 4. (Running Algorithm 1 in a distributed, parallel

manner) We can verify that Algorithm 1 can indeed be

executed in a distributed manner. Each agent i maintains a

primal variable Wi(k) and dual variables ai(k), bi(k) and

Mi(k) at each iteration k. The penalty parameter ρ > 0 can

be arbitrarily fixed by the agent, although a standard choice is

ρ = 1. At each iteration, each agent updates its primal variable,

exchanges the updated primal variables with its neighbours

and updates its dual variables. Thus, Algorithm 1 can run in a

distributed manner, where each agent has to exchange values

only with its immediate neighbours.

From the primal update equation (13) of the algorithm, it is

clear that to calculate Wi(k + 1), agent i requires the Wj(k)



5

values only from the previous iteration of its neighbours.

Hence, it does not have to wait for other agents to finish their

updates before performing its update. Thus, Algorithm 1 can

run in parallel across all agents.

Remark 5. (Information required in running Algorithm 1) To

run Algorithm 1 on all agents, the agents have to initialize

their set of primal and dual variables with the same dimensions

across all agents. This requires that each agent must know the

total number of agents n. Since this may not be possible, the

agents can have a common upper-estimate of n and initialize

their variables as per this estimate.

Each agent i also has to know which agents are its neighbours

to incorporate the constraint (Wi)ij = 0, (i, j) /∈ E in its

primal update step (13). For this, all the agents should be

indexed a priori and each agent must know its index. Then, in

the first iteration of the algorithm, each agent can communicate

with its neighbours to know their indices.

Next, we present some numerical examples to illustrate the

convergence of Algorithm 1 and to compare our method with

the centrally computed W ∗ and the Metropolis weight matrix

WM.

IV. EXAMPLES

A. Fixed network

1

2 5

6

34

Fig. 1. A connected network of n = 6 agents

2 4 6 8 10 12 14

0

50

100

2 4 6 8 10 12 14

0

50

100

2 4 6 8 10 12 14

0

50

100

Fig. 2. Convergence of the agent values to the average of the initial values
with the three weight matrices W ∗, WM and Wadmm used in the consensus
protocol for the network shown in Fig. 1

0 5 10 15
0

10

20

30

40

50

60

70

80

Fig. 3. Convergence to zero of the consensus error with the three weight
matrices W ∗, WM and Wadmm used in the consensus protocol for the network
shown in Fig. 1. It was observed that the error went below 0.1 at t = 9 for
the centralized and ADMM methods, while the Metropolis weights required
t = 14.

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

Fig. 4. Convergence of the objective functions maintained by the agents to
the centralized optimal value ||W ∗−11

T /n|| as Algorithm 1 progresses for
the network shown in Fig. 1

We consider an undirected, connected network of n = 6
agents as shown in Fig. 1. For this network, we solve1 the

centralized problem (P2) to get the optimal weight matrix W ∗.

Then, we compute the Metropolis weight matrix WM using (8).

Now, to calculate the weight matrix using our method, we

run Algorithm 1 in parallel on all 6 agents using ρ = 1/16 as

the penalty parameter2, ǫ = 0.001 for the stopping criteria. It

was observed that the stopping criterion of Algorithm 1 was

satisfied at k = 48 (refer Remark 3 for details on how to check

the stopping criterion). We want to find the convergence factor

of the consensus protocol (2) obtained using our method. For

this, we define

Wadmm =







wT
1
...

wT
n






,

where wi ∈ R
n×1 is the ith row of Wi(48). The convergence

factors of Wadmm and other weight matrices are shown in

Table I. It can be seen that the convergence factor of Wadmm

is quite close to that of the centrally computed W ∗ and is

much better than that of WM. Now, we run the consensus

protocol using these different weight matrices. Consider the

1We solve all optimization problems using the MOSEK solver [20] in
YALMIP toolbox [21] on MATLAB [22].

2This value of ρ was observed to give faster convergence of Algorithm 1
for our examples.



6

Centrally
computed

Locally computed

W ∗ WM Wadmm

(centralized) (Metropolis) (Algorithm 1)

||W − 11
T /n|| 0.4492 0.6724 0.4519

TABLE I
CONVERGENCE FACTORS OF DIFFERENT WEIGHT MATRICES FOR THE NETWORK SHOWN IN FIG. 1

0 5 10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

Fig. 5. Convergence to zero of the maximum residuals maintained by the
agents as Algorithm 1 progresses for the network shown in Fig. 1. The
residuals become smaller than ǫ = 0.001 (i.e., the stopping criterion is
satisfied) at k = 48.

randomly generated initial agent values given by x(0) =
[

70.6046 3.1833 27.6923 4.6171 9.7132 82.3458
]T

.

Their average is xavg(0) = 33.0260. Fig. 2 shows that the

agents reach consensus to this average value using each of the

three weight matrices. Fig. 3 shows that for the centralized

and ADMM methods, the consensus error e(t) = x(t) − x̄
decays at almost the same rate, while the decay is slower for

the Metropolis weights.

Next, we illustrate the convergence of Algorithm 1 used

in calculating Wadmm. Fig. 4 shows the convergence of the

objective functions maintained by each agent to the centralized

optimal value ||W ∗ − 11
T /n|| = 0.4492. This illustrates

Statement 3 of Theorem 1. Fig. 5 shows the convergence to

zero of the maximum residual at each agent as defined in (26).

Intuitively, the maximum residual Ri(k) of agent i captures

how far is the objective function value ||Wi(k) − 11
T /n||

maintained by the agent from the optimal objective value

||W ∗−11
T /n|| (refer Appendix B for details on the maximum

residual). Comparing Fig. 5 with Fig. 4, we can observe that

the objective functions are close to the optimal value when the

residuals are close to zero. This asserts that our choice of the

stopping criterion as derived in Appendix B is a good one.

B. New agents enter a network: ADMM live — a variation of

Algorithm 1

In the previous example, we compared the convergence

factor of Wadmm with the centralized W ∗ and the Metropolis

WM and observed that the performance of Wadmm is better

than WM. However, Algorithm 1 requires some iterations

of communication and computation in finding Wadmm in a

distributed manner. While certain applications do have some

initial buffer time to compute the weights, few applications

might not have this. For such cases we propose the following

variation where at each iteration of Algorithm 1, we employ

1

2 5

6

34

7
9

8

Fig. 6. At t = 0, agents 1 to 6 are connected by a network. At t = 30,
agents 7, 8 and 9 enter the network.

0 10 20 30 40 50 60 70 80

0

20

40

60

80

0 10 20 30 40 50 60 70 80

0

20

40

60

80

Fig. 7. Evolution of the agent values with WM and ADMM live for the
network shown in Fig. 6. In both methods, the agents reach consensus to the
new average value after new agents enter the network at t = 30.

the consensus protocol (2) using the latest available weights.

More specifically, for each iteration k ≥ 0, define

Ŵadmm(k) =







w1(k)
T

...

wn(k)
T






,

where wi(k) ∈ R
n×1 is the ith row of Wi(k). Note that for

small values of k, the matrix Ŵadmm(k) may not satisfy the

constraint

Ŵadmm(k)1 = 1, Ŵadmm(k)
T
1 = 1. (9)

However, it is necessary that a weight matrix satisfies this con-

straint at each instant of time for the agents to achieve average

consensus using the consensus protocol (refer Proposition 1).



7

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

Fig. 8. Evolution of the consensus error with WM and ADMM live for the
network shown in Fig. 6. It was observed that, after the new agents entered
the network at t = 30, the error went below 0.1 at t = 67 for ADMM live,
while the Metropolis weights required t = 80.

0 10 20 30 40 50 60 70 80
0.4

0.5

0.6

0.7

0.8

0.9

Fig. 9. Convergence factor of the consensus protocol with WM and ADMM
live for the network shown in Fig. 6

Hence, we modify Ŵadmm(k) as follows. Define a new weight

matrix W̄admm(k) as

W̄admm(k)ij =

{

min{Ŵadmm(k)ij , Ŵadmm(k)ji}, i 6= j,

1−∑n
l 6=i,l=1 W̄admm(k)il, i = j,

i.e., at each iteration k, we convert Ŵadmm(k) into a symmetric

matrix by replacing its (i, j)th and (j, i)th elements with the

smaller one among the two. In context of Algorithm 1, this can

be done by exchanging weights among the neighbours. Then,

each agent i adjusts its self-weight such that the row (and

hence the column) sums of W̄admm(k) are 1. This technique

is same as the one used in calculating the Metropolis weight

matrix WM in (8). Now, W̄admm(k) satisfies the constraint (9).

Further, to reduce the overall time required to reach consensus,

we initialize Wi(k) using the Metropolis weights, i.e., for each

i ∈ {1, . . . , n}, set the ith row of Wi(0) to be the same as that

of WM, with the rest of the rows being zero. This way, the

agent values in the consensus protocol will not remain ‘idle’

for t = 0 due to all weights being initialized at zero. Now,

we update the agent values using W̄admm(k) in the consensus

protocol, i.e., for all t ≥ 0,

x(t+ 1) = W̄admm(t)x(t). (10)

We call the above method of implementing Algorithm 1

and consensus protocol (10) simultaneously as ADMM live.

Now, we compare the performance of ADMM live with the

Metropolis weights using the following example.

At time t = 0, suppose there are 6 agents connected by the

same network as shown in Fig. 1. Now, at t = 30, three new

agents enter the network as shown in Fig. 6. Suppose these

new agents have ‘initial values’ x7(30) = 80.0559, x8(30) =
74.5847, x9(30) = 52.1186. Now, the new average value of

the 9 agents is xavg(0) = 44.9906. Then, all the agents must

compute a set of weights which involve these new agents and

reach consensus to the new average value. The evolution of

the agent values using the Metropolis WM and ADMM live

is shown in Fig. 7. Note that the centralized method is not

capable of dynamically computing new weights after a change

in the network topology. Hence, we compare ADMM live with

the Metropolis weights, both of which can handle a change

in network topology since they compute weights locally. In

Fig. 7, the agents try to reach consensus initially, until new

agents enter the network at t = 30. At this point, all agents

compute a new set of weights and reach the new average value

asymptotically. Fig. 8 shows the consensus error for the two

methods. It is observed that since the convergence factor of

the weights obtained by ADMM live converges to the optimal

value, the error goes to zero faster than with the Metropolis

WM. In Fig. 9, we compare this changing convergence factor

with the that of the fixed Metropolis weights. We can see that

the convergence factor given by ADMM live is smaller than

the Metropolis weights for most of the time. In fact, it can be

observed from the figure that just after a few steps (at k = 6),

the convergence factor of ADMM live starts outperforming

that of the Metropolis weights. Also, this value approaches

the optimal value given by the centralized optimal solution

W ∗. Hence we observe that the performance of ADMM live

is better than that of Metropolis.

C. Average computation time of Algorithm 1

0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

Fig. 10. Number of iterations required for Algorithm 1, averaged over 10

Erdos-Renyi random graphs. Each graph has n = 10 nodes and an edge
probability of p.

We analyze what is the average number of iterations re-

quired for Algorithm 1 to satisfy its stopping criterion. For

this, we construct a set of Erdos-Renyi (ER) random graphs

as follows. Consider a network of n = 10 agents. For any pair

of nodes, we place an edge between them with a probability

p. For each fixed p ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, we generate

10 ER random graphs. Then, we run Algorithm 1 on each of

them with ǫ = 0.01 for the stopping criterion. For each p, we

take the average of the number of iterations required for the



8

algorithm to stop, averaged over all 10 random graphs. The

result is shown in Fig. 10. It can be seen that for denser graphs

(larger p), the algorithm converges faster.

Next, we give some concluding remarks.

V. CONCLUSION

We proposed a method for agents in a network to locally

compute a set of weights for the discrete-time distributed av-

erage consensus protocol. The weights are computed through

an iterative algorithm derived from ADMM. The algorithm

requires each agent to maintain and update a set of variables

by solving an optimization problem and by exchanging these

variables with its neighbours. We showed that the convergence

factor of the consensus protocol with these locally computed

weights converges to the optimal value given by the centralized

solution. Through a numerical example, we showed that these

weights perform better than the locally computed Metropolis

weights in terms of the convergence factor.

APPENDIX A

PROOF OF THEOREM 1

We have to show that Algorithm 1 is an ADMM implemen-

tation of problem (P3).

Remark 6. Note that if we try to solve problem (P3) directly

using ADMM, although the ADMM algorithm can run in a

distributed manner, the Wi(k + 1) updates will have to be

performed ‘serially’ across different agents, i.e., agent i would

have to wait for agents 1, . . . , i − 1 to update their values

before it can perform its update. This is because the Wi’s

corresponding to different agents appear in the same constraint

Wi = Wj , (i, j) ∈ E in problem (P3).

To overcome the issue stated in Remark 6 and to enable

‘parallel’ implementation of ADMM, we introduce dummy

variables3 Xij , Xji for each (i, j) ∈ E in (P3). Now, we get

minimize

n
∑

i=1

||Wi − 11
T /n||

n
(P4)

subject to Wi1 = 1, WT
i 1 = 1, i ∈ {1, . . . , n},

(Wi)ij = 0, (i, j) /∈ E, i ∈ {1, . . . , n},
Wi = Xij , Wj = Xji, Xij = Xji, (i, j) ∈ E.

Thus, the Wi’s corresponding to different agents have now

been ‘decoupled’. Above problem is equivalent to (P3). To

solve this problem using ADMM, we define the augmented

Lagrangian for the problem as given in (11). Here, ρ > 0
is the penalty parameter and ai, bi, Cij , Dij are the dual

variables for the respective constraints. Algorithm 2 is the

standard ADMM algorithm for (P4). Note that the constraints

Xij = Xji, (i, j) ∈ E and (Wi)ij = 0, (i, j) /∈ E have not

been dualized but are incorporated in the primal update steps

of the algorithm.

Algorithm 2 in its original form cannot be run in parallel.

One of the reasons for this is that for any agent i, the Wi(k+
1) update is the argmin of Lρ evaluated at W1 = W1(k +
1), . . . ,Wi−1 = Wi−1(k + 1). Thus, agent i has to wait for

3This trick is taken from [23, Section 3.4].

Algorithm 2 ADMM implementation of problem (P3)

Initialize: ρ > 0,Wi(0) = 0n×n, Xij(0) =
0n×n, Xji(0) = 0n×n, ai(0) = 0n×1, bi(0) =
0n×1, Cij(0) = 0n×n, Dij(0) = 0n×n

Iterate:

for k ≥ 0 do

Primal update:

Wi(k + 1) = argmin
Wi:(Wi)ij=0,(i,j)/∈E

Lρ, i ∈ {1, . . . , n}

Xij(k + 1) = argmin
Xij :Xij=Xji

Lρ, (i, j) ∈ E

Xji(k + 1) = argmin
Xji:Xij=Xji

Lρ, (i, j) ∈ E

Dual update:

ai(k + 1) = ai(k) + ρ(Wi(k + 1)1− 1), i ∈ {1, . . . , n}
bi(k + 1) = bi(k) + ρ(Wi(k + 1)T1− 1), i ∈ {1, . . . , n}

Cij(k + 1) = Cij(k)

+ ρ(Wi(k + 1)−Xij(k + 1)), (i, j) ∈ E
(14)

Dij(k + 1) = Dij(k)

+ ρ(Wj(k + 1)−Xji(k + 1)), (i, j) ∈ E
(15)

end for

the ‘previous agents’ to perform their updates and hence the

issue mentioned in Remark 6 still exists. However, due to our

introduction of Xij , Xji’s, with some algebraic manipulations,

we can show that Algorithm 1 and Algorithm 2 are equivalent.

The former can be executed in a parallel manner as argued in

Remark 4.

Lemma 2. Algorithm 1 is equivalent to Algorithm 2.

Proof. We will simplify the primal and dual update steps in

Algorithm 2 to arrive at Algorithm 1.

Consider an arbitrary (i, j) ∈ E. The primal update Xij(k+
1) can be evaluated by equating the gradient of Lρ with respect

to Xij to zero. We enforce the constraint Xij = Xji when

evaluating the gradient. This gives the following equation.

− Cij(k)−Dij(k) + ρ[Xij(k + 1)−Wi(k + 1)

+Xij(k + 1)−Wj(k + 1)] = 0 (16)

This implies

Xij(k + 1) = Xji(k + 1)

=
Cij(k) +Dij(k)

2ρ
+

Wi(k + 1) +Wj(k + 1)

2
. (17)



9

Augmented Lagrangian:

Lρ =
1

n

n
∑

i=1

||Wi − 11
T /n||+

n
∑

i=1

aTi (Wi1− 1) +

n
∑

i=1

bTi (W
T
i 1− 1) +

∑

(i,j)∈E

[

Tr((Wi −Xij)
TCij)

+ Tr((Wj −Xji)
TDij)

]

+
ρ

2

[ n
∑

i=1

(

||Wi1− 1||2 + ||WT
i 1− 1||2

)

+
∑

(i,j)∈E

(

||Wi −Xij ||2F + ||Wj −Xji||2F
)

]

(11)

Update rule in Algorithm 2:

Wi(k + 1) = argmin
Wi:(Wi)ij=0,(i,j)/∈E

{

1

n
||Wi − 11

T /n||+ ai(k)
T (Wi1− 1) + bi(k)

T (WT
i 1− 1) +

∑

j∈Ni

Tr(WT
i Cij(k))

+
ρ

2

[

||Wi1− 1||2 + ||WT
i 1− 1||2 +

∑

j∈Ni

||Wi −Xij(k)||2F
]}

(12)

Update rule in Algorithm 1:

Wi(k + 1) = argmin
Wi:(Wi)ij=0,(i,j)/∈E

{

1

n
||Wi − 11

T /n||+ ai(k)
T (Wi1− 1) + bi(k)

T (WT
i 1− 1) + Tr(WT

i Mi(k))

+
ρ

2

[

||Wi1− 1||2 + ||WT
i 1− 1||2 +

∑

j∈Ni

∣

∣

∣

∣

∣

∣

∣

∣

Wi −
Wi(k) +Wj(k)

2

∣

∣

∣

∣

∣

∣

∣

∣

2

F

]}

, (13)

where Mi(k) =
∑

j∈Ni
Cij(k).

Substituting these in the dual updates (14), (15), we have

Cij(k + 1) = Cij(k)

+ ρ

(

Wi(k + 1)−Wj(k + 1)

2
− Cij(k) +Dij(k)

2ρ

)

,

(18)

Dij(k + 1) = Dij(k)

+ ρ

(

Wj(k + 1)−Wi(k + 1)

2
− Cij(k) +Dij(k)

2ρ

)

.

(19)

Adding the above two equations, we get

Cij(k + 1) +Dij(k + 1) = 0.

Initializing Cij(0) = Dij(0) = 0 implies

Cij(k) +Dij(k) = 0 (20)

for all k ≥ 0. Substituting this back in (18), (19) gives

Cij(k + 1) = Cij(k) + ρ

(

Wi(k + 1)−Wj(k + 1)

2

)

, (21)

Dij(k + 1) = Dij(k) + ρ

(

Wj(k + 1)−Wi(k + 1)

2

)

. (22)

Further, substituting Cij(k) +Dij(k) = 0 in (17) gives

Xij(k + 1) = Xji(k + 1) =
Wi(k + 1) +Wj(k + 1)

2
. (23)

Next, consider an arbitrary i ∈ {1, . . . , n}. Then, the update

Wi(k + 1) in Algorithm 2 can be evaluated as given in (12).

Here, in finding the argmin of Lρ, we have ignored those

terms in Lρ which are independent of Wi.

Now, in (12), we can substitute Xij(k) from (23). Further,

we can simplify the term
∑

j∈Ni
Tr(WT

i Cij(k)) as follows.

Define Mi(k) =
∑

j∈Ni
Cij(k). Then,

Mi(k + 1) =
∑

j∈Ni

Cij(k + 1)

=
∑

j∈Ni

[

Cij(k) + ρ

(

Wi(k + 1)−Wj(k + 1)

2

)]

= Mi(k) + ρ
∑

j∈Ni

(

Wi(k + 1)−Wj(k + 1)

2

)

and
∑

j∈Ni
Tr(WT

i Cij(k)) = Tr(WT
i Mi(k)). Thus, Wi(k +

1) can be computed as given in (13).

In conclusion, going from Algorithm 2 to Algorithm

1, the primal variables Xij(k), Xji(k) are no longer re-

quired to be maintained explicitly. Further, the dual variables

Cij(k), Dij(k) have been combined into Mi(k). The other

dual variables ai(k), bi(k) remain unchanged.

APPENDIX B

STOPPING CRITERION FOR ALGORITHM 1

We derive a stopping criterion for Algorithm 1. A good stop-

ping criterion for the ADMM of a constrained optimization

problem is when the optimality conditions of the problem are

satisfied with some tolerance [15]. The optimality conditions



10

for problem (P4) are that the gradient of the unaugmented

Lagrangian L0 (ρ = 0 in (11)) with respect to the primal

variables Wi and Xij must be zero and the constraints must

be satisfied, i.e., for all i ∈ {1, . . . , n},

∂

∂Wi
L0 = 0,

∂

∂Xij
L0 = 0, j ∈ Ni,

Wi1 = 1, WT
i 1 = 1,

(Wi)ij = 0, j /∈ Ni, Wi = Wj , j ∈ Ni. (24)

We check under what conditions do the primal and dual

variables in Algorithm 2 satisfy these conditions.

First, we show that the conditions (∂/∂Wi)L0 = 0 and

(∂/∂Xij)L0 = 0 are always satisfied by the primal and

dual variable iterates Wi(k+1), ai(k+1), bi(k+1), Cij(k+
1), Dij(k + 1) for all k ≥ 0.

By definition of Wi(k + 1) as given in Algorithm 2, we

know that Wi(k + 1) minimizes Lρ given in (11). Hence,

(∂/∂Wi)Lρ evaluated at Wi = Wi(k+1) must be zero. This

means

∂

∂Wi

(

1

n
||Wi − 11

T /n||
)
∣

∣

∣

∣

Wi=Wi(k+1)

+ ai(k)1
T

+ 1bi(k)
T +

∑

j∈Ni

Cij(k) + ρ

[

(Wi(k + 1)1− 1)1T

+ 1(Wi(k + 1)T1− 1) +
∑

j∈Ni

(Wi(k + 1)−Xij(k))

]

= 0.

From the dual update equations ai(k+1), bi(k+1), Cij(k+1)
as given in Algorithm 2, we can combine some terms in the

above equation to get

∂

∂Wi

(

1

n
||Wi − 11

T /n||
)∣

∣

∣

∣

Wi=Wi(k+1)

+ ai(k + 1)1T

+ 1bi(k + 1)T +
∑

j∈Ni

Cij(k + 1) = 0.

Above is precisely the condition (∂/∂Wi)L0 = 0 evaluated at

Wi(k+1), ai(k+1), bi(k+1), Cij(k+1). Thus, (∂/∂Wi)L0 =
0 is always satisfied by the primal and dual variable iterates.

Now, consider the second condition (∂/∂Xij)L0 = 0. Eval-

uating the gradient of L0, with the constraint that Xij = Xji,

this condition can be written as Cij +Dij = 0. From (20), we

know that this is true for Cij(k), Dij(k) for all k ≥ 0. Thus,

(∂/∂Xij)L0 = 0 is always satisfied by the primal and dual

iterates of the algorithm.

Thus, from the optimality conditions (24), only the con-

straint conditions are not satisfied by the iterates of the

variables in Algorithm 2. Define the residuals of the constraints

as

r1i (k) = ||Wi(k)1− 1||/
√
n,

r2i (k) = ||Wi(k)
T
1− 1||/

√
n,

r3ij(k) = ||Wi(k)−Wj(k)||F /n, j ∈ Ni,

r4ij(k) = |(Wi(k))ij |, j /∈ Ni, (25)

for all i ∈ {1, . . . , n}. Here, we have divided by n or
√
n to

compensate for the dimension of the quantity inside the norm.

Now, we define the maximum residual at agent i as

Ri(k) = max{r1i (k), r2i (k), r3ij(k), r4ij(k) : j ∈ Ni}. (26)

Then, the optimality conditions (24) are satisfied with an ǫ
tolerance for some k if

Ri(k) ≤ ǫ for all i ∈ {1, . . . , n}. (27)

This is the stopping criterion for Algorithm 1. Remark 3

explains how this stopping criterion is used in the algorithm.

APPENDIX C

PROOF OF LEMMA 1

First, we recall the definition of a primitive matrix.

Definition 1. A non-negative matrix W is said to be primitive

with index m ≥ 1 if Wm > 0.

Primitive matrices are a special class of matrices which have

all but one eigenvalue strictly within the circle described by

the spectral radius of the matrix. We make use of this fact

whose proof can be found in [24, (8.3.16)].

Proposition 2. [24] Suppose W is a non-negative matrix

which satisfies W1 = 1,WT
1 = 1. Then, W is primitive if

and only if ρ(W − 11
T /n) < 1.

Given that the graph G is connected, using the above result,

we now construct a weight matrix W which satisfies the

consensus condition (4). We will use this result to prove

Lemma 1.

Lemma 3. Given G is a connected graph, consider a non-

negative weight matrix W which satisfies

W1 = 1, WT
1 = 1, Wij > 0, (i, j) ∈ E. (28)

Then, ρ(W − 11
T /n) < 1.

Proof. We prove this result by showing that W is a primitive

matrix, i.e., we show that ∃m ≥ 1 such that Wm > 0.

For a given pair of nodes (i, j), consider any mij ≥ 2.

Then,

(Wmij )ij =

n
∑

l1=1

n
∑

l2=1

· · ·
n
∑

lmij−1=1

Wil1Wl1l2 . . .Wlmij−1j .

Note that for mij = 1, (Wmij )ij = Wij . Thus, (Wmij )ij
is the sum of the product of weights of all edges which are

part of all paths of length at most mij between nodes (i, j)
of the graph. Since the graph G is connected, there is a path

(of length at most n − 1) between every pair of nodes (i, j),
i.e., for all (i, j) ∈ {1, . . . , n}2, ∃mij ∈ {1, . . . , n − 1} such

that (Wmij )ij > 0. Hence, we can conclude that Wn−1 > 0,

i.e., W is primitive with an index of (at most) n− 1.

Now, by Proposition 2, we have ρ(W − 11
T /n) < 1.

We are now ready to prove Lemma 1. We have to show

that any solution W ∗ of (P2) satisfies ρ(W ∗ − 11
T /n) < 1.

Since ρ(A) ≤ ||A|| for any matrix A ∈ R
n×n, it is sufficient



11

to show that ||W ∗−11
T /n|| < 1. Moreover, since W ∗ is the

optimal value of (P2), it is sufficient to show that, given G is

connected, ∃W ∈ R
n×n which satisfies the constraints

W1 = 1, WT
1 = 1, Wij = 0, (i, j) /∈ E

of (P2) such that ||W −11
T /n|| < 1. We construct such a W

as follows. Consider a W which satisfies the condition (28).

Then, we have

||W − 11
T /n||2 = ρ

(

(W − 11
T /n)(W − 11

T /n)T
)

= ρ(WWT − 11
T /n).

It is easy to verify that WWT also satisfies the condition

(28). This implies, ρ(WWT − 11
T /n) < 1, which implies

||W − 11
T /n|| < 1.

REFERENCES

[1] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor
fusion based on average consensus,” in IPSN 2005. Fourth International

Symposium on Information Processing in Sensor Networks, 2005., April
2005, pp. 63–70.

[2] G. Cybenko, “Dynamic load balancing for distributed memory multipro-
cessors,” Journal of Parallel and Distributed Computing, vol. 7, no. 2,
pp. 279 – 301, 1989.

[3] J. A. Fax and R. M. Murray, “Information flow and cooperative
control of vehicle formations,” IEEE Transactions on Automatic Control,
vol. 49, no. 9, pp. 1465–1476, Sep. 2004.

[4] R. O. Saber and R. M. Murray, “Consensus protocols for networks
of dynamic agents,” in Proceedings of the 2003 American Control

Conference, 2003., vol. 2, June 2003, pp. 951–956.

[5] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,” IEEE Transactions

on Automatic Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.

[6] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems & Control Letters, vol. 53, no. 1, pp. 65 – 78, 2004.

[7] Wei Ren and R. W. Beard, “Consensus seeking in multiagent systems
under dynamically changing interaction topologies,” IEEE Transactions

on Automatic Control, vol. 50, no. 5, pp. 655–661, May 2005.

[8] S. Sundaram and C. N. Hadjicostis, “Finite-time distributed consensus
in graphs with time-invariant topologies,” in 2007 American Control

Conference, July 2007, pp. 711–716.

[9] L. Wang and F. Xiao, “Finite-time consensus problems for networks
of dynamic agents,” IEEE Transactions on Automatic Control, vol. 55,
no. 4, pp. 950–955, April 2010.

[10] C. Ko and L. Shi, “Scheduling for finite time consensus,” in 2009

American Control Conference, June 2009, pp. 1982–1986.

[11] S. Y. Shafi, M. Arcak, and L. El Ghaoui, “Designing node and edge
weights of a graph to meet laplacian eigenvalue constraints,” in 2010

48th Annual Allerton Conference on Communication, Control, and

Computing (Allerton), Sep. 2010, pp. 1016–1023.

[12] Yoonsoo Kim and M. Mesbahi, “On maximizing the second smallest
eigenvalue of a state-dependent graph laplacian,” IEEE Transactions on

Automatic Control, vol. 51, no. 1, pp. 116–120, Jan 2006.

[13] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing markov chain on a
graph,” SIAM Review, vol. 46, no. 4, pp. 667–689, 2004.

[14] M. El Chamie, G. Neglia, and K. Avrachenkov, “Distributed weight
selection in consensus protocols by schatten norm minimization,” IEEE

Transactions on Automatic Control, vol. 60, no. 5, pp. 1350–1355, May
2015.

[15] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, p. 1–122,
Jan. 2011.

[16] J. Eckstein, “Augmented Lagrangian and alternating direction methods
for convex optimization: A tutorial and some illustrative computational
results,” RUTCOR Research Reports, pp. 1–35, 2012.

[17] M. L. Overton and R. S. Womersley, “On minimizing the special radius
of a nonsymmetric matrix function: Optimality conditions and duality
theory,” SIAM Journal on Matrix Analysis and Applications, vol. 9, no. 4,
pp. 473–498, 1988.

[18] M. Mardani, G. Mateos, and G. B. Giannakis, “Decentralized sparsity-
regularized rank minimization: Algorithms and applications,” IEEE

Transactions on Signal Processing, vol. 61, no. 21, pp. 5374–5388, Nov
2013.

[19] A. Zare, M. R. Jovanović, and T. T. Georgiou, “Alternating direction
optimization algorithms for covariance completion problems,” in 2015

American Control Conference (ACC), July 2015, pp. 515–520.
[20] M. ApS, The MOSEK optimization toolbox for MATLAB manual.

Version 9.0., 2019.
[21] J. Löfberg, “Yalmip : A toolbox for modeling and optimization in

matlab,” in In Proceedings of the CACSD Conference, Taipei, Taiwan,
2004.

[22] MATLAB, “version 9.2.0.556344 (r2017a),” in The MathWorks Inc.,

Natick, Massachusetts, USA, 2017.
[23] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-

tion: Numerical Methods. USA: Prentice-Hall, Inc., 1989.
[24] C. D. Meyer, Matrix analysis and applied linear algebra. SIAM, 2000,

vol. 71.

Kiran Rokade received the B.Tech. degree in electrical engineering from
V.J.T.I., Mumbai, India, in 2016. and the an M.S. degree in electrical
engineering from Indian Institute of Technology Madras, Chennai, India in
2020. Currently, he is pursuing his PhD at Cornell University. His research
interests include multi-agent systems, optimization theory and game theory.

Rachel Kalpana Kalaimani received the B.E. degree in electrical and
electronics engineering from P.S.G. College of Technology, Coimbatore, India,
in 2009 and the Ph.D. degree in control from the Department of Electrical
Engineering, Indian Institute of Technology Bombay, Mumbai, India, in 2014.
After that she was a Post Doctoral Research Fellow at the Department
of Electrical and Computer Engineering, University of Waterloo, Waterloo,
ON, Canada. She is currently an Assistant Professor at Indian Institute of
Technology Madras, Chennai, India. Her current research interests include
distributed optimization, networked control systems and complex systems.
Other interests include optimization of energy consumption in buildings,
model predictive control, graph theoretic techniques, and numerical linear
algebra.


	I Introduction
	I-A Contributions
	I-B Notation

	II Problem Formulation
	II-A The average consensus problem
	II-B Optimal weights
	II-C Locally calculated weights

	III Main Result
	IV Examples
	IV-A Fixed network
	IV-B New agents enter a network: ADMM live — a variation of Algorithm 1
	IV-C Average computation time of Algorithm 1

	V Conclusion
	Appendix A: Proof of Theorem 1
	Appendix B: Stopping criterion for Algorithm 1
	Appendix C: Proof of Lemma 1
	References
	Biographies
	Kiran Rokade
	Rachel Kalpana Kalaimani


