DisGCo: A Compiler for Distributed Graph Analytics

ANCHU RAJENDRAN and V. KRISHNA NANDIVADA, Indian Institute of Technology Madras

Graph algorithms are widely used in various applications. Their programmability and performance have gar-
nered a lot of interest among the researchers. Being able to run these graph analytics programs on distributed
systems is an important requirement. Green-Marl is a popular Domain Specific Language (DSL) for coding
graph algorithms and is known for its simplicity. However, the existing Green-Marl compiler for distributed
systems (Green-Marl to Pregel) can only compile limited types of Green-Marl programs (in Pregel canonical
form). This severely restricts the types of parallel Green-Marl programs that can be executed on distributed
systems. We present DisGCo, the first compiler to translate any general Green-Marl program to equivalent
MPI program that can run on distributed systems.

Translating Green-Marl programs to MPI (SPMD/MPMD style of computation, distributed memory)
presents many other exciting challenges, besides the issues related to differences in syntax, as Green-Marl
gives the programmer a unified view of the whole memory and allows the parallel and serial code to be inter-
mixed. We first present the set of challenges involved in translating Green-Marl programs to MPI and then
present a systematic approach to do the translation. We also present a few optimization techniques to im-
prove the performance of our generated programs. DisGCo is the first graph DSL compiler that can handle all
syntactic capabilities of a practical graph DSL like Green-Marl and generate code that can run on distributed
systems. Our preliminary evaluation of DisGCo shows that our generated programs are scalable. Further,
compared to the state-of-the-art DH-Falcon compiler that translates a subset of Falcon programs to MPI, our
generated codes exhibit a geomean speedup of 17.32X%.

CCS Concepts: » Software and its engineering — Distributed programming languages; Compilers;
Domain specific languages;

Additional Key Words and Phrases: Graph analytics, distributed programming, GreenMarl

ACM Reference format:

Anchu Rajendran and V. Krishna Nandivada. 2020. DisGCo: A Compiler for Distributed Graph Analytics.
ACM Trans. Archit. Code Optim. 17, 4, Article 28 (September 2020), 26 pages.

https://doi.org/10.1145/3414469

1 INTRODUCTION

Graph algorithms find applications in a variety of fields for various problems. Non-uniform
distribution of the node degrees in the input graphs and unpredictable data access patterns
in the algorithms pose many exciting challenges in efficiently implementing these algorithms,
especially for the emerging parallel systems. Considering the challenges in implementing parallel

This work is partially supported by SERB CRG grant (sanction number CRG/2018/002488) and NSM research grant (sanction
number MeitY/R&D/HPC/2(1)/2014).

Authors’ addresses: A. Rajendran and V. K. Nandivada, Dept. of CSE, IIT Madras, Chennai, Tamil Nadu, India, 600036;
emails: anchurs@gmail.com, nvk@iitm.ac.in.

@HoM
This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2020 Copyright held by the owner/author(s).
1544-3566/2020/09-ART28
https://doi.org/10.1145/3414469

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 28. Publication date: September 2020.

28:2 A. Rajendran and V. K. Nandivada

graph algorithms using traditional general-purpose high-level languages (for example, C++,
Java, and so on), researchers have proposed languages/frameworks/libraries such as GraphLab
[35], PowerGraph [20], Gemini [58], Pregel [37], Green-Marl [27], and DH-Falcon [13] that
provide different APIs for writing parallel graph algorithms. Among these proposed approaches,
Green-Marl and DH-Falcon are high-level domain-specific languages that allow graph algorithms
to be expressed in an imperative programming style.

Though graph DSLs like Green-Marl and DH-Falcon present a convenient way to code graph al-
gorithms, their usage in the context of distributed systems is still in its nascent stage. In this article,
we focus on the popular Green-Marl DSL, known for its speed on shared memory systems [27].

Currently, Green-Marl supports three backends: OpenMP [27], CUDA [48], and Pregel [28]. The
OpenMP and CUDA backends generate code to be run on shared memory systems and GPGPUs,
respectively. Even though the Pregel backend can be used to compile Green-Marl programs to be
run on distributed systems, the backend can only translate programs in Pregel canonical form [28]:
a small subset of possible Green-Marl programs. For example, of the 27 programs in the Green-Marl
repository, only 7 could be compiled by the existing Pregel backend. To the best of our knowledge,
there is no existing compiler for Green-Marl that can translate any general Green-Marl programs
to programs that can run on distributed systems. In this article, we present the design of DisGCo
(Distributed Green-Marl Compiler), the first compiler that can be used to compile arbitrary Green-
Marl codes to equivalent C++ MPI code.

Message Passing Interface (MPI) [2] is a standard (library specification) for distributed program-
ming, which is widely used for its portability and performance. MPI supports two models of pro-
gramming; Point-to-Point (P2P) using sends and receives (a.k.a. two-sided communication model),
and Remote Memory Access (RMA) [2, 26, 51] using puts and gets (a.k.a. one-sided communica-
tion model). The state-of-the-art DH-Falcon compiler translates a subset of programs written in
DH-Falcon to MPI programs using P2P communication. Prior research [18, 24] has shown that
RMA-based communication can provide a better overlap of computation and communication by
avoiding CPU intervention in communication and hence could provide better performance than
point-to-point programs. Recently, the pioneering works of Li et al. [32, 33] show that RMA can be
used for graph processing systems to improve their performance over P2P implementations sig-
nificantly. In this article, we leverage their experience to design a novel translation scheme from
Green-Marl to an MPI RMA. To the best of our knowledge, ours is the first work that exploits
the RMA-based communication to translate graph algorithms and high-level data structures of a
practical graph DSL.

There are many fundamental differences between Green-Marl and MPI that makes the transla-
tion quite challenging. These challenges arise due to the following three main factors: (i) Differ-
ences in syntax; (ii) The programmer view of data storage: In contrast to MPI, where the data can be
distributed across different processes, Green-Marl views all data as available locally in the shared
memory; (iii) Model of computation: In contrast to the SPMD/MPMD style of computation in MPI,
the Green-Marl programs can have the parallel and serial code inter-mixed. We first identified the
underlying challenges resulting from these differences and developed novel approaches for map-
ping Green-Marl features onto MPI codes. Using the DisGCo compiler, the application developers
can take advantage of the high-level programmability aspects of Green-Marl while harnessing the
capabilities of distributed systems to run complex graph algorithms on large input graphs. Though
we develop our techniques in the context of Green-Marl, we believe these can be extended to other
DSLs (such as DH-Falcon and Graphlt [57]) that provide a shared memory view of data, to generate
performant MPI RMA code.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 28. Publication date: September 2020.

DisGCo: A Compiler for Distributed Graph Analytics 28:3

Our Contributions:

e We present DisGCo, the first Green-Marl compiler that can compile arbitrary Green-Marl
programs to MPI RMA programs that can run on a distributed set-up.

e We identified the challenges involved in compiling each Green-Marl construct, and then
we devised and implemented a novel translation scheme in DisGCo. Considering the im-
portance of the underlying data distribution scheme, we have designed DisGCo to admit
any arbitrary programmer-specified vertex partitioning scheme.

e We have also implemented a set of optimizations in DisGCo to improve the performance of
our generated codes.

e We present an evaluation of DisGCo over a set of five popular kernels; we found that our
programs are scalable, and the optimizations bring-in impressive performance benefits.

e We compare the performance of our generated codes against the MPI codes generated by the
state-of-the-art DH-Falcon compiler and show that the DisGCo-generated programs lead to
a geomean speedup of 17.32x over DH-Falcon-generated codes.

The article is organized as follows: In Section 2, we provide the reader with a brief background
of the basics of Green-Marl and MPI RMA. In Section 3, we discuss some of the main challenges
encountered in designing and implementing DisGCo. In Section 4, we illustrate the translation
scheme used by DisGCo for handling various constructs in Green-Marl. In Section 5, we present
some optimizations designed to improve the code generated by DisGCo, and in Section 6, we discuss
some salient issues of DisGCo. In Section 7, we present a detailed evaluation of DisGCo. We discuss
the related work in Section 8 and conclude in Section 9.

2 BACKGROUND

In this section, we briefly cover some of the background details required for this article.

2.1 Green-Marl Features

We now briefly describe some of the features of Green-Marl and its existing runtime, relevant for
this article. More details can be found in the Green-Marl language specification [1].

Graph representation. The current Green-Marl runtime stores the input graph using a space-
efficient representation called Compressed Sparse Row (CSR) format. In CSR format, for each graph
(V, E), two arrays are maintained: node_idx and begin. The array node_idx, as the name indi-
cates, stores the vertex-ids. The edges are grouped according to source vertices, and each group
is then sorted based on the source vertex-ids to give us an ordered list of edges. The destination
vertex-id of all the edges (in the ordered list) are stored in order in node_idx. The begin array
contains 1 + |V| number of elements. For any vertex with vertex-id v, the outgoing edges of v will
have edge-ids starting from begin[v] to begin[v + 1] — 1. For i € [begin[v] - - -begin[v + 1] —
1], node_idx[i] gives the (i — begin[v])*" neighbor of v. Further, for a fast lookup for incoming
edges, Green-Marl runtime uses a reverse lookup with two more arrays r_begin and r_node_idx
(for reverse edges). For the graph shown in Figure 1(i), Figure 1(ii) shows the forward maps and
Figure 1(iii) shows the reverse maps in CSR format representation.

Datatypes. Besides the scalar data types (such as int, bool, and so on), Green-Marl supports a few
graph specific data-types such as node, egde, DGraph (representing directed graph), and UGraph
(representing undirected graph). Nodes and edges can have associated properties of types N_P and
E_P, respectively. In Green-Marl, graph elements can also be stored in sets, orders, or sequences.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 28. Publication date: September 2020.

28:4 A. Rajendran and V. K. Nandivada
begin ::61: r_begin n 5 ::61:

forward direction reverse direction
0) (i) (i)

Fig. 1. An example representation in CSR.

1 Procedure sssp(G:Graph, dist:N_P<Int>, len:E_P<Int>, root:Node) {
2 N_P<Bool> updated;

3 N_P<Bool> updated_nxt;

4 N_P<Int> dist_nxt;

5 Bool fin = False;
6

7

8

9

@

.dist = (G == root) ? 0: +INF;
G.updated = (G == root) ? True: False;
G.dist_nxt = G.dist;

G.updated_nxt = G.updated;

11 while(!fin) {

12 fin = True

13 Foreach (n: G.Nodes)(n.updated) {

14 Foreach (s: n.Nbrs) {

15 Edge e = s.ToEdge(); // theedgeto s

16 <s.dist_nxt; s.updated_nxt> min= <n.dist + e.len; True>;

/*Foreach*/ } /xForeachx/

3
G.dist = G.dist_nxt;
20 G.updated = G.updated_nxt;
G.updated_nxt = False;
fin = ! Exist(n: G.Nodes){n.updated}; } /*whilex/ } /*procedure sssp*/

Fig. 2. SSSP written in Green-Marl.

Loops and Iterators. Besides the sequential for-loops, Green-Marl supports parallel-loops (using
the Foreach construct). These looping constructs can be used to iterate over nodes, edges, or
different collections. Each of these looping constructs can have an optional argument that sets up
a filter to decide if the specific iteration has to be executed. For example, in Figure 2, at line 13,
the condition ensures that the node n will be processed only if the value of the node property
n.updated is set to true.

Green-Marl also supports special iterators such as inBFS and inDFS that allow nodes to be
visited in BFS and DFS order, respectively. For example, the following example iterates over the
nodes of the graph G using src as the source node in BFS order. For each node in the BFS order,
it executes SB1, and at the end of the BFS travel, SB2 is executed for each node in the reverse BFS
order.

1 inBFS (Iter_name : G.nodes from src)
2 { SB1; /" statement block 1/}

3 1inReverse

4« { SB2; /" statement block 2 "/}

Green-Marl also provides iterators like Nbr to iterate over the neighbors of a node and
CommonNbrs to iterate over the common neighbors of two nodes. For example, the Green-Marl
code “for (s in u.CommonNbrs(v)) {S1}” executes S1 for the common neighbors of u and v.

Reduction. Green-Marl supports many reduction operations such as Sum, Product, Count,
Min, Max, and Exists for performing reductions inside a parallel region. For example, in

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 28. Publication date: September 2020.

DisGCo: A Compiler for Distributed Graph Analytics 28:5

Figure 2, at line 16, the property s.dist_next is set to the minimum of n.dist + e.length and
s.dist_next, and if the value is updated, the property s.updated_next is set to true. Similarly,
at line 22, the variable fin is set if the property updated is set for any node.

We now briefly explain the usage of Green-Marl syntax using an example program shown in
Figure 2, which implements the Bellman Ford’s version [15] of SSSP. Here, the formal parameter
dist is an example of a node property, and len is an example of an edge property. The lines 6
to 9 show group assignments where the properties of all the nodes/edges are initialized to the
value of the expression on the RHS. The main computation spans the two nested Foreach loops,
which together iterate over all the edges in the graph and update the shortest distance of the edge’s
destination. The computation inside Foreach loops is repeated inside an outer while-loop until
no node has its distance updated to a new value.

2.2 Programming in MPI RMA

We now cover an introduction to programming in MPI RMA.

Parallelism in MPI. We use the SPMD (single program multiple data) style of parallelism in
our generated MPI programs. In SPMD programs, one or more processes are created to execute
the same program,; the data are distributed among all the processes. Each data item has a unique
“owner” process. Each process works on its “local” data and may access (read/write) the data of
remote processes by communicating with the owner process of the remote data. In the context of
graphs, each process owns a local sub-graph with local vertices, local edges, and local vertex/edge
properties. Further, with each vertex and edge, we maintain a local-id and a global-id.

Programming in MPI RMA. Using MPI RMA (one-sided communication model), a process
(called the origin process) can directly access the memory of a target process without the target
necessarily participating in the communication. This is achieved through a handle called window,
to which any remotely accessible memory is attached. MPI supports different types of windows,
of which, DisGCo uses dynamic windows to which any arbitrary memory can be attached to (or
detached from). For any program generated, DisGCo maintains a single dynamic window (in a vari-
able win), on which, we use MPI_Get (or MPI_Put) to read (or write) remote data. The calls MPI_Get
and MPI_Put take three main arguments: the window handle, the offset of the memory in window,
and the rank of the target process.

As suggested by Li et al. [32], to improve the communication-computation overlap, we use pas-
sive synchronization using the MPI_Win_lock and MPI_Win_unlock calls. The period between a
lock and unlock is called an epoch, and any reads or writes to a remote process within an epoch
are ensured to be over by the end of the epoch. Within an epoch, the MPI call MPI_Win_flush can
be used to ensure the completion of a remote access. To reduce a value across different processes,
MPI supports many reduction operations using the MPI_A11l_reduce call that makes the result
available to all the processes.

For the ease of presentation, we use a set of concise macros (described in Figure 3), instead of
the detailed MPI calls, in our further discussions.

3 CHALLENGES IN GREEN-MARL TO MPI RMA TRANSLATION

Considering the differences in the underlying design philosophies of Green-Marl and MP]I, it is
natural that there is no direct one-to-one correspondence between the constructs/features of both.
In this section, we discuss the different challenges that we encounter when we go about translating
the various Green-Marl constructs/features to MPL

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 28. Publication date: September 2020.

28:6 A. Rajendran and V. K. Nandivada

Macro Explanation

LOCK(r) Locks win at rank r.

UNLOCK(r) Unlocks win at rank r.

FLUSH(Q) Ensures completion of pending communication requests by executing processes.
OFFSET(A, idx,r) Computes offset of A[idx] at rank r in win.

GET(var,offset,r) Reads value at of fset in win at r to var.

PUT(var,offset,r) Writes value in var to memory specified by of fset in win at r.
GETA(A,offset,r) Reads an array at of fset in win at r to the local array A.
ALLREDUCE(v1,v2,0p) | Reduces value in v2 in all processes to v1 in all processes using op.
RANK (V) Computes rank of the process that owns vertex v.

LIdy (V) Computes local-id of vertex v.

BARRIER Synchronizes all processes.

ADD(array, elem) Appends elem to array.

NDOFFSET (A, s) OFFSET(A, LIdy (s),RANK(S)).

Fig. 3. Macros used in the text. These macros wrap MPI-specific functionalities.

3.1 Parallelism Specification and Data Layout

Parallelism in Green-Marl is specified using explicit Foreach statements (see Figure 2, for exam-
ple). However, MPI does not have any direct syntax for specifying such parallel-for-loops.

While writing a Green-Marl program, the programmer does not specify where the data are ac-
tually located (local or remote). In contrast, MPI allows the data to be distributed across different
processes (possibly running on multiple nodes), thereby improving the scalability of the programs
(to handle large data). Here, different processes can access the data of other processes via re-
mote communication. Efficiently mapping and accessing the data structures of Green-Marl (such
as graphs, maps, properties, and so on) from a shared-memory view to a distributed-memory view
poses interesting challenges. Further, the exact distribution for the input data (among the different
processes) has a big impact on the load-balancing, and consequently on the performance of the
generated code. Supporting arbitrary types of distributions remains an important challenge.

3.2 Presence of Mixed Parallel and Serial Codes

A Green-Marl code may contain a sequence of serial and parallel code parts (for example, see
Figure 2, where lines 13-17 constitute the parallel part). In contrast, in MPI, many instances of the
same program are executed by multiple processes, and there is no explicit syntax to support serial
code. In the translated code, the iterations of the input Green-Marl code’s parallel loop should be
distributed to be executed by all the processes, whereas the serial-part of the input should not be
naively executed by all the processes (as it may lead to incorrect execution). Further, there may be
dependencies between the serial and parallel parts, which need to be preserved in the translation.

3.3 Distributed Graph Representation

To exploit the SPMD parallelism in MPI, different parts of the data are associated with different
processes (that is, “distributed data”). Efficient representation of data is an important aspect of per-
formant distributed programs, and it becomes more challenging in the context of storing complex
data structures like graphs. We need an efficient storage representation for the underlying graph
data structures to generate scalable programs.

3.4 Translating Green-Marl Constructs

As discussed in Section 2, for improved programmability, Green-Marl provides a rich set of con-
structs, such as iterators (for example, InBFS, InDFS, CommonNbrs, etc.), collections (for example,

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 28. Publication date: September 2020.

DisGCo: A Compiler for Distributed Graph Analytics 28:7

Maps, Sets, etc.), reductions, and so on. Each of these constructs needs to be translated in a space-
and time-efficient manner. Translation of Green-Marl constructs depends on two main factors:
(i) whether the data accesses made in these constructs are remote or local and (ii) whether the
constructs are used in a sequential or parallel region. If the constructs are used in a sequential
region of the Green-Marl code, multiple MPI processes executing the corresponding generated
code should compute the same values consistent with a single sequential execution. However, if
constructs are used in a parallel region, then multiple MPI processes can operate independently
(unless any explicit synchronization is specified in the Green-Marl code).

3.5 Efficiency of the Translated Code

In distributed systems, especially in the context of compiling graph algorithms, it is crucial that
the generated code runs efficiently and scales up to large inputs over multiple nodes. Naively
translating individual Green-Marl constructs may lead to inefficient codes. Hence, it is important
to identify and implement various optimizations over the generated code.

4 GREEN-MARL TO MPI RMA TRANSLATION

In this article, we present some of the underlying facets of the design of DisGCo (Distributed Green-
Marl Compiler). It is the first compiler that can compile any general Green-Marl program to C++
MPI code. In this section, we mainly focus on the translation of some of the important and chal-
lenging Green-Marl features/constructs. We start by discussing how the generated codes store the
graphs over distributed systems in a space-efficient manner. For the ease of presentation, in this
section, we assume that all parallel parts of the code are present (in-line) within a single function.
In Section 6, we discuss how we deal with general programs.

4.1 Distributed Graph Representation

For a space-efficient representation of the input graph whose vertices and edges are distributed
across different processes, we extend the popular and performant CSR format (see Section 2.1)
for distributed systems. We start by distributing the underlying graph data structures like begin
and node_idx. For the simplicity of discussion, we use a simple block partitioning for distribut-
ing vertices among processes. In Section 4.7, we discuss how DisGCo admits any arbitrary vertex
partitioning scheme.

We assign all the forward and reverse edges of a vertex to the same process to which the vertex
belongs. This enables any process to access the properties of the forward/reverse edges of a local
vertex quickly (as it is stored locally), which is a desirable condition for many propagation-based
graph analytics like SSSP where the value of “distance” is propagated through neighbors. For each
process, let num_local_nodes hold the number of (local) nodes. During the execution of our gen-
erated code, for each vertex v assigned to an MPI process, we maintain a partial function LId,:
Vertices — {0,1,...,num_local_nodes — 1} to return the “local” id of the vertex. A similar map
is maintained for the edges, as well. Note that unlike the actual ids of the vertices and edges, the
local ids are not unique across processes.

Distributed CSR Representation. The four main arrays in CSR representation (begin,
node_idx, r_begin, and r_node_idx) are distributed such that each process maintains informa-
tion using four similar local arrays (1_begin, 1_node_idx, 1_r_begin, and 1_r_node_idx) by
storing information about only the vertices and edges the process owns. We call it the distributed
CSR (DCSR, in short) representation.

Example: Figure 4 explains how the graph shown in Figure 1 is represented in DCSR format,
assuming two processes. Here, the four vertices a, b, c, and d are distributed such that a and

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 28. Publication date: September 2020.

28:8 A. Rajendran and V. K. Nandivada

rank = 0 rank = 0

1 begin [::37 | 1 r begin n
1 node_idx 1_r node_idx

forward direction reverse direction
rank = 1 rank = 1
1_ begin n N 1 r begin n
S 7 e IR o oy iy
forward direction reverse direction

Fig. 4. An example representation in DCSR.

b belong to process with rank 0, and ¢ and d belong to process with rank 1. The forward/reverse
edges are owned by the process owning the source vertex of the edge.

4.2 Translating for-loops

We divide the discussion on how we translate the for-loops into two parts, depending on whether
it is a parallel or serial for-loops.

Parallel for-loops. As discussed in Section 2, we focus on the Green-Marl Foreach-loops that can
iterate over ranges of the nodes and edges. As discussed above, the elements of these ranges may
be distributed across multiple processes during the execution of the generated code. Thus, while
translating a Foreach-loop to MPI, we emit code such that different processes handle their local
data in parallel with each other. Like the current Green-Marl compiler, for nested Foreach-loops,
we parallelize only the outer-most Foreach-loop.

Consider the SSSP code shown in Figure 2, where there is a parallel loop conditionally iterating
over the nodes of the graph (line 13). In the generated MPI code, we emit a loop for each process
to iterate over num_local_nodes (line 4 in Figure 5); the check in line 5 enforces the condition in
the parallel loop.

Serial for-loops. In the generated MPI program, unlike the parallel loops, the complete serial-loop
is executed by every process and not distributed across different processes.

Translating other node- and edge-ranges. As discussed in Section 2, the Green-Marl for-loops
can range over many pre-defined ranges, all of which are handled by us using a similar scheme.
We now illustrate the scheme using the translation of the Green-Marl expression n.Nbrs, which
is used to obtain the neighbors of the node n.

Example: Consider the SSSP code (Figure 2, line 14), where there is an inner loop iterating over
neighbors of the node n. If we look at the translated MPI code (Figure 5), we can see that n will
always be a local node inside the outer for-loop at line 4, and hence to iterate over the neighbors
of n inside this outer for-loop, we can iterate over the locally stored graph data structures. DisGCo
statically identifies that n is local and translates the inner loop to iterate from 1_begin[n] to
1_begin[n+1] (line 6). The corresponding loop index will be a local edge number (s_i) and the
target of the edge (a.k.a. neighbor) is given by 1_node_idx[s_i] (line 7).

Note that unlike in the discussed SSSP code, if DisGCo cannot guarantee that the node n at the
inner for-loop will always be a local node, then it will be treated as a remote-node and we will have

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 28. Publication date: September 2020.

DisGCo: A Compiler for Distributed Graph Analytics 28:9

1 void sssp(...)

2

3 while (!fin){

4 for(node_t n=0; n<num_local_nodes; n++) {

5 if (updated[n]) {

6 for(edge_t s_i=1_begin[n];s_i<l_begin[n+1];s_i++){
7 node_t s = 1l_node_idx[s_il; // neighbor of n.
8 e = s_i;

9 int templ = dist[n] + len[e];

10 LOCK (RANK (s));

11 GET(temp2 ,NDOFFSET (dist_nxt,s),RANK(s));

12 FLUSH();

13 if(templ < temp2) {

14 PUT (temp1 ,NDOFFSET (dist_nxt,s),RANK(s));

15 PUT (true ,NDOFFSET (updated_nxt,s),RANK(s));
16 }

17 UNLOCK (RANK (s));

18

19 333

20

21 bool temp = false;

22 for(n=0; n<num_local_nodes; n++) { temp = temp]||updated[n]; }
23 ALLREDUCE (temp, fin,MPI_LOR);

2} %

Fig. 5. Part of translated SSSP code in MPI RMA.

for(node_t n=0; n<G.nodes(); n++) {

1 . .

2 int neighbors_size = find_num_neighbors(n);

3 node_t *neighbors = read_neighbors(n);

4 for(int i=0; i<neighbors_size; i++) {node_t s = neighbors[i]; ...}3}

Fig. 6. Translating Nbrs with remote accesses.

to obtain the neighbor information from the process to which n may belong to, at runtime. In such a
case, we will generate MPI code similar to the one shown in Figure 6, where find_num_neighbors
computes the number of neighbors of the node n and read_neighbors returns the neighbors of
n. At runtime, these functions will perform remote accesses to obtain neighbor information, if
necessary (n is a remote node, that is).

4.3 Handling Property Accesses

In Green-Marl, programmers can associate the nodes (and edges) with different data, and such
data are collectively referred to as the properties of the nodes (or edges). In the generated MPI
code, for each property, we use arrays at the backend to hold all the property-values across all
the nodes/edges. Each process will store only information about the local node-properties (and/or
edge-properties). When a process accesses a node- or an edge-property, it can be a local- or remote-
access, depending on where the corresponding node or edge resides.

If we can conservatively prove that the access is local (see the end of Section 4.3), then we emit
code to access the local elements directly. Else the access is treated as remote access. We now
explain how we translate remote accesses of the properties, using node properties as an example;
the same can be extended to edge properties. The translation scheme is shown in Figure 7.

Remote read/write in a parallel loop. Consider the statements n.x=..., or ...=...n.X...,
where the remote property n.x is set or read, inside a parallel loop. To avoid data-races and

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 28. Publication date: September 2020.

28:10 A. Rajendran and V. K. Nandivada

//1. parallel remote write: emit ("temp=...;//temp islocal, set to RHS.
n.x = ...; r=RANK(n);
LOCK(r); PUT(temp, NDOFFSET(x, n), r); UNLOCK(r); ");

//2. parallel remote read: emit ("r=RANK(n);
R L I VAR LOCK(r); GET(temp, NDOFFSET(y, n), r); UNLOCK(r);
=L temp...; "),
//3. sequential remote write: if (bNeededWr.contains(x)) {
n.x=...; emit ("BARRIER;"); clear (bNeededRd); clear (bNeededWr); 3}
emit ("r=RANK(n); if(my_rank ==r){ x[LId,(n)]=...; } ");

bNeededRd. insert (x);

//4. sequential remote read: if (bNeededRd. contains(x)) {

R (I S emit ("BARRIER;"); clear (bNeededRd); clear (bNeededWr);3}
emit ("r=RANK(n);
LOCK(r); GET(temp, NDOFFSET(x, n), r); UNLOCK(r);
L..=. .. temp..; M),
bNeededWr. insert (x)

//5. sequential for: if(forhasaremoteaccess()) {
for(..){} emit ("BARRIER") as the first statement of the for-loop}

Fig. 7. Translating remote accesses.

ensure consistency of data, we emit code using MPI instructions MPI_Put and MPI_Get, inside
locked regions, to write or read remote data. See rules 1 and 2 in Figure 7 for details.

Remote read/write outside a parallel loop. As per Green-Marl semantics, the execution of
statements that are present outside a parallel-loop must respect the sequential semantics. In the
generated MPI code, since many processes execute these serial parts of the code in parallel, to
preserve semantics, we use barriers to synchronize if there is a read-write dependency between
remote accesses in these serial parts. Considering the overheads of barriers, we now describe a
flow-sensitive scheme that tries to avoid emitting redundant barriers.

For checking the read-write dependency, we maintain two vectors at each statement:
bNeededRd, the list of all properties whose reads need a preceding barrier, and bNeededWr, the list
of all properties whose writes need a preceding barrier; both initialized to the empty set. When
there is a read (or write) to a property x, we check if this read (or write) needs a preceding barrier
by checking whether x is present in bNeededRd (or bNeededWr) or not. If it is present, (i) we emit
barrier before the read (or write) to ensure consistency, (ii) clear both bNeededRd and bNeededWr
vectors, (iii) add x to bNeededWr (or bNeededRd)—to indicate that a following write (or read) needs
a barrier, and finally, (iv) emit the code for read (or write). These updated vectors are used for the
next statement. See rules 3 and 4 in Figure 7 for details.

Processing conditional and loop statements. On processing a conditional statement (if/if-else),
we take the union of bNeededRd and bNeededWr at the join-point to derive the corresponding
vectors for the following statement: In case of a sequential for-loop, if the for-loop has at least one
remote access, to satisfy the inter-iteration read-write dependencies (if any), we conservatively
emit a barrier as the first statement of the for-loop. See rule 5 in Figure 7 for details.

Before the start of a parallel-loop, if the vectors bNeededRd or bNeededWr have at least one entry,
we emit a barrier and clear the two vectors. This ensures the “completion” of the sequential region
before the start of the parallel region.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 28. Publication date: September 2020.

DisGCo: A Compiler for Distributed Graph Analytics 28:11

Note that we do not have to insert barriers to preserve write-after-write dependencies inside
a sequential region. When two writes occur to the same property indexed by same vertex/edge,
they will be executed by the same process (see rule 3—in the generated code, the write is effectively
non-remote). Hence, the sequential order of writes to the property would be maintained without
needing any barriers in between.

Proving accesses local. Each vertex in the distributed graph is mapped to a unique process. In-
dependent of distribution, a parallel loop in Green-Marl iterating over the vertices of the graph
will be translated to iterate over local vertices of a process. The vertex corresponding to the loop
iteration (say i) in this case is always going to be a local vertex, and any access to the properties
of the vertex i are going to be local unless the value of i is modified in the program. We keep track
of the non modified loop index variables to identify the local accesses in DisGCo.

4.4 Handling Reduction Statements

Consider a reduction statement of the form “x op= expr.” We term the LHS (left-hand side) as
the target of the reduction statement. If the target is a property, then it is translated using the rules
discussed in Section 4.3, such that in each process, both the read and write (of x) happen atomically.
If the target is a variable (say x) then the translation of the reduction statement depends on the
declared scope of x. (i) If x is declared in a serial part of the input code, then we emit code involving
MPI reduction functions. Here, each process will compute a reduced local value, in parallel, and
these values are reduced to a global consistent value by the underlying MPI functions. (ii) If x is
declared in a parallel region of the input code (the operation is independent of the other processes),
then the reduction can be replaced with the corresponding simple arithmetic or logical operations.

Example: We describe our translation of the two reduction statements in Figure 2 (lines 16 and
22). (i) Min reduction at line 16: Here, the target of the reduction is a property, and hence, we use
atomic updates to realize the reduction; see the generated MPI code (Figure 5), lines 9-17. Note that
dist_next[s] is updated to the minimum value atomically by taking locks. (ii) Exists reduction:
Here, the target variable fin is declared in the serial part, and we use MPI reduction (with MPI_LOR
as the operator) for the translation. We emit code so all processes first locally compute the logical-
OR of the locally stored values of the node-properties (given by updated[n]) before invoking the
reduction. In Figure 5, lines 21-23 show the generated code.

4.5 Map Implementation

Map is a dynamically growing data structure in Green-Marlto store/retrieve key-value pairs. We
have extended the distributed linked-list implementation specified in the MPI report [2] to imple-
ment a dynamic concurrent Map.

We use a hash function (many-to-one) to map each key to the beginning of a linked-list, each
of which is headed by a “dummy” node. We maintain a table of these dummy nodes, indexed by
the hash values of the existing keys, at the master process (rank 0), and this table is replicated
onto each process. Each linked list is a distributed singly directed linked list (headed by a dummy
node), where the “next” field of each node in the linked list will hold the rank and address of the
next node in the linked list. When a process tries to insert a key-value pair (k, v) into the Map, we
first find the linked-list (say, L) corresponding to k. If k is already present in a node n, in L, then
we assign v to n.val; else, we locally allocate a new node (for (k, v)) and insert it as the last node
of L. The linked list is updated using compare_and_swap operations to provide concurrency.

For deletion, we follow a flag-based deletion approach [36], where the node to be deleted will
be marked as deleted (by setting a flag). The memory for these nodes is freed when the table is
deallocated.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 28. Publication date: September 2020.

28:12 A. Rajendran and V. K. Nandivada

To support Green-Marl Map related functions such as GetMinKey, GetMaxKey, and so on, we
maintain additional information in the master-process. We update these information on each in-
sertion. On a deletion, if any of this saved information is to be changed, then we mark that in-
formation to be invalid. The subsequent request to obtain that information would result in the
traversal of the complete linked list and updation of all the invalidated information. This scheme
leads to fast (cached) accesses for each subsequent call to GetMinKey/GetMaxKey, and so on, after
the first computation. This leads to minor overheads during insertion and deletion, but improves
the average performance of functions such as GetMinKey/GetMaxKey, and so on. Without this
optimization, computing the minimum key or maximum key from Map would require complete
traversal of the map, which may be a huge overhead when the distributed map grows large in size.
In such scenarios, our generated code answers multiple queries to these functions at the cost of a
single remote read.

4.6 lterators

Green-Marl supports different types of iterators to conveniently traverse the underlying graphs.
In this section, we highlight two of the iterators with interesting challenges for translation.

BFS Iterator. As discussed in Section 2, the inBFS constructor of Green-Marl is used to iterate over
all the reachable nodes (may be distributed across multiple processes) of a source node in BFS order.
The construct admits codes to be executed in the forward and reverse order. Consequently, with
each inBFS construct, we use two functions visit_fw() and visit_rv() to hold the respective
translated codes. Different instances of these functions are expected to be independent of each
other. During the traversal of the graph (discussed below), these functions are called from the
appropriate program points. We now discuss how forward and reverse traversals are handled by
DisGCo. We first describe the case when inBFS is not called inside a parallel region in Green-Marl.

Forward traversal. In the generated MPI code, at each level of BES, nodes at that level are pro-
cessed by the associated (owner) processes. To realize this behavior, we maintain a per-process
vector called the local_vector, which stores the local nodes owned by that process, in BFS or-
der. Initially, only the source node is inserted into the local_vector of the process that owns
the source node. With each process, we maintain a variable called current_level to store the
current level in which the visit is happening. For each level, each process p also remembers the
index of the last node in local_vector in that level to identify the set of nodes for p in that
level. At each level, all the processes will go over their local_vectors and visit each node in their
local_vectors until all the nodes in current_level have been processed. When a node is first
visited, each of its neighbors is added to the local_vector of the corresponding owning process
(this may involve remote updates); after that, the function visit_fw() is invoked. Once all the
processes find that all nodes (€ local_vector) in the current_level have been visited, they in-
crement the current_level by 1. All processes synchronize at this point before proceeding to the
next level.

Reverse traversal. Each process visits the nodes stored in its local_vector, in reverse order,
level-by-level (in decreasing order). At each level, it traverses the nodes in the reverse BFS order
and invokes visit_rv() on each of those nodes; at the end of the level, all processes synchronize
with each other.

When inBFS is called in a parallel region, DisGCo implements a serial version of the explained
logic, such that a process executing the inBFS code maintains a vector holding all the vertices that
need to be visited by the process in the next level. Here, the process may have to handle non-local
vertices as well, and consequently, the neighbor information of such vertices has to be obtained
remotely.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 28. Publication date: September 2020.

DisGCo: A Compiler for Distributed Graph Analytics 28:13

CommonNbrs Iterator. An interesting challenge in translating the common neighbor iterator
(see Section 2) of Green-Marl, which iterates over the common neighbors of two nodes u and v, is
that the process p, that executes the iterator, the processes p, and p, that own u and v, respectively,
could all be different processes.

As part of the translation, we emit code to (i) get the neighbors of u and v by doing a remote
read (using GET), (ii) populate the common neighbors in a vector, and (iii) iterate over the vector.
The following code shows the corresponding translation where the function get_neighbors is
used to obtain the neighbors of the input node, and intersect returns a vector containing the
common neighbors.

// Green-Marl code: ' for (s in u.CommonNbrs(v)){S13}"'
int *u_nbrs=get_neighbors(u), *v_nbrs=get_neighbors(v);

vector<int> *common_nbrs = intersect(u_nbrs,v_nbrs);
for(auto& s : common_nbrs) {S1}

N N

4.7 Graph Partitioning

The performance of DisGCo-generated programs depends a lot on how well the graph is load-
balanced among the executing processes. For better load balancing, the input graph has to be parti-
tioned effectively among processes, and efficient partitioning schemes are explored by many prior
works in the literature Abdolrashidi and Ramaswamy [5], Ahmed et al. [6], Andreev and Récke
[8], Bader and Madduri [9], Nishimura and Ugander [41], Tsourakakis et al. [53], Wang and Chiu
[54]. There are also standalone tools that partition the graphs for later use [29, 50]. Understanding
the importance of the problem of partitioning, the challenges in identifying the best partition, and
the orthogonal nature of the problem, instead of attempting a new partitioning scheme, DisGCo
runtime provides a feature for programmers to specify any arbitrary vertex distribution. The pro-
grammer can specify (in a file) to which process each vertex belongs to, and DisGCo uses it as
input for graph partitioning. If not specified, DisGCo uses a simple block distribution for partition-
ing graphs.

5 OPTIMIZATIONS

In this section, we discuss two optimizations that we implemented in DisGCo to improve the per-
formance of code generated using the translation mechanism discussed in Section 4.

5.1 Communication Aggregation

Inspired by the conditions given by Hong et al. [28], we optimize Green-Marl programs with the
following commonly occurring pattern: (i) Foreach loops iterate over only the edges or vertices of
the program. (ii) Nesting of Foreach loops is allowed, but the maximum nesting depth is restricted
to two; that is, at most doubly nested Foreach loops are present. Further, if nested, the outer
Foreach loop iterates only over the vertices of the graph and the inner Foreach loop (if present) it-
erates only over the neighbors of each vertex. (iii) In terms of operations on properties, the Foreach
loops can only have property writes or a reduction statement reducing a remote property.

The optimization has two passes. In the first pass, the function check_for_comm_aggr checks
whether the foreach loops in Green-Marl can be optimized using communication aggregation or
not. In the second pass, if the loop can be optimized, we collect relevant information about the
loop such as: (i) If there is a reduction present in the loop and if so its type; (ii) information about
the local values written to the property and the local values used in the reduction; (iii) information
about the remote property writes. In the second pass, we use this information to generate opti-
mized code in BSP [11] style; example BSP style interaction is shown in Figure 8. The function
emit_code generates two for-loops, for each loop f, if check_comm_aggr (f) is true. In the first

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 28. Publication date: September 2020.

28:14 A. Rajendran and V. K. Nandivada

Processes—»
h A R D

Time

<=

mlocal computation mcommunication

barrier

Fig. 8. Communication aggregation illustration.

1 void sssp(...)

2

3 int xind = 0;

4 while (!fin){

5 for(node_t n=0; n<num_local_nodes; n++) {

6

7 for(edge_t e=1_begin[n];e<l_begin[n+1];e++){
8 node_t s = 1l_node_idx[e];

9 int templ = dist[n] + len[e];

10 int r1 = GET_RANK(s);

11 ADD(nd_to_update[r1], LIdy,(s));

12 ADD(val_to_updatel[r1], templ);

13 33

14 BARRIER;

15 for(i=0; i<num_processes; i++) {

16 GETA(n_t_u,OFFSET(nd_to_update,my_rank,i),i);
17 GETA(v_t_u,OFFSET(val_to_update,my_rank,i),i);
18 for(int i=0; i<n_t_u_size; i++) {

19 int n = n_t_ulil;

20 int v = v_t_ulil];

21 if(v < dist_nxt[nl) {

22 dist_nxt[n] = v;

23 updated_nxt[n] = true;

24)3

25 BARRIER;

26} }

Fig. 9. Part of optimized SSSP code in MPI RMA.

loop, information about remote writes is aggregated into one or more arrays, and in the second
loop, actual write is performed. In the optimized code, unlike the code generated by the naive
translation scheme, (i) all the processes synchronize after performing local computation and ag-
gregating the messages for each destination process; (ii) after the synchronization, the processes
read the aggregate messages for which they are the destinations/recipients and synchronize again.
Here, message aggregation can greatly optimize the number of remote communications.

Figure 9 shows how the doubly nested loop (lines 13—17) in Figure 2 is translated to BSP model. It
can be seen that the loop headers (lines 5 and 7) in Figure 9 are similar to that in Figure 5 (lines 4 and
6). To handle the writes to a remote property, we store the value to update as well as the node/edge
id to which the write happens in two different arrays. After aggregating all writes into arrays, the
processes communicate the data in arrays to the destination processes. The destination processes
then perform the writes locally. In the case of SSSP, each process takes the value to update and

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 28. Publication date: September 2020.

DisGCo: A Compiler for Distributed Graph Analytics 28:15

void win_attach(int *array, int array_size) {
// attaches the whole array to win .
MPI_Win_attach(win,array,array_size);

int index = property_index*num_processes;

property 1 property 2

1 base_address[index + my_rank] = array;

property_index++;
ralk 0 ik | num processes-1 for(int i=0; i<num_processes; i++) {

// broadcasts base address of the array
(a) base_address array. })
// to all processes with source as i .

MPI_Bcast (&base_address[index + il,---,i,---);
T}

(b) Code for attaching an array to win.

Fig. 10. DisGCo implementation details.

finds the minimum distance locally. Note that here the number of remote communications reduces
to O(num_process?), from O(|E|) of the naive translation scheme, where E = set of edges.

5.2 Common Sub-expression Elimination

Our translation scheme, discussed in Section 4, generates expression to compute rank and local_id
of nodes/edges at many program points (may lead to redundant computation). We avoid such re-
computations by substituting pre-computed variables for rank and local_id at each re-computation.

6 DISCUSSION
In this section, we discuss some of the salient points about our proposed DisGCo compiler.

Other Green-Marl constructs handled. (i) The inDFS iterator that follows a similar syntax to
that of inBFS is used to iterate over nodes of the graph in DFS order. Our DFS implementation (like
the existing implementation) is inherently sequential, and we use a stack-based implementation for
it. (ii) For implementing the collections types sequence and order of Green-Marl (see Section 2),
we use distributed concurrent linked lists. Similarly for implementing the set collection type, we
use distributed bitmaps. (iii) For utility functions such as pickRandom, uniform, and so on, we
have developed the corresponding low-level calls to be used as translations.

Implementation Details for remote and property accesses. Remote accesses. As discussed in
Section 2, any process can remotely access data in a target memory location that is attached to the
shared win object. This access can be done by providing the target’s rank, window handle (win),
and the offset (= address of the memory location).

Handling property accesses. Corresponding to any property x, in each process, we attach a lo-
cal array (say, Ay) to win. We emit code so once A, is attached to win, the process that attaches
the array to win broadcasts the base address of A, to all other processes. We use an array called
base_address to store the starting location of the attached arrays. Note that the address of any
element in A, can be calculated by adding appropriate shifts to the base address (to compute
the offset). In essence, at each process, corresponding to each property, base_address will have
num_processes entries, as shown in Figure 10(a). The code for attaching an array to win is shown
in Figure 10(b); the variable property_index stores the count of the number of properties cur-
rently attached to the base_address.

Programs with Multiple Functions. Though the translation scheme presented in Section 4 as-
sumes the complete parallel part of the code is present within a single function, it can be easily

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 28. Publication date: September 2020.

28:16 A. Rajendran and V. K. Nandivada

extended to a general program with multiple functions. As discussed in Section 4, the translation
of different constructs differs based on whether the construct appears within a parallel region or
not. We extend this idea to codes with multiple functions by marking each function with a flag
(mayRunInParallel) to indicate if it may be invoked inside a parallel region or not; this is done
in a pre-pass. During the translation of a function, if its mayRunInParallel flag is set, then the
function body is translated by assuming it to be present inside a parallel region.

Sources of Efficiency of the DisGCo-generated code. We now highlight some of the important
design decisions that lead to performant MPI code. (i) Using D-CSR format. Many graph algorithms
work by propagating information through forward or reverse edges. It is desirable for such algo-
rithms to access incoming/outgoing edges (distributed over nodes) in constant time. In D-CSR for-
mat, we ensure this by storing forward and reverse edges with the same process. (ii) Designing dis-
tributed versions of the Green-Marl collections. We have designed the distributed counterparts of the
Green-Marl collections such as Map and NodeSequence and avoided centralized storage for them.
Moreover, these dynamically growing data structures are implemented as concurrent data struc-
tures to allow concurrent parallel access to them, thereby improving efficiency. (iii) Identifying local
accesses. We keep track of locally accessed vertices and edges, and we disallow remote access on
them if a vertex/edge is identified as local. (iv) Data distributions. We provide a mechanism to admit
arbitrary data distributions that can lead to efficient program execution. (v) Identifying and imple-
menting different optimizations. We have identified a few potential optimizations and implemented
them in DisGCo to improve the efficiency of the generated code. Considering the efficiency of the
BSP model, we generate programs in a BSP-like model using Communication Aggregation opti-
mization if the input programs satisfy certain conditions. (vi) Importantly, DisGCo generates code
that can take advantage of the efficient RMA-based remote communication. These schemes and
the Communication Aggregation optimization are general and may be extended to any graph DSL.

Comparison with shared memory backend of Green-Marl. Considering the overheads asso-
ciated with MPI processes and distributed communication, it is natural that compared to a parallel
MPI code, the corresponding OpenMP code would run much faster when both the codes are run on
a shared memory system and provided that the input data fit in the memory of the shared memory
system. This was also visible in our brief comparison, where across the five benchmarks discussed
in Section 7, for the smallest input (Amazon), the handwritten OpenMP programs showed a Geo-
mean speedup of 10.68x over the generated MPI programs when run on 16 cores.

7 EVALUATION

We have implemented DisGCo as an extension to the existing Green-Marl compiler, which other-
wise translates Green-Marl programs to OpenMP. Our compiler can translate all the programs in
the Green-Marl repository. We did our evaluations on a 16-node IBM cluster, where each node has
2 Intel E5-670 2.6 GHz processors, 8 cores/processor, and 64 GB RAM. These nodes are connected
using an RDMA-enabled FDR10 Infiniband interconnect with low-powered Mezzanine adapters
[3]. The codes generated by DisGCo are compiled using MPICH [4] and are evaluated on five
different graph benchmark kernels: Single Source Shortest Path using BellmanFord’s algorithm
(SSSP), Breadth First Search (BFS), Connected Components (CC), Average Teen Count (ATC), and
Pagerank (PR). As an additional check, we have verified that the output of each DisGCo compiled
code matches that of the existing Green-Marl compiler.

We divide our evaluation into six parts. (i) We compare the various static characteristics of code
generated by DisGCo against the code generated by DH-Falcon. (ii) We discuss the scalability of the
DisGCo-generated codes over five input graphs; a synthetic graph! Random30, and four real-world

1We use the random graph generator provided by the Green-Marl distribution, which uses a uniform distribution.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 28. Publication date: September 2020.

DisGCo: A Compiler for Distributed Graph Analytics 28:17

Graph #V #E || DisGCo running times for 1X1 (secs)
SSSP | BFS CC | ATC PR
Random30 30M | 300M || 166.20 | 34.77 | 31.16 | 23.34 | 166.91
Amazon (TWEB) || 0.4M 3M 2.18 | 0.41 6.6 | 0.19 3.02
LiveJournal 4M 68M 39.57 5.62 | 71.20 3.60 42.29
Orkut 3M | 117TM 40.05 6.86 | 50.19 6.10 96.89
Youtube 3M M 257 | 1.21 | 1149 | 0.52 4.99

Fig. 11. Input details and DisGCo runtimes for running times for a single node with single core (1 x 1).

Graph SSSP BFS CC PR ATC

D F| M D F M D F M D M D M
LOC 171 | 284 | 140 || 168 | 194 | 141 163 | 343 | 134 || 173 | 131 157 | 126
#Sends/Receives 0 10 0 0 6 0 0 6 0 0 0 0 0
#Gets 3 0 3 3 0 3 3 0 3 3 3 3 2
#Barriers 4 3 1 4 3 1 4 3 1 6 1 4 1
#Reductions 1 1 1 1 1 1 1 1 1 1 1 1 1
#locks/unlocks 3 0 3 3 0 3 3 0 3 3 3 3 3

Fig. 12. Static characteristics of the code generated by DisGCo, DH-Falcon, and the manually tuned codes
(D=DisGCo-generated, F=DH-Falcon-generated, M=Manually tuned).

graphs—Amazon (TWEB), LiveJournal, Orkut, and YouTube; see Figure 11 for some details of the
input graphs. (iii) We present a performance comparison against the state-of-the-art DH-Falcon,
the only graph DSL compiler that generates MPI codes. (iv) We evaluate the DisGCo-generated
codes over different distributions to study the impact thereof. (v) We discuss the impact of the
proposed optimizations on the generated codes. (vi) We present a comparison of DisGCo-generated
codes against the manually tuned versions thereof. Except for (iii), we use a blocked-distribution
for partitioning the input.

7.1 Static Characteristics

Figure 12 (columns labeled “D” and “F”) shows some static characteristics of the DisGCo- and
DH-Falcon-generated programs. Comparing the static characteristics of DisGCo and DH-Falcon,
we can see that DisGCo-generated codes are better than DH-Falcon-generated codes in terms of
the number of lines of code and remote communication used. However, we see that in terms of
the number of barriers, the DisGCo-generated codes show more barriers than the DH-Falcon-
generated code. This is because in the DH-Falcon-generated codes, the blocking-receives produce
implicit synchronizations (not counted in Figure 12).

7.2 Scalability

We show the scalability results of DisGCo in Figures 13 and 14, for varying hardware configura-
tions. Figure 13 shows the scalability result when evaluated in a purely distributed (DS) set-up
by varying number of nodes (from 1 to 16), whereas Figure 14 shows the scalability result when
evaluated on a single node multi-core (MC) system by varying the number of processes (from 1 to
16) for all five graphs. For reference, the execution times for the configurations 1 X 1 for different
input graphs are shown in Figure 11.

Figures 13 and 14 show that the DisGCo-generated programs scale well on both DS and MC
systems. Naturally, the scaling on the MC system is higher than that on the DS system, owing to
the relatively lower communication overheads in the MC systems. We see that in some of the plots,

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 28. Publication date: September 2020.

28:18 A. Rajendran and V. K. Nandivada

~- sssp

15 —4—pFs
a {
=)
B == PR
g8
-3
o
06
04
02
[0 [
1x1 2x1 4x1 8x1 16x1 1x1 2x1 4x1 8x1 16x1 x1 2x1 ML o 8x 16x1
Processor Configuration Processor Configuration Processor Configuration
(a) Random30 (b) Amazon (c) LiveJournal
3
2
27 —m-sssp 18 —-sssp
24 —®—BFs =& BFS
21
2
S1lg
°
8
215
n
22
09
06
03
[0
Ix1 2x1 4x1 8x1 16x1 Ix1 2x1 4x1 8x1 16x1
Processor Configuration Processor Configuration
(d) Orkut (e) Youtube

Fig. 13. Strong scalability of DisGCo on multi-node systems. Speedup on an Nx1 system = (Exec time on
Nx1system)=+ (Exec time on 1 X 1 system). A configuration NXC is a system with N nodes, with C cores per
node.

the scaling reduces after a certain point—this is expected, as for any graph application, for a given
input, there is an optimum configuration where we get the maximum performance and after which,
the performance starts degrading as the increase in the communication overheads overshadow
the gains due to parallelism. For instance, for the Amazon graph (Figure 13), for BFS, 8 X 1 is the
optimum configuration and the performance degrades for 16 X 1. Similarly, for the LiveJournal
input, for the PR kernel, the optimum performance was observed for the 8 X 1 configuration; and
for the YouTube graph, for SSSP and BFS, the optimum performance was observed for the 8 x 1
configuration.

Summary: We see that DisGCo can produce scalable MPI codes. The actual amount of scaling
depends on the size of the input, amount of local computation, and resulting trade-offs between
the distribution of the computation and the increase in communication.

7.3 Comparison with DH-Falcon

The DH-Falcon compiler converts programs written in DH-Falcon (a domain-specific language)
to MPI programs (using two-sided communication) in the efficient BSP model. We got the
DH-Falcon codes for SSSP and BFS from the authors of DH-Falcon and we ourselves wrote the
Falcon codes for CC, ATC, and PR. We found the DH-Falcon compiler could only compile SSSP,
BFS, and CC, but crashed (through a segmentation-fault) on ATC and PR. We tried talking to the
developers of DH-Falcon, but they could not fix the issues. Further, we found that despite our
best efforts, we could not run these three kernels on real-world inputs—the programs crashed.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 28. Publication date: September 2020.

DisGCo: A Compiler for Distributed Graph Analytics 28:19

13 s 3
1o | =@=sssp 4.5 —f=sssp 27 —-sssp
13 4 | —4—BFs .
4
0 35 cc ,
-3 9 a == ATC
2 s 23 .
- ° =$— PR -
8 - 2> H
o <5
(20N a
5 2
4 15)
3 1 [
2
0. 03
1 5
0 0 [
1x1 1x2 1x4 1x8 1x16 1x1 1x2 1x4 1x8 1x16 x1 x2 x4 . 1x8 1x16
Processor Configuration Processor Configuration Processor Configuration
(a) Random30 (b) Amazon (c) LiveJournal
8 45
75
» | == sssp ¢ - =i sssp
65 | ——BFs 30— BFS
.5
6 cc cc
55
s 5 —h&— ATC o S =k aTC
=) =)
TS =»— PR 225 =$— PR
o]
o 4 2
@35 o2
3
25 15
2
15 2
1 2
05
o 0
1Ix1 x2 1x4 1x8 1x16 Ix1 1x2 1x4 1x8 1x16
Processor Configuration Processor Configuration
(d) Orkut (e) Youtube

Fig. 14. Strong scalability of DisGCo on multi-core systems. Speedup on a 1XN system = (Exec time on 1XN
system)+ (Exec time on 1 X 1 system). A configuration NxC is a system with N nodes, with C cores per node.

Hence, in this evaluation, we only discuss the comparison of these three kernels (SSSP, BFS, CC)
using the Random30 input.

Figure 15 shows the speedups of the DisGCo-generated codes over the DH-Falcon-generated
codes for Random30 for varying hardware configurations. The DH-Falcon-generated code crashed
for a couple of configurations, and we skip the corresponding speedup entries (shown with an X).
The graphs show speedups on three types of configurations: single-node-multi-cores, multi-node-
max-cores, and multi-node-single-core. Across the three types of configurations, we see that over-
all, compared to DH-Falcon, DisGCo leads to a geomean speedup of 17.32X across the three bench-
marks. These speedups are chiefly due to our design choices for efficiency (see Section 6) including
the use of one-side communication (RMA), in contrast to the two-side communication employed
by the DH-Falcon.

The impact of the choice of RMA for communication can be seen from the speedups obtained
by the DisGCo codes for smaller hardware configurations, where the DH-Falcon-generated results
incur large performance overheads due to the high cost of communication delays. We can see that
as we increase the amount of parallelism, more communication happens in parallel, which in turn
reduces the overheads of DH-Falcon-generated codes, and hence the speedups reduce. However, it
can be seen that even at higher configurations, the performance of the DisGCo-generated codes is
still significantly higher than that of the DH-Falcon-generated codes (attesting to the efficiency of
our translation scheme). Further, note that for the three studied kernels, the DH-Falcon-generated
codes do not scale beyond 4 x 16 (either takes more time than lower configurations or crashes).

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 28. Publication date: September 2020.

28:20 A. Rajendran and V. K. Nandivada

<
180 p 100 ;
160 = X-DH-Falcon fails running %0 X-DH-Falcon fails running
140 80 N
0 70 =}
120 @ 2 © 5]
s S 60 2
g-lgg o S 50 = < i |
3 2 © o 40 3
3 © 3 2 ~ o
§ o0 = ERE- I £ 30 5 g~ s
& 40 L I > o o @ 20 S o« S o S
20 bu bl I 10 5 2 9 I ©
0 s, = o, [TR E=N
& O @ N T SN SN RN SN X S T R T S
\:G SRS N Q,+’» o D S s S i i AN
Processor Cunﬁgurauon o Processor Configuration ©
(a) SSSP (b) BFS

X-DH-Falcon fails running

Speed Up
58838
*
| E:M
I :32
e 213
¢ 129
|1‘9 . ‘
¢ |10
><
6
—470
% 120
| JEE]
We1
% Eli16

> D >
RSSO R @«, o

Processor Conflguratlon

(c)CC

Fig. 15. Speedup of DisGCo over DH-Falconfor varying hardware configurations. Input graph: Random30.

Summary: From the results, it is clear that DisGCo compiler generates more efficient MPI codes
than those generated by the state-of-the-art DH-Falcon compiler.

7.4 Performance of DisGCo Programs for Varying Distributions

Considering the importance of vertex-distribution and the challenges in designing the most op-
timal distribution schemes, DisGCo provides a way for the programmer to specify any arbitrary
vertex-distribution. To see the impact of distribution on the performance, we have tested the pro-
grams using three distributions: blocked (default), cyclic, and random. Figure 16 shows the perfor-
mance of DisGCo-generated programs executed using cyclic and random distribution of vertices
as a speedup over the DisGCo programs executed using block distribution of vertices; we use the
largest distributed system (DS) 16 X 1 for this evaluation.

Summary: We can see that for best performance the distribution should be chosen depending
on both the specific application under consideration and the input graph.

7.5 Effectiveness of the Optimizations

To demonstrate the importance of our proposed optimizations (see Section 5), we evaluated their
impact on the generated codes. Figure 17 shows the performance improvement (with respect to
the unoptimized code) we obtained due to Communication Aggregation Optimization when run
on the 16 X 1 configuration. The reduction in the number of communication operations due to
Communication Aggregation Optimization resulted in significant speedup. Similarly, Figure 18
shows the speedups obtained due to Common Subexpression Elimination (baseline = unoptimized
code) when run on the 16 X 1 configuration. The optimization was applicable only to SSSP, BFS,
and CC, and their relative speedups are reported. We can clearly see that since the Communication
Aggregation Optimization reduces the amount of remote communication, its impact is very high.
In contrast, since the CSE optimization reduces the number of computation steps, the gains are
relatively smaller (significant nevertheless). Overall, we find that the proposed optimizations are
very effective in substantially decreasing the associated overheads.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 28. Publication date: September 2020.

DisGCo: A Compiler for Distributed Graph Analytics 28:21

Sk % o8
12 oo P 20 ,:'_ 3 2% [meyclic 407 lcychc we 2
cyc ' 18 hal M random 35 u random 33 o @ 5y
1.0 L] random m & o peds
H R g L6] & S 30
2 2 S5 < S 14 4 i 8 e
S 08 8o S S 8 8 Sg 2 1 £
] S S S 5 12 2 5 2
3 06 3 10 S 3 20
g 508 g 15
’ ©
H g o6 2 10
8 02 2 04 g
(e 72 a 05
0.0 0.0 0.0
SSsP BFS cc SSSP BFS cc PR ATC SSSP BFS cc ATC
Kernels Kernels Kernels
(a) Random30 (b) Amazon (c) LiveJournal
4.0 > 3.0
. ki m cyclic g lcycllc 22 .
35 o random 25 u random N]
=< x 3 - ~
§ a0 . 3 .8
= & 5 20 < -
~ 25 o 5 2]
g N N~ > -
3 20 55 3y Be 3 15
o — -8
315 838 3 10
4 — 3
i £ 0s
o 05 w
0.0 0.0
SSSP BFS cc PR ATC SSSP BFS cc PR ATC
Kernels Kernels
(d) Orkut (e) Youtube

Fig. 16. Speedup of DisGCo programs using cyclic and random vertex distributions over block distribution.

7.6 Speedup of Manually Tuned Programs

Our current code generation scheme emits barriers at the end of all parallel for-loops, which can
be eliminated if there are no dependencies to be preserved with the downstream code. During
the manual tuning, we elided such redundant operations. Similarly, we performed another minor
tuning wherein we eliminated the instructions that attach properties to windows at the beginning
of each function if those properties are unused. We also identified some remote reads that are
guaranteed to return the same value (depending on the program logic) and combined them into a
single remote read. The resulting differences in terms of the static characteristics are shown in the
columns labelled “M” in Figure 12. Naturally, the manually tuned codes have fewer barriers and
reads (Get operations) than the DisGCo-generated codes. Figure 19 shows the speedup of manually
tuned codes over the DisGCo-generated codes. It can be seen that, compared to the manually tuned
codes, the DisGCo-generated codes run slower (average 28%). We leave it as a future work to cover
this gap automatically.

Overall summary of evaluation: The DisGCo compiler can compile arbitrary Green-Marl syntax
and can generate MPI RMA codes that are scalable and perform significantly better than those
generated by the state-of-the-art DH-Falcon compiler. Further, the proposed optimizations are
important to realize the performance gains.

8 RELATED WORK

Graph DSLs for distributed systems. DH-Falcon [13] is a state-of-the-art Domain Specific Lan-
guage that extends the C language to encode graph algorithms. Its compiler translates the input
programs to MPI programs in BSP model. Hong et al. [28] translate a restricted subset of Green-
Marl to generate distributed Pregel code. In contrast, the DisGCo compiler has no such restriction
and leads to more performant codes than those generated by DH-Falcon.

BSP-based Distributed Graph Processing Systems. Many works [12, 17, 23, 25, 30, 37, 45] in
the literature exploit the efficient BSP model to bring out abstractions for programming, as well

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 28. Publication date: September 2020.

28:22 A. Rajendran and V. K. Nandivada

@ o o
1000 g8 3 135 8 10 8
g 3
%00 s 8 1.30 160
800 1.25 1.50 o
00 8 3 M "
g 2 e N 5 120 5 140 - 8 3
5600 oo S - b b & <
2 B $ 115 $ 130 al
2500 - & & 1
© -
200 g 110 g 1.20
8 o
300 . 1.05 § E § § I 110 I
200 100 = 1.00
SSSP BFS CC PR ATC GMean SSSP BFS CC PR ATC G.Mean SSSP BFS CC PR ATC GMean
Kernels Kernels Kernels
(a) Random30 (a) Random30 (a) Random30
2200 8 130 112 s
2000 e g o
1800 S 1.25 1.10
1600 < 1.20 1.08 ©
2 1400 < o Y 8
o 5 5 E 0
S 1200 & 5 115 T 106 8 3
8 o g 2 s E
® 1000 & 3 o o 3
7] & 110 & 104 <
0 goo 8 o 1 N o L
e g 8 o
600 s 3 1.05 - al 1.02 a
400 g K & 8 38 8 I]
200 - . 1.00 - - 1.00
SSSP BFS CC PR ATC G.Mean SSSP BFS CC PR ATC G.Mean SSSP BFS CC PR ATC G.Mean
Kernels Kernels Kernels
(b) Amazon (b) Amazon (b) Amazon
3 1.40 & o
2550] - 3 2.40 8
g 135 220
2050
N . 1.30 200
& & 125
o
21550 o 8 S 5 180
3 8§ g g 2 3 120 T - e
8 1050 g © 5 2 115 g 1§ 53
[o © 8 @ 140
2 110 8 S . @
0 2 = 1.20 3 4
5 105 g I S 3 I - — .
50 - 100 = = 1.00 u
SSSP BFS CC PR ATC G.Mean SSSP BFS CC PR ATC GMean SSSP BFS CC PR ATC GMean
Kernels Kernels Kernels
(c) LiveJournal (c) LiveJournal (c) LiveJournal
4700 5 180 o 160 o
4200 8 @ 8
8 170 150 R
3700 1.60 S B
8 &
LW B o 1% o M0 8 3 8
2%] 3 B 2 110 2 130
B0 g 2 3 g < 3 2
2] al S 2 130 I 2]
@ 1700 = = ~ 3 o ~ < o 120 hal
1200 g 3 1.20 2]
8 3 g 110
700 110 s s
. . - -
200 1.00 1.00
SSSP BFS CC PR ATC G.Mean SSSP BFS CC PR ATC G.Mean SSSP BFS CC PR ATC GMean
Kernels Kernels Kernels
(d) Orkut (d) Orkut (d) Orkut
2200 s 1.60 150 g2 ¢
2000 & o g 145
< B 150 S B
1800 X 2 140 &
< = 5 1.35
1600 3 - 1.40 3 - Q
2 1400 38 o 2 130 <
5 3 5 5
o 1200 o 8 - 130 g 125
3 b g 3 © H
2 1000 5 & " £ 8 120 9
s 2 & 1.20 3 < & o
0 goo - o L = 0 115
2
: 110
600 8 110 I
400 8 8 1.05 =}
200 | 1.00 = = 1.00 =
SSSP BFS CC PR ATC G.Mean SSSP BFS CC PR ATC G.Mean SSSP BFS CC PR ATC G.Mean
Kernels Kernels Kernels
(e) Youtube (e) Youtube (e) Youtube
Fig. 17. Speedup due to Com- Fig. 18. Speedup due to Com- Fig. 19. Speedup of Manually
munication Aggregation Opt. mon Subexpression Elim. Tuned Programs.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 28. Publication date: September 2020.

DisGCo: A Compiler for Distributed Graph Analytics 28:23

as translation schemes. However, writing programs by focusing on the BSP model can be both
restrictive and also arguably non-intuitive for some programmers. In contrast, DisGCo translates
programs written in Green-Marl (a high-level graph DSL) to MPI RMA code and has optimizations
built in to identify opportunities to translate Green-Marl code to codes in the efficient BSP model.

Distributed Graph Processing systems. There are many frameworks [17, 20, 34, 38, 43, 44, 46,
47, 58] that help encode different types of graph algorithms for distributed systems. For example,
Distributed GraphLab [34] offers suitable abstractions for challenging parallel machine learning
algorithms. PowerGraph [20] focuses on the challenges of power-law graphs where the program-
mer needs to provide the implementations for Gather, Apply, and Scatter functions to code any
graph algorithm. Plimpton et al. [43] proposed a library called MR-MPI, which helps to write MPI
programs for graphs in Map-Reduce format. SnuCL [31] extends OpenCL to admit programs that
can be run on heterogeneous systems. The SnuCL runtime has a dedicated command scheduler
thread to schedule and to ensure completion of execution of kernels on multiple nodes. The work-
items for each node are transferred using MPI point-to-point communication routines. Similarly,
Gluon [17] is a graph analytic substrate proposed for distributed heterogeneous systems, which
can be used to enable distributed memory execution for many shared memory applications using
an interface code. To interface with Gluon, a blocking synchronization call is inserted between
successive parallel rounds, which therefore restricts the input programs only to be in BSP model.
Galois programming model [39] is an efficient model for encoding graph analytics for shared
memory systems. Besides Gluon, there are other prior works that propose various compilers for
converting BSP style programs written in Galois model to Distributed systems [19] and on to GPUs
[42]. Many shared memory frameworks [35, 40, 42, 49, 57, 58] have also been proposed for graph
analytics.

In contrast, our proposed DisGCo compiler transforms a high-level imperative DSL code (not
just restricted to BSP style code) into low-level MPI code that can run on distributed systems. We
believe that many of the optimizations discussed in the above prior works (for example, direction
optimization, efficient graph partitioning, load balancing, etc.) can be extended to/implemented in
DisGCo. We leave such extensions as future works.

SPMDization. There have been many prior works [7, 10, 16, 52] that translate fork-join style code
to SPMD code. We use a similar approach and generate MPI SPMD code from Green-Marl.

Lock Optimization. Optimizing the overheads of synchronization is a hot area of research to
improve the performance of parallel programs [14, 21, 22, 55, 56]. These works can be used to
further speed up the DisGCo-generated programs in an orthogonal way.

9 CONCLUSION

In this article, we present DisGCo, the first compiler that can translate any Green-Marl program
to MPI RMA program. We show that DisGCo-generated programs perform better than programs
generated by the existing state-of-the-art DH-Falcon compiler. Unlike the existing Green-Marl
compiler (targeting distributed systems) that admits only a subset of Green-Marl programs, DisGCo
is general enough to handle all graph algorithms expressible in Green-Marl.

Future work. The proposed DisGCo compiler can be extended in various directions, such as
(i) implementing all the library functions in the BSP model, (ii) reducing the overheads due to
locks/unlocks in the RMA-based codes, (iii) identifying optimal graph distributions, and (iv) ex-
tending DisGCo to generate hybrid MPI+OpenMP code, targeting heterogeneous systems.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 28. Publication date: September 2020.

28:24 A. Rajendran and V. K. Nandivada

REFERENCES

(1]

(10]

(11]
[12]

[13]

(14]
(15]
(16]

(17]

(18]

[19]

[20]

[21]
[22]

(23]

[24]

[25]

2015. Green-Marl Language Spec. Retrieved from https://docs.oracle.com/cd/E56133_01/1.2.0/Green_Marl
Language_Specification.pdf.

2015. MPI3.1 documentation. Retrieved from https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf.

2016. Mezzanine Apapters. Retrieved from http://www.mellanox.com/related-docs/user_manuals.

2019. MPICH Home Page. Retrieved from http://www.mcs.anl.gov/mpi/mpich2.

A. Abdolrashidi and L. Ramaswamy. 2016. Continual and cost-effective partitioning of dynamic graphs for optimizing
big graph processing systems. In Proceedings of the IEEE International Congress on Big Data (BigData Congress). 18-25.
A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A. J. Smola. 2013. Distributed large-scale natural
graph factorization. In Proceedings of the World Wide Web Conference. 37-48.

S. P. Amarasinghe and M. S. Lam. 1993. Communication optimization and code generation for distributed memory
machines. In Proceedings of the Conference on Programming Language Design and Implementation. 126-138.

K. Andreev and H. Ricke. 2004. Balanced graph partitioning. In Proceedings of the ACM Symposium on Parallelism in
Algorithms and Architectures. 120-124.

A.Bader and K. Madduri. 2008. SNAP, small-world network analysis and partitioning: An open-source parallel graph
framework for the exploration of large-scale networks. In Proceedings of the International Parallel and Distributed
Processing Symposium. 1-12.

G. Bikshandji, J. G. Castanos, S. B. Kodali, V. K. Nandivada, I. Peshansky, V. A. Saraswat, S. Sur, P. Varma, and T. Wen.
2009. Efficient, portable implementation of asynchronous multi-place programs. In Proceedings of the Symposium on
Principles and Practice of Parallel Programming. 271-282.

R. C. Calinescu. 2000. The Bulk-Synchronous Parallel Model. Springer London, 5-12. DOI : https://doi.org/10.1007/978-
1-4471-0763-7_2

A. Chan and F. Dehne. 2003. CGMgraph/CGMIib: Implementing and testing CGM graph algorithms on PC clusters.
In Recent Advances in Parallel Virtual Machine and Message Passing Interface. 117-125.

U. Cheramangalath, R. Nasre, and Y. N. Srikant. 2017. DH-Falcon: A language for large-scale graph processing on
distributed heterogeneous systems. In Proceedings of the IEEE International Conference on Cluster Computing. 439—
450.

S. Cherem, T. Chilimbi, and S. Gulwani. 2008. Inferring locks for atomic sections. In Proceedings of the Conference on
Programming Language Design and Implementation. 304-315.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. 2009. Introduction to Algorithms (3rd ed.). The MIT Press,
Cambridge, MA.

R. Cytron, J. Lipkis, and E. Schonberg. 1990. A compiler-assisted approach to SPMD execution. In Proceedings of the
ACM/IEEE Supercomputing Conference. 398-406.

R. Dathathri, G. Gill, L. Hoang, H. Dang, A. Brooks, N. Dryden, M. Snir, and K. Pingali. 2018. Gluon: A communication-
optimizing substrate for distributed heterogeneous graph analytics. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’'18). ACM, New York, NY, 752-768. DOIL:
https://doi.org/10.1145/3192366.3192404

J. Dinan, P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and R. Thakur. 2016. An implementation and evaluation of
the MPI 3.0 one-sided communication interface. Concurr. Comput. : Pract. Exper. 28 (Dec. 2016), 4385-4404. DOI:
https://doi.org/10.1002/cpe.3758

G. Gill, R. Dathathri, L. Hoang, A. Lenharth, and K. Pingali. 2018. Abelian: A compiler for graph analytics on dis-
tributed, heterogeneous platforms. In Proceedings of the European Conference on Parallel Processing. 249-264.

J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. 2012. PowerGraph: Distributed graph-parallel computa-
tion on natural graphs. In Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementa-
tion (OSDI'12). USENIX Association, Berkeley, CA, 17-30. Retrieved from http://dl.acm.org/citation.cfm?id=2387880.
2387883.

J. Gray, R. A. Lorie, G. R. Putzolu, and L. L. Traiger. 1976. Granularity of locks and degrees of consistency in a shared
data base. In Proceedings of the IFIP Working Conference on Modelling in Data Base Management Systems.

J. N. Gray, R. A. Lorie, and G. R. Putzolu. 1975. Granularity of locks in a shared data base. In Proceedings of the
International Conference on Very Large Data Bases. 428—451.

D. Gregor and A. Lumsdaine. 2005. Lifting sequential graph algorithms for distributed-memory parallel computation.
In Proceedings of the ACM SIGPLAN International Conference on Object-oriented Programming, Systems, Languages, and
Applications. 423-437.

W. D. Gropp and R. Thakur. 2007. Revealing the performance of MPI RMA implementations. In Proceedings of the
PVM/MPI Users” Group Conference. 272-280.

F. Hielscher and P. Gottschling. 2004. ParGraph. Retrieved from http://pargraph.sourceforge.net/.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 28. Publication date: September 2020.

DisGCo: A Compiler for Distributed Graph Analytics 28:25

[26]

[27]

(28]

[29]
(30]
(31]

(32]

(33]
(34]
(35]
(36]
(37]
(38]
(39]
[40]
[41]

[42]

[46]
(47]
(48]
(49]
(50]
[51]

[52]

T. Hoefler, J. Dinan, R. Thakur, B. Barrett, P. Balaji, W. Gropp, and K. Underwood. 2015. Remote memory access
programming in MPI-3. ACM Trans. Parallel Comput. 2 (June 2015). DOI : https://doi.org/10.1145/2780584

S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. 2012. Green-Marl: A DSL for easy and efficient graph analysis. In Pro-
ceedings of the International Conference on Architectural Support for Programming Languages and Operating Systems.
349-362.

S.Hong, S. Salihoglu, J. Widom, and K. Olukotun. 2014. Simplifying scalable graph processing with a domain-specific
language. In Proceedings of the Annual IEEE/ACM International Symposium on Code Generation and Optimization
(CGO’14). ACM, New York, NY. DOI : https://doi.org/10.1145/2581122.2544162

G. Karypis and V. Kumar. 1998. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM 7.
Sci. Comput. 20 (Dec. 1998), 359-392.

Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and P. Kalnis. 2013. Mizan: A system for dynamic load
balancing in large-scale graph processing. In Proceedings of the European Conference on Computer Systems. 169-182.

J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee. 2012. SnuCL: An OpenCL framework for heterogeneous CPU/GPU
clusters. In Proceedings of the International Conference on Supercomputing. 341-352.

M. Li, X. Lu, K. Hamidouche, J. Zhang, and D. K. Panda. 2016. Mizan-RMA: Accelerating Mizan graph processing
framework with MPI RMA. In Proceedings of the 23rd IEEE International Conference on High Performance Computing,
Data, and Analytics. IEEE, 42-51.

M. Li, X. Lu, S. Potluri, K. Hamidouche, J. Jose, K. Tomko, and D. K. Panda. 2014. Scalable Graph500 design with MPI-3
RMA. In Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’14). 230-238.

Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein. 2012. Proc. VLDB Endow. 5 (Apr. 2012),
716-727.

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. 2010. GraphLab: New framework for
parallel machine learning. CoRR abs/1006.4990 (2010).

T. Maier, P. Sanders, and R. Dementiev. 2016. Concurrent hash tables: Fast and general?(!) In Proceedings of the Sym-
posium on Principles and Practice of Parallel Programming. 3:41-3:42.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. 2010. Pregel: A system for
large-scale graph processing. In Proceedings of the SIGMOD Conference. 135-146.

J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and M. Oskin. 2015. Latency-tolerant software distributed
shared memory. In Proceedings of the USENLX Annual Technical Conference. 291-305.

D. Nguyen, A. Lenharth, and K. Pingali. 2013. A lightweight infrastructure for graph analytics. In Proceedings of the
ACM Symposium on Operating Systems Principles. 456—471.

D. Nguyen, A. Lenharth, and K. Pingali. 2013. A lightweight infrastructure for graph analytics. In Proceedings of the
ACM Symposium on Operating Systems Principles. 456—471.

J. Nishimura and J. Ugander. 2013. Restreaming graph partitioning: Simple versatile algorithms for advanced balanc-
ing. In Proceedings of the Knowledge Discovery and Data Mining Conference. 1106-1114.

S. Pai and K. Pingali. 2016. A compiler for throughput optimization of graph algorithms on GPUs. In Proceedings of
the ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications.
1-19.

S. J. Plimpton and K. D. Devine. 2011. MapReduce in MPI for large-scale graph algorithms. Parallel Comput. 37 (Sep.
2011), 610-632. DOI : https://doi.org/10.1016/j.parco.2011.02.004

L. Rauchwerger, F. Arzu, and K. Ouchi. 1998. Standard templates adaptive parallel library (STAPL). In Proceedings of
the International Workshop on Languages, Compilers, and Run-time Systems for Scalable Computers. 402—409.

S. Salihoglu and J. Widom. 2013. GPS: A graph processing system. In Proceedings of the Scientific and Statistical
Database Management Conference. 22:1-22:12.

J. Seo, J. Park, J. Shin, and M. S. Lam. 2013. Distributed socialite: A datalog-based language for large-scale graph
analysis. Proc. VLDB Endow. 6 (Sep. 2013), 1906-1917.

B. Shao, H. Wang, and Y. Li. 2013. Trinity: A distributed graph engine on a memory cloud. In Proceedings of the
SIGMOD Conference. 505-516.

G. Shashidhar and R. Nasre. 2017. LightHouse: An automatic code generator for graph algorithms on GPUs. In Pro-
ceedings of the Workshop on Languages and Compilers for Parallel Computing. 235-249.

J. Shun and G. E. Blelloch. 2013. Ligra: A lightweight graph processing framework for shared memory. In Proceedings
of the Symposium on Principles and Practice of Parallel Programming. 135-146.

G. M. Slota, S. Rajamanickam, K. Devine, and K. Madduri. 2017. Partitioning trillion-edge graphs in minutes. In
Proceedings of the International Parallel and Distributed Processing Symposium. 646—655.

V. Tipparaju, W. Gropp, H. Ritzdorf, R. Thakur, and J. L. Traff. 2009. Investigating high performance RMA interfaces
for the MPI-3 standard. In Proceedings of the International Conference on Parallel Processing. 293-300.

C. Tseng. 1995. Compiler optimizations for eliminating barrier synchronization. SIGPLAN Not. 30 (Aug 1995), 144-155.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 28. Publication date: September 2020.

28:26 A. Rajendran and V. K. Nandivada

(53]
[54]
[55]

[56]

[57]

(58]

C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic. 2014. FENNEL: Streaming graph partitioning for mas-
sive scale graphs. In Proceedings of the Web Search and Data Mining Conference. 333-342.

R. Wang and K. Chiu. 2013. A stream partitioning approach to processing large scale distributed graph datasets. In
Proceedings of the IEEE International Conference on Big Data. 537-542.

T. Yu and M. Pradel. 2016. SyncProf: Detecting, localizing, and optimizing synchronization bottlenecks. In Proceedings
of the International Symposium on Software Testing and Analysis. 389-400.

Y. Zhang, V. C. Sreedhar, W. Zhu, V. Sarkar, and G. R. Gao. 2007. Optimized lock assignment and allocation: A method
for exploiting concurrency among critical sections. In Proceedings of the Symposium on Principles and Practice of
Parallel Programming. 146-147.

Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, and S. Amarasinghe. 2018. Graphlt: A high-performance graph
DSL. Proc. ACM Program. Lang. 2 (Oct. 2018). DOI : https://doi.org/10.1145/3276491

X. Zhu, W. Chen, W. Zheng, and X. Ma. 2016. Gemini: A computation-centric distributed graph processing system.
In Proceedings of the Symposium on Operating Systems Design and Implementation. 301-316.

Received December 2019; revised June 2020; accepted July 2020

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 28. Publication date: September 2020.

